
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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LOCALIZATION OF THE PSEUDOSPECTRA OF MATRICES
THROUGH THE NUMERICAL RANGE

ABDELKADER FRAKIS AND ABDERRAHMANE SMAIL

Abstract. Numerical range and pseudospectra of a matrix play an im-
portant role in different areas and have several applications in different
domains. The numerical range gives an estimate to the location of the
pseudospectra, the present work proposes some properties of pseudospectra
of a matrix and provides a connection between numerical range and pseu-
dospectra of a matrix. Some upper bounds for pseudospectra of a matrix
are given. Also we use the pseudospectra to solve a problem concerning the
matrices which are nearly commuting.

1. Introduction

The study of pseudospectra of matrices has become a significant part of
numerical linear algebra and related areas. Pseudospectra were introduced
by Landau in 1975, who used the term ε-spectrum [8]. Four years later,
J. M. Varah published a paper entitled “On the separation of two matri-
ces,” in which he use the notation Sε(A) to ε-spectrum, and defined the ε-
pseudospectrum using the smallest singular value σmin(A−λI), see [15]. Dur-
ing the 1990s pseudospectra became an independent subject, for more details,
see [3, 9, 10, 11, 12, 13, 14]. Numerous contributions related to pseudospec-
tra were made by various people, including J. S. Baggett [1], A. Böttcher [2],
T. A. Driscoll [3], M. Embree [14], N. Higham and F. Tisseur [6], S. C. Reddy [9],
L. Reichel [10].

A normal matrix is one that satisfies AA∗ = A∗A where A∗ is the conjugate
transpose. It is known, see [14], that the ε-pseudospectrum of a normal matrix
A is equal to the union of the closed ε-balls about the eigenvalues of A. In this
paper we characterize the pseudospectra of a matrix using Taylor expansion.
Some bounds of pseudospectra are given, too. We introduce a new concept
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pseudoprojection, different uses of pseudospectra are presented. Also some
formulas which link the pseudospectra of a matrix with the numerical range
are given.

2. Pseudospectra of a matrix

Four definitions of pseudospectra are given in [13], [14]. The first is re-
lated to perturbation, the second deals with the resolvent, the third is given
with a normalized ε-pseudo-eigenvectors and the fourth definition involves the
singular value decomposition.

Definition 1. Let A ∈ Cn×n and ε ≥ 0 be arbitrary. The ε-pseudospectrum
Λε(A) of A is the set of z ∈ C such that

(1) z ∈ Λ(A+ E)

for some E ∈ Cn×n with ‖E‖ ≤ ε. Λ(A + E) denotes the spectrum of the
matrix (A+ E).

The 0-pseudospectrum of A is just the spectrum of A i.e., Λ0(A) = Λ(A).

Definition 2. The ε-pseudospectrum Λε(A) of A is the set of z ∈ C such that

(2) ‖(zI − A)−1‖ ≥ ε−1.

I is the identity matrix and (zI − A)−1 is the resolvent of A at z.

Definition 3. The ε-pseudospectrum Λε(A) of A is the set of z ∈ C such that

(3) ‖(zI − A)v‖ ≤ ε

for some v ∈ Cn with ‖v‖ = 1. z is an ε-pseudo-eigenvalue of A, and v is a
corresponding ε-pseudo-eigenvector.

Definition 4. (Assuming that the norm is ‖.‖2.) The ε-pseudospectrum Λε(A)
of A is the set of z ∈ C such that

(4) σmin(zI − A) ≤ ε.

σmin(zI − A) denotes the smallest singular value of the matrix (zI − A).

Theorem 1 ([13]). The four definitions above are equivalent.

Here we give some properties of the pseudospectra of a matrix.

Proposition 1. Let A ∈ Cn×n, then

(1) Λε1(A) ⊆ Λε2(A), 0 ≤ ε1 ≤ ε2.
(2) Λε(A+ F ) ⊆ Λε+‖F‖(A), F ∈ Cn×n.
(3) Λε1(A) + Λε2(A) ⊆ Λ2ε1+2ε2(2A).

In the third property a sum of sets has the usual meaning

Λε1(A) + Λε2(A) = {z : z = z1 + z2, z1 ∈ Λε1(A), z2 ∈ Λε2(A)}.
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Proof. 1. Let z ∈ Λε1(A), there exists E ∈ Cn×n where ‖E‖ ≤ ε1 such that
z ∈ Λ(A+ E). Since ε1 ≤ ε2, it follows z ∈ Λ(A+ E) where ‖E‖ ≤ ε2. Hence
z ∈ Λε2(A).

2. Let z ∈ Λε(A + F ), then z ∈ Λ(A + F + E) where ‖E‖ ≤ ε. We have
‖F + E‖ ≤ ε+ ‖F‖, hence z ∈ Λε+‖F‖(A).

3. Let z ∈ Λε1(A) + Λε2(A), then z = z1 + z2 with z1 ∈ Λε1(A) and
z2 ∈ Λε2(A). Assume that u1 is the normalized ε-pseudo-eigenvector of A cor-
responding to z1, so (A+E1)u1 = z1u1, ‖E1‖ ≤ ε1 and (A+E2)u1 = z2u1+w2,
‖E2‖ ≤ ε2, w2 ∈ Cn. Thus zu1 = z1u1 + z2u1, then

zu1 = (2A+ E1 + E2 − w2u
∗
1)u1.

On the other hand, ‖E1 + E2 − w2u
∗
1‖ ≤ ε1 + ε2 + ‖w2‖ with

‖w2‖ = ‖(A+E2)u1−z2u1‖ ≤ ‖(z2−A)u1‖+‖E2‖ ≤ ‖(z1−A)u1‖+|z1−z2|+ε2.

Hence ‖w2‖ ≤ ε1 + ε2 + |z1 − z2|, therefore,
‖E1 + E2 − w2u

∗
1‖ ≤ 2ε1 + 2ε2 + |z1 − z2|.

Taking z1 = z2 it follows z ∈ Λ2ε1+2ε2(2A). �
Proposition 2. The ε-pseudospectrum Λε(A) of A is the set of z ∈ C such
that

(5)


∞∑
n=0

‖An‖
|zn+1|

≥ ε−1 if ‖A‖ < |z|
∞∑
n=0

|zn|
‖An+1‖

≥ ε−1 if |z| < ‖A‖.

Proof. The ε-pseudospectrum Λε(A) of A is the set of z ∈ C such that

‖(zI − A)−1‖ ≥ ε−1.

On the other hand,

‖(zI − A)−1‖ =


∞∑
n=0

‖An‖
|zn+1|

if ‖A‖ < |z|
∞∑
n=0

|zn|
‖An+1‖

if |z| < ‖A‖.

Hence, we obtain the desired result. �
In [11], it is shown that if V denotes any matrix of eigenvectors of A and

k(V ) = ‖V ‖‖V −1‖ its condition number ( k(V ) = ∞ if A is not diagonaliz-
able). Then we have

(6) etα(A) ≤ ‖etA‖ ≤ k(V )etα(A), t ≥ 0,

where α(A) = supz∈Λ(A) Re z is the spectral abscissa of A.
The analogous bound for matrix powers is

(7) ρ(A)n ≤ ‖An‖ ≤ k(V )ρ(A)n,
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where ρ(A) is the spectral radius of A. The analogous bound for arbitrary
functions f(z) analytic in a neighborhood of the spectrum Λ(A) is

(8) ‖f‖Λ(A) ≤ ‖f(A)‖ ≤ k(V )‖f‖Λ(A),

where ‖f‖Λ(A) = supz∈Λ(A) |f(z)|.

Theorem 2. Let A ∈ Cn×n and ε ≥ 0 be arbitrary.

(1) If z ∈ Λε(e
tA), t ≥ 0 and ‖etA‖ < |z|, resp. (|z| < ‖etA‖) then

k(V )
∞∑
n=0

etnα(A)

|zn+1|
≥ ε−1, resp. (

∞∑
n=0

|zn|
et(n+1)α(A)

> ε−1).

(2) If z ∈ Λε(A) and ‖A‖ < |z|, resp. (|z| < ‖A‖) then

k(V )
∞∑
n=0

ρ(A)n

|zn+1|
≥ ε−1, resp. (

∞∑
n=0

|zn|
ρ(A)n+1

> ε−1).

(3) If z ∈ Λε(f(A)) and ‖f(A)‖ < |z|, resp. (|z| < ‖f(A)‖) then

k(V )
∞∑
n=0

‖fn‖Λ(A)

|zn+1|
≥ ε−1, resp. (

∞∑
n=0

|zn|
‖fn+1‖Λ(A)

> ε−1).

Proof. By using (5)and (6), if ‖etA‖ < |z|, resp (|z| < ‖etA‖), then

ε−1 ≤
∞∑
n=0

‖etnA‖
|zn+1|

≤ k(V )
∞∑
n=0

etnα(A)

|zn+1|
resp.

(ε−1 ≤
∞∑
n=0

|zn|
‖e(n+1)tA‖

≤
∞∑
n=0

|zn|
et(n+1)α(A)

).

By using (5) and(7), if ‖A‖ < |z| resp. (|z| < ‖A‖) then

ε−1 ≤
∞∑
n=0

‖An‖
|zn+1|

≤ k(V )
∞∑
n=0

ρ(A)n

|zn+1|
resp.

(ε−1 ≤
∞∑
n=0

|zn|
‖An+1‖

≤
∞∑
n=0

|zn|
ρ(A)n+1

).

By using (5) and(8), if ‖f(A)‖ < |z|, resp. (|z| < ‖f(A)‖), then

ε−1 <

∞∑
n=0

‖fn(A)‖
|zn+1|

≤ k(V )
∞∑
n=0

‖fn‖Λ(A)

|zn+1|
resp.

(ε−1 <

∞∑
n=0

|zn|
‖fn+1(A)‖

≤
∞∑
n=0

|zn|
‖fn+1‖Λ(A)

). �
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Theorem 3. Let A ∈ Cn×n and ε ≥ 0 be arbitrary. The ε-pseudospectrum
Λε(A) of A is the set of z ∈ C such that

(9) ‖u∗(zI − A)‖ ≤ ε

for some u ∈ Cn with ‖u‖ = 1. u∗ is the conjugate transpose of u.

Proof. Let z ∈ Λε(A) and let v be its corresponding left eigenvector of the
matrix (A+ E) with ‖E‖ ≤ ε. Thus v∗(A+ E) = zv∗, then

v∗

‖v‖
(zI − A) =

v∗

‖v‖
E.

Hence ‖u∗(zI − A)‖ ≤ ε with u =
v∗

‖v‖
and ‖u‖ = 1.

Now let ‖u∗(zI − A)‖ ≤ ε, then there exist η with 0 < η ≤ ε and φ ∈ Cn

where ‖φ‖ = 1, such that u∗(zI − A) = ηφ∗. Choosing E = ηuφ∗, it follows
that E ∈ Cn×n, ‖E‖ = ‖ηuφ∗‖ ≤ η‖u‖‖φ∗‖ ≤ η ≤ ε and u∗E = u∗(zI − A).
Hence z ∈ Λε(A). �
Proposition 3. Let A ∈ Cn×n and ε ≥ 0 be arbitrary. Then there exist α ∈ C
and rε > 0, such that

(10) Λε(A) ⊆ Λrε(αI).

I is the identity matrix of dimension n.

Proof. Let zk ∈ ∂Λε(A), k ∈ {1, 2, . . . ,m}, where ∂Λε(A) is the boundary of
Λε(A). Choosing α to be the barycenter of {(zk, 1) with k ∈ {1, 2, . . . ,m}} and
rε = supzk∈∂Λε(A) |α − zk|. Since αI is a normal matrix, then it is sufficient to

prove that Λε(A) ⊆ D(α, rε) where D(α, rε) is the closed disk of radius rε and
center α. If z ∈ Λε(A), then |α− z| ≤ rε. Hence z ∈ D(α, rε). �

Some properties of the pseudospectra of a matrix are given in [13], in par-
ticular, if

M = M1 ⊕M2 =

(
M1 0
0 M2

)
,

then Λε(M) = Λε(M1) ∪ Λε(M2).

Proposition 4. Let A ∈ Cn×n and ε ≥ 0 be arbitrary. Then there exist a
normal matrix B and rεk > 0 with k ∈ {1, 2, · · · , l}, l ≤ n, such that

(11) Λε(A) ⊆ Λrεk
(B).

Proof. Let λi with i ∈ {1, 2, · · · , n} be the eigenvalues of A. Then there ex-

ist the matrices Ak ∈ Cnk×nk with k ∈ {1, 2, · · · , l}, l ≤ n and
∑l

k=1 nk =

n such that A = ⊕l
k=1Ak. So Λ(A) =

⋃l
k=1 Λ(Ak), by (10), there exist

βk ∈ C with k ∈ {1, 2, . . . , l} such that Λε(Ak) ⊆ Λrεk
(βkI). Thus Λε(A) ⊆⋃l

k=1 Λrεk
(βkI), therefore, there exists a normal matrix B with eigenvalues βk

such that Λε(A) ⊆ Λrεk
(B). �
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Let Im (C) denote any set of points in C. Let 〈.〉 be the application defined
by

〈Λε(A)〉 = D(α, rε).

α and rε are defined above.

Example. 〈Λε(γI)〉 = D(γ, ε), γ ∈ C.

For any subset S ⊂ Im (C) and λ ∈ R , we define the set λS = {λs, s ∈ S}.

Definition 5. The application f : Im (C) −→ Im (C) is a pseudoprojection if
the following conditions hold

(1) f(P1 ∪ P2) = f(P1) ∪ f(P2)
(2) f(λP ) = |λ|f(P ) where λ ∈ R
(3) f 2 = f where f 2 = f ◦ f .

Theorem 4. 〈.〉 is a pseudoprojection.

Proof. (1) Given ε1, ε2 such that 0 < ε1 < ε2, it follows

〈Λε1(A) ∪ Λε2(A)〉 = 〈Λε2(A)〉 = D(α2, rε2) = D(α1, rε1) ∪D(α2, rε2)

= 〈Λε1(A)〉 ∪ 〈Λε2(A)〉 .

(2) 〈λΛε(A)〉 = D(α, λrε) = |λ|D(α, rε) = |λ| 〈Λε(A)〉 , λ ∈ R.
(3) 〈〈Λε(A)〉〉 =

〈
D(α, rε)

〉
= 〈Λrε(αI)〉 = D(α, rε) = 〈Λε(A)〉. �

3. Numerical range

The numerical range W (.) is a set of complex numbers associated with a
given matrix A ∈ Cn×n:

(12) W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

Proposition 5 ([7]). Let A ∈ Cn×n, B ∈ Cn×n and γ ∈ C.

W (A+B) ⊂ W (A) +W (B),

W (γA) = γW (A).

Let A ∈ Cn×n, consider the two matrices H =
1

2
(A + A∗), S =

1

2
(A− A∗).

The matrix H is Hermitian and S is skew-Hermitian.

Proposition 6. Let A, H and S be as described above, then

(13) W (A) = W (H) +W (S).

Proof. A = H + S, notice that W (A) = ReW (A) + iImW (A). We calculate:

x∗Hx =
1

2
x∗(A+ A∗)x =

1

2
(x∗Ax+ x∗A∗x)

=
< x,Ax > + < x,A∗x >

2
=

< x,Ax > + < Ax, x >

2
= Rex∗Ax.
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Thus, each z ∈ W (H) is of the form Re z for some z ∈ W (A) and vice versa.
Hence W (H) = ReW (A).

x∗Sx =
1

2
x∗(A− A∗)x =

1

2
(x∗Ax− x∗A∗x) =

< x,Ax > − < x,A∗x >

2

=
< x,Ax > − < Ax, x >

2
= iIm x∗Ax.

Thus, each z ∈ W (S) is of the form iIm z for some z ∈ W (A) and vice versa.
Hence W (S) = iImW (A), then the desired result is obtained. �

Let the numerical positive abscissa of a matrix A be defined by

(14) ω+(A) = sup
z∈W (A)

Re z.

In the Hilbert space case, see [14], the numerical positive abscissa is given by
the formula

(15) ω+(A) = supλ where λ ∈ Λ

(
A+ A∗

2

)
.

Λ

(
A+ A∗

2

)
denotes the spectrum of

(
A+ A∗

2

)
.

Let the numerical negative abscissa of a matrix A be defined by

(16) ω−(A) = inf λ where λ ∈ Λ

(
A+ A∗

2

)
.

Proposition 7. For any matrix A ∈ Cn×n,

(17) ω−(A) = inf
z∈W (A)

Re z.

Proof.

ω−(A) = inf λwhereλ ∈ Λ

(
A+ A∗

2

)
= inf

‖x‖=1

〈
x,

A+ A∗

2
x

〉
= inf

‖x‖=1

〈x,Ax〉+ 〈x,A∗x〉
2

= inf
‖x‖=1

〈x,Ax〉+ 〈Ax, x〉
2

= inf
‖x‖=1

Rex∗Ax = inf
z∈W (A)

Re z. �

Theorem 5. Let A ∈ Cn×n and z ∈ C. If ω+(zI − A) = ω0, then ω−(A) =
Re z − ω0.
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Proof. ω+(zI − A) = ω0, thus ω0 = supλ where λ ∈ Λ

(
zI − A+ zI − A∗

2

)
.

Then (Re z − ω0) = inf λ where λ ∈ Λ

(
A+ A∗

2

)
, hence the desired result is

obtained. �
It is known [14] that, the pseudospectra cannot be much larger than the

numerical range

(18) Λε(A) ⊆ W (A) + ∆ε.

We give another formula concerning the localization of the pseudospectra of a
matrix using an upper bound independent from the matrix itself.

Lemma 1. Let A ∈ Cn×n, u ∈ Cn and ε ≥ 0 be arbitrary. If z ∈ Λε(A) then

there exist w ∈ Cn, b ∈ Cn, where
b∗u

‖u‖
= 1 such that

(19) W

(
E − wb∗

‖u‖

)
= W (zI − A) where ‖E‖ ≤ ε.

Proof. Let z ∈ Λε(A) then (A + E)u = zu + w, ‖E‖ ≤ ε where u,w ∈ Cn.

Thus v∗Ev = v∗(zI − A)v +
v∗w

‖u‖
where v =

u

‖u‖
. Hence

v∗
(
E − wb∗

‖u‖

)
v = v∗(zI − A)v

where b∗v = 1, then

W

(
E − wb∗

‖u‖

)
= W (zI − A). �

Theorem 6. Let A, u and ε be as described above. If 0 ∈ Λε(A) then

(20) Λε(A) ⊆ W

(
wb∗

‖u‖

)
+∆2ε.

Proof. Substituting z = 0 in (19), thus W (A) = W

(
wb∗

‖u‖
− E

)
. Using (18), it

follows Λε(A) ⊆ W

(
wb∗

‖u‖
− E

)
+∆ε, then Λε(A) ⊆ W (

wb∗

‖u‖
) +W (−E) +∆ε.

Assume that z ∈ W (−E), then z = x∗(−E)x where ‖x‖ = 1, thus |z| ≤ ε,

hence z ∈ ∆ε. Therefore, Λε(A) ⊆ W

(
wb∗

‖u‖

)
+∆2ε. �

Theorem 7. Let A ∈ Cn×n, u ∈ Cn and ε ≥ 0 be arbitrary. If z ∈ Λε(A) then
there exist δ ∈ C, w ∈ Cn and v ∈ Cn, ‖v‖ = 1 such that

(21) W (δ − (z̄ − A∗)(z − A)) = W

(
(z̄ − A∗)

wv∗

‖u‖
+

vw∗

‖u‖
(z − A)

)
.
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Proof. Let z ∈ Λε(A), then (A + E)u = zu + w, ‖E‖ ≤ ε implies Eu =
(z − A)u + w. Assume without loss of generality that E ∈ Rn×n. On other
hand,

u∗(A∗ + E) = z̄u∗ + w∗

then
u∗E = u∗(z̄ − A∗) + w∗,

thus

u∗E2u = u∗(z̄ − A∗)(z − A)u+ w∗w + u∗(z̄ − A∗)w + w∗(z − A)u.

Putting δ1 = u∗E2u− w∗w, it follows that

δ = v∗(z̄ − A∗)(z − A)v + v∗(z̄ − A∗)
w

‖u‖
+

w∗

‖u‖
(z − A)v,

where v =
u

‖u‖
, δ =

δ1
‖u‖2

. Hence

W (δ − (z̄ − A∗)(z − A)) = W

(
(z̄ − A∗)

wv∗

‖u‖
+

vw∗

‖u‖
(z − A)

)
. �

4. Almost commuting matrices

Let A ∈ Cn×n, B ∈ Cn×n, consider the commutator [A,B] = AB − BA.
The pair of square matrices A and B is said to be nearly commute or almost
commuting if ‖[A,B]‖ is small, see [4], [5]. Consider the question: which
matrices X is almost commuting with a given matrix A? In the following
theorem, we propose an answer to this problem, a useful use of pseudospectra
is given.

Definition 6. Given ε > 0, let A ∈ Cn×n, B ∈ Cn×n. A and B are almost
commuting if and only if

(22) ‖[A,B]‖ ≤ ε.

Theorem 8. Given ε > 0, let A ∈ Cn×n, for some vectors u ∈ Cn, v ∈ Cn

with ‖u‖ = ‖v‖ = 1, we have A and
1

2
(vu∗) are almost commuting.

Proof. Let z ∈ Λε(A), then [A, vu∗] = Avu∗−vu∗A = (A−zI)vu∗−vu∗(A−zI).
Hence ‖[A, vu∗]‖ = ‖(A− zI)vu∗ − vu∗(A− zI)‖ ≤ 2ε. �

In general, almost commuting is not homogeneous: if ‖ [A,B] ‖ ≤ ε then,
for every scalars p and q, ‖ [pA, qB] ‖ ≤ |pq|ε. So, if |pq| is not small, then the
property of almost commuting is lost. Also this property is not linear, indeed,
consider two linear combinations with scalar coefficients

[(pA+ qB), (p′A+ q′B)] = (pq′ − qp′) [A,B] .

If (pq′ − qp′) is small, then, [(pA+ qB), (p′A+ q′B)] < ε implies that [A,B] is
not small and vice versa.
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Corollary 1. Given ε > 0, let A ∈ Cn×n and u ∈ Cn. If z ∈ Λε(A) then there

exist w ∈ Cn, v ∈ Cn, ‖v‖ = 1 and b ∈ Cn where
b∗u

‖u‖
= 1 such that

(23) W

(
1

2

[
A,

vu∗

‖u‖

]
− wb∗

‖u‖

)
= W (zI − A).

Proof. Taking E =
1

2

[
A,

vu∗

‖u‖

]
, it follows that ‖E‖ ≤ ε. The result is obtained

by substituting E in (19). �

Conclusion

The pseudospectra of a matrix are a set in the complex plane to which its
pseudo-eigenvalues can be used to learn something else about the matrix and
it can also give information that the spectrum alone cannot give. Pseudospec-
tra are closely related to the numerical range, the behavior of pseudospectra
determines the numerical range.
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