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SPECIAL QUADRATURE ERROR ESTIMATES AND THEIR
APPLICATION IN THE HARDY-LITTLEWOOD MAJORANT

PROBLEM

SÁNDOR KRENEDITS

Abstract. The Hardy-Littlewood majorant problem has a positive answer
only for exponents p which are even integers, while there are counterexam-
ples for all p /∈ 2N. Montgomery conjectured that there exist counterex-
amples even among idempotent polynomials. This was proved recently by
Mockenhaupt and Schlag with some four-term idempotents.

However, Mockenhaupt conjectured that even the classical 1 + e2πix ±
e2πi(k+2)x three-term character sums, should work for all 2k < p < 2k + 2
and for all k ∈ N. In two previous papers we proved this conjecture for
k = 0, 1, 2, 3, 4, i.e. in the range 0 < p < 10, p /∈ 2N. Here we demonstrate
that even the k = 5 case holds true.

Refinements in the technical features of our approach include use of total
variation and integral mean estimates in error bounds for a certain fourth
order quadrature. Our estimates make good use of the special forms of
functions we encounter: linear combinations of powers and powers of log-
arithms of absolute value squares of trigonometric polynomials of given
degree. Thus the quadrature error estimates are less general, but we can
find better constants which are of practical use for us.

1. Introduction

Let T := R/Z. The Hardy-Littlewood majorization problem [6] is the ques-

tion if for any pair of functions f, g : T → C with |ĝ| ≤ f̂ – that is, with f
majorizing g – do we necessarily have ‖g‖p ≤ ‖f‖p?

Hardy and Littlewood noted that the Parseval identity easily implies this for
all p ∈ 2N an even integer, but they also found that for p = 3 the property fails.
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Indeed, they took f = 1 + e1 + e3 and g = 1 − e1 + e3 (where ek(x) := e(kx)
and e(t) := e2πit) and calculated that ‖f‖3 < ‖g‖3. Later counterexamples
were found by Boas [3] for all p 6= 2k and Bachelis [2] showed that not even
allowing a constant factor Cp (i.e. requiring only ‖g‖p ≤ Cp‖f‖p) could save
the property.

Montgomery conjectured that the majorant property for p /∈ 2N fails also if
we restrict to idempotent majorants, see [11, p. 144]. (An integrable function
is idempotent if its convolution square is itself: that is, if its Fourier coefficients
are either 0 or 1.) This has been recently proved by Mockenhaupt and Schlag
in [10]. Their example is a four-term idempotent f and a signed version of it
for g. For more details and explanations of methods and results see [8, 7] and
the references therein.

In this paper we will be concerned with the even sharper conjecture, sug-
gested by Mockenhoupt in his habilitation thesis [9].

Conjecture 1. Let 2k < p < 2k + 2, where k ∈ N arbitrary. Then the
three-term idempotent polynomial Pk := 1+ e1+ ek+2 has smaller p-norm than
Qk := 1 + e1 − ek+2.

Mockenhoupt presented an incomplete argument for the k = 1 case already
in [9]. His argument hinted that some numerical analysis may be used in the
proof, but we could not complete the solution along those lines. Nevertheless,
we have proved this conjecture for k = 0, 1, 2 in [8] and later even to k = 3, 4
in [7].

One motivation for us was the recent paper of Bonami and Révész [4], who
used suitable idempotent polynomials as the base of their construction, via
Riesz kernels, of highly concentrated ones in Lp(T) for any p > 0. These key
idempotents of Bonami and Révész had special properties, related closely to
the Hardy-Littlewood majorant problem. For details we refer to [4]. For the
history and relevance of this closely related problem of idempotent polynomial
concentration in Lp see [4, 5], the detailed introduction of [8], the survey paper
[1], and the references therein. The Bonami-Révész construction, after suitable
modification, directly and analytically gave the result for k = 0.

For larger k, however, in [8, 7] we used function calculus and support our
analysis by numerical integration and error estimates where necessary. Natu-
rally, these methods are getting computationally more and more involved when
k is getting larger. ‘Brute force’ numerical calculations still lead to convincing
tables and graphes, but the increase of the number of nodes in any quadra-
ture formula endanger the prevalence of theoretical error bounds due to the
additional computational error, however small for reasonably controlled step
numbers, but possibly accumulating for very large step numbers.

Striving for a worst-case error bound incorporating also the computational
error, we thus settled with the goal of keeping any numerical integration, i.e
quadrature, under the step number N = 500, that is step size h = 0.001.
Calculation of trigonometrical and exponential functions, as well as powers
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and logarithms, when within the numerical stability range of these functions
(that is, when the variables of taking negative powers or logarithms is well
separated from zero) are done by mathematical function subroutines of usual
Microsoft Excel spreadsheet, which computes the mathematical functions with
15 significant digits of precision. Although we do not detail the estimates of
the computational error of applying spreadsheets and functions from Microsoft
Excel tables, it is clear that under this step number size our calculations are
reliable well within the error bounds. For a more detailed error analysis of that
sort, which similarly applies here, too, see our previous work [8], in particular
footnote 3 on page 141 and the discussion around formula (22), and see also
the comments in the introduction of [7].

We keep using the fourth order quadrature formula, presented and explained
in [7], see [7, Lemma 5]. However, another new argument also has to be
invoked for k = 5 compared to k = 3, 4, because in this case the analytic
scheme of proving fixed signs of certain derivatives simply break down. Using
the special form of our integrands and the resulting form of estimates with
the initial trigonometrical functions, we thus invoke the special quadrature
error estimate of Lemma 7. These estimates make good use of the concrete
form, local maximum values and alike, of the functions Gt in question, but
the theoretical estimates with VarG (the total variation of the function G)
and

∑
Gt(ζ) over local maximum values ζ of G, might have some theoretical

interest, too.
Second, as already suggested in the conclusion of [8] and applied in [7] for

k = 4, we use Taylor series expansion at more points than just at the midpoint
t0 := k + 1/2 of the t-interval (k, k + 1), thus reducing the size of powers of
(t− t0), from powers of 1/2 to powers of smaller radii.

Finally, we needed a further consideration in proving that the approximate
Taylor polynomial P (t), minus the allowed worst case error δ, still stays posi-
tive in the interval of our Taylor expansion. Basically, in [8] we could always
use that the polynomials p(t) := P (t) − δ were totally monotone – now some
occurring approximate Taylor polynomials will not have this feature, and we
need a more refined calculus to succeed in proving their constant sign over the
interval of investigation.

Key to this is the consideration of the variance of some of the derivatives
of p, for if a function vanishes somewhere inside an interval, than its variance
exceeds the sum of the absolute values taken at the left and right endpoints of
the interval considered. This elementary fact comes to our help in concluding
that p(t), and hence the considered difference function d(t), approximated by
P (t) within a certain error δ, keeps constant size; for if the first j derivatives
are positive at the left endpoint, and the jth derivative preserves the positive
sign all over the whole interval, then there is no way for p to vanish anywhere
in the interval.
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2. Boundary cases of Conjecture 1 at p = 2k and p = 2k + 2

Let k ∈ N be fixed. (Actually, later we will work with k = 5 only.)
We now write F±(x) := 1 + e(x) ± e((k + 2)x) and consider the pth power

integrals f±(p) :=
∫ 1

0
|F±(x)|pdx as well as their difference ∆(p) := f−(p) −

f+(p) :=
∫ 1

0
|F−(x)|p −

∫ 1

0
|F+(x)|pdx. Our goal is to prove Conjecture 1, that

is ∆(p) > 0 for all p ∈ (2k, 2k + 2).
Let us introduce a few further notations. We will write t := p/2 ∈ [k, k + 1]

and put

G±(x) := |F±(x)|2, g±(t) :=
1

2
f±(2t) =

∫ 1/2

0

Gt
±(x)dx,(1)

d(t) :=
1

2
∆(2t) = g−(t)− g+(t) =

∫ 1/2

0

[
Gt

−(x)−Gt
+(x)

]
dx.(2)

Formula (2) also yields that denotingHt,j,±(x) := Gt
±(x) log

j G±(x) the explicit
integral formula

d(j)(t) = g
(j)
− (t)− g

(j)
+ (t)(3)

=

∫ 1/2

0

Gt
−(x) log

j G−(x)dx−
∫ 1/2

0

Gt
+(x) log

j G+(x)dx

=

∫ 1/2

0

Ht,j,−(x)dx−
∫ 1/2

0

Ht,j,+(x)dx.

holds true, and so in particular

(4) |d(j)(t)| ≤ ‖Ht,j,+‖L1[0,1/2] + ‖Ht,j,−‖L1[0,1/2] (j ∈ N).
We are to prove that d(t) > 0 for k < t < k + 1. First we show at the

endpoints d vanishes; and, for later use, we also compute some higher order
integrals ofG±. Actually, here we can make use of the following lemma, already
proven in [7, Lemma 3].

Lemma 2. Let ρ ∈ N with 1 ≤ ρ ≤ k + 1. Then we have

(5) Gρ
± = |F ρ

±|2 =

∣∣∣∣∣∣
ρ·(k+2)∑
ν=0

a±(ν)eν

∣∣∣∣∣∣
2

with a±(ν) := (±1)µ
(
ρ

µ

)(
ρ− µ

λ

)
,

where µ :=

[
ν

k + 2

]
and λ := ν−µ(k+2) is the reduced residue of ν mod k+2.

Therefore,

(6)

∫ 1/2

0

|G±|ρ =
1

2

ρ·(k+2)∑
ν=0

|a±(ν)|2 .

In particular,
∫ 1/2

0
|G+|ρ =

∫ 1/2

0
|G−|ρ for all 0 ≤ ρ ≤ k + 1 and thus d(k) =

d(k + 1) = 0.
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Apart from the immediate result that d vanishes at the endpoints of the
critical interval [k, k + 1], we will make further use of the above explicit com-
putation of ρth power integrals of G. To that we need the precise values of
these square sums of coefficients, which is easy to bring into a more suitable
form for direct calculation. Namely we have

A(ρ) :=

ρ·(k+2)∑
ν=0

µ:=[ ν
k+2 ]

λ:=ν−µ(k+2)

(
ρ

µ

)2(
ρ− µ

λ

)2

(7)

=

ρ∑
µ=0

(
ρ

µ

)2 ρ−µ∑
λ=0

(
ρ− µ

λ

)2

=

ρ∑
µ=0

(
ρ

µ

)2(
2ρ− 2µ

ρ− µ

)
= 1, 3, 15, 93, 639, 4653, 35169

for ρ = 0, 1, 2, 3, 4, 5, 6, respectively.

Corollary 3. For all ρ ≤ (k+1) we have
∫ 1/2

0
Gρ

± = 1
2
A(ρ) with the constants

A(ρ) in (7).

With the aid of these explicit values, even arbitrary power integrals of G±
can be estimated.

Proposition 4. Let ρ ∈ N and ρ ≤ k + 1. Then with the constants A(ρ) in
(7) we have

(8)

∫ 1/2

0

Gτ
± ≤ 1

2
9τ−ρA(ρ) (τ < ρ) and

∫ 1/2

0

Gτ
± ≤ 1

2
Aτ/ρ(ρ) (τ > ρ).

Proof. As 0 ≤ G ≤ 9, for the first estimate one can use Gτ ≤ 9τ−ρGρ. The
second estimate is directly furnished by Hölder’s inequality with exponents
p = ρ/τ > 1 and q = 1− 1/p. �

3. Analysis of G±

To start the analysis of G(x) := G5,±(x), let us compute its x-derivatives.
As in formula (7) and the following lines of [7], in case k = 5 we find easily

G±(x) = 3 + 2{cos(2πx)± cos(12πx)± cos(14πx)}(9)

G
(2m+1)
± (x) = (−4)m+1π2m+1×

×
{
sin(2πx)± 62m+1 sin(12πx)± 72m+1 sin(14πx)

}
,

G
(2m)
± (x) = 2(−4)mπ2m ·

{
cos(2πx)± 62m cos(12πx)± 72m cos(14πx)

}
.

Consequently we have

‖G±‖∞ ≤ 9 =:M0,(10)

‖G(m)
± ‖∞ ≤ 2m+1πm{1 + 6m + 7m} =:Mm (m = 1, 2, . . . ),
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that is ‖G(m)
± ‖∞ ≤Mm (m = 0, 1, 2, 3, 4) with

M0 = 9, M1 = 175.929... < 176, M2 = 6790.287... < 6800,(11)

M3 = 277, 816.239... < 280, 000, M4 = 11, 527, 002.2... < 11, 600, 000.

Lemma 5. Both functions G+(x) and G−(x) have seven local maxima in T ≡
(−1

2
, 1
2
]. At zero-symmetric pairs of maximum places of these even functions

the same maximum values occur, so presenting these values with multiplicity
2, they are the following:

G+(x) G−(x)

ζ G+(ζ) multiplicity ζ G−(ζ) multiplicity

0 9 1 ≈ ±0.076 < 8.662 2
≈ ±0.151 < 7.701 2 ≈ ±0.227 < 6.279 2
≈ ±0.302 < 4.628 2 ≈ ±0.377 < 3.005 2
≈ ±0.448 < 1.661 2 0.5 1 1

Proof. As G is a degree 7 trigonometric polynomial, if it has n local maximums,
then there are the same number of interlacing minimums, so altogether 2n ≤
2 degG′ = 14 roots of G′. So the number of maxima is at most 7, which we
will find – taking into account evenness of G, and thus the same symmetrically
located maxima and minima in [−1/2, 0] and in [0, 1/2] – so no further local
maxima can exists.

As G is even, it suffices to analyze [0, 1/2]. We start examining the functions
by tabulating it with step size h = 0.001, and identifying the indices i where
monotonicity of the G(xi) turns from increase to decrease. Then there has to
be a local maximum at some point ζi ∈ [xi−1, xi+1]. Clearly one of the nodes
x′i ∈ {xi−1, xi, xi+1} has |ζi − x′i| ≤ h/2. The second order Taylor expansion
around ζi now gives G(ζi)−G(x′i) ≤ 1

2
||G′′||∞(h

2
)2, as G′(ζi) = 0. Applying (10)

M2 < 6800 and h = 0.001, we obtain G(ζi)−G(x′i) ≤ 0.00085 < δ := 0.001.
In the table above we recorded ζi ≈ xi with error < h = 10−3 and an

upper estimation of the corresponding maxima using G(ζi) < G(x′i) + δ ≤
max

(
G(xi−1), G(xi), G(xi+1)

)
+ δ. �

Denote Var(ψ, [a, b]) the total variation of the function ψ on [a, b], and in
particular let Var(ψ) := Var(ψ,T). As an immediate corollary to the above
lemma, we formulate here

Corollary 6. Denote by Z := Z± the set of local maximum points of G =
G±. For any positive parameter t > 0 we have Var(Gt) < 2

∑
ζ∈Z G

t(ζ). In

particular, Var(G±) < 74.

Proof. It is easy to see that for a piecewise monotonic function ψ one has

Var(ψ, [a, b]) = Var(|ψ|, [a, b]). It follows that Var(|ψ|, [a, b]) =
∫ b

a
|ψ′|.
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Furthermore, for a piecewise monotonic function, like G or Gt, the total
variation is the sum of the change of the function on each of its monotonicity
intervals. Since we are talking about periodic functions, i.e. functions on T,
with only finitely many critical points, it is clear that the local maximum
and minimum places – with the latter denoted by Ω ⊂ T, say – interlace
and monotonicity segments connect these neighboring local extremum places.
Therefore the total sum of all the changes is

Var(Gt) =
∑

θ,η∈Z∪Ω
(θ,η)∩(Z∪Ω)=∅

|Gt(θ)−Gt(η)| = 2
∑
ζ∈Z

Gt(ζ)−2
∑
ω∈Ω

Gt(ω) < 2
∑
ζ∈Z

Gt(ζ),

taking into account G ≥ 0, too.
Whence the first assertion of the Corollary, while the last is just a small

calculation adding the maxima (taken into account according to multiplicity)
in the columns of the table of maxima in Lemma 5. �

4. Estimates of |H(x)| and of ‖HIV ‖∞
Let us start analyzing the functions

(12) H(x) := Ht,j,±(x) := Gt(x) logj G(x)

(x ∈ [0, 1/2], t ∈ [k, k + 1], j ∈ N).
To find the maximum norm of Ht,j,±, we in fact look for the maximum of
an expression of the form vt| log v|j, where v = G(x) ranges from zero (or, if
G 6= 0, from some positive lower bound) up to ‖G‖∞ ≤ 9.

A direct calculus provides a description of the behavior of the function
α(v) := αs,m(v) := vs| log v|m for any s > 0 and m ∈ N on any finite in-
terval [a, b] ⊂ [0,∞), see [7, Lemma 6].

For the application of the above quadrature (18) we calculated (c.f. also [7,
(15)])

(13) H ′′(x) := H ′′
t,j,±(x) = G′′(x)Gt−1(x) logj−1G(x) {t logG(x) + j}

+G′2(x)Gt−2(x) logj−2G(x)
{
t(t− 1) log2G(x) + j(2t− 1) logG(x) + j(j − 1)

}
.

However, the error estimation in the above explained quadrature approach
forces us to consider even fourth x-derivatives of H = Ht,j,± using

HIV =
4∑

m=0

(
4

m

)
(Gt)(m)(logj G)(4−m).

We have already computed in [7] respective formulae for (Gt)(m) and (logGj)(m)

for m = 1, 2, 3, 4 (c.f. [7, (17), (18)]). Substituting these in HIV resulted in
the general formula [7, (19)] stating with L := logG
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HIV = Gt−4G′4
{
j(j − 1)(j − 2)(j − 3)Lj−4(14)

+ [4t− 6]j(j − 1)(j − 2)Lj−3 + [6t2 − 18t+ 11]j(j − 1)Lj−2

+ [2t3 − 9t2 + 11t− 3]2jLj−1 + t(t− 1)(t− 2)(t− 3)Lj
}

+ 6 ·Gt−3G′2G′′
{
j(j − 1)(j − 2)Lj−3 + 3(t− 1)j(j − 1)Lj−2

+ [3t2 − 6t+ 2)]jLj−1 + t(t− 1)(t− 2)Lj
}
+Gt−1GIV

{
jLj−1 + tLj

}
(
3 ·Gt−2G′′2 + 4 ·Gt−2G′G′′′

){
j(j − 1)Lj−2 + (2t− 1)jLj−1 + t(t− 1)Lj

}
.

Finally, from that and writing in ‖G(m)‖∞ ≤Mm we were led to the general
estimate [7, (20)]. As now the values of Mm are estimated by (11), the corre-
sponding values can be written in, and putting also ` := |L| = | logG| formula
[7, (20)] yields

|HIV | ≤ 959, 512, 576 · vt−4
{
j(j − 1)(j − 2)(j − 3)`j−4(15)

+ [4t− 6]j(j − 1)(j − 2)`j−3 + [6t2 − 18t+ 11]j(j − 1)`j−2

+ [2t3 − 9t2 + 11t− 3]2j`j−1 + t(t− 1)(t− 2)(t− 3)`j
}

+ 1, 263, 820, 800 · vt−3
{
j(j − 1)(j − 2)`j−3 + 3(t− 1)j(j − 1)`j−2

+ [3t2 − 6t+ 2]j`j−1 + t(t− 1)(t− 2)`j
}
+ 11, 600, 000 · vt−1

{
j`j−1 + t`j

}
+ 335, 840, 000 · vt−2

{
j(j − 1)`j−2 + (2t− 1)j`j−1 + t(t− 1)`j

}
.

On the other hand, for reasons becoming apparent only later from the im-
proved quadrature error estimate in Section 5, here we need to derive another
consequence of formula (14). We now substitute the norm estimates of (11)
by Mm’s into (14) only partially, that is, we leave (apart from all powers of G)
even one of G′ without estimation by M1, wherever G

′ occurs, in order to take
advantage of our quadrature utilizing expressions of the form Gt|G′ logj G|.
Inserting k = 5 and the numerical values of M1,M2,M3 and M4 from (11) this
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leads to

|HIV | ≤ 5, 451, 776 ·Gt−4|G′|
{
j(j − 1)(j − 2)(j − 3)`j−4(16)

+ [4t− 6]j(j − 1)(j − 2)`j−3 + [6t2 − 18t+ 11]j(j − 1)`j−2

+ [2t3 − 9t2 + 11t− 3]2j`j−1 + t(t− 1)(t− 2)(t− 3)`j
}

+ 7, 180, 800 ·Gt−3|G′|
{
j(j − 1)(j − 2)`j−3 + 3(t− 1)j(j − 1)`j−2

+ [3t2 − 6t+ 2)]j`j−1 + t(t− 1)(t− 2)`j
}

+ 1, 120, 000 ·Gt−2|G′|
{
j(j − 1)`j−2 + (2t− 1)j`j−1 + t(t− 1)`j

}
+ 138, 720, 000 ·Gt−2

{
j(j − 1)`j−2 + (2t− 1)j`j−1 + t(t− 1)`j

}
+ 11, 600, 000 ·Gt−1

{
j`j−1 + t`j

}
with, as always, ` := |L| = | logG|.

5. Quadrature with variation

In the paper [8] we used Riemann sums when numerically integrating the
functions H := Gt logj G along the x values. A new feature of the subsequent
paper [7], among other things, was the application of a higher order quadrature
formula- Namely, in [7], formula (12) and (13) we recalled the following easy-
to prove elementary fact. Let ϕ be a four times continuously differentiable
function on [0, 1/2], N ∈ N, h := 1/(2N) and denote

xn :=
2n− 1

4N
for n = 1, 2, . . . , N . Then we have

(17)

∣∣∣∣∣
∫ 1/2

0

ϕ(x)dx−
N∑

n=1

{
1

2N
ϕ (xn) +

1

192N3
ϕ′′ (xn)

}∣∣∣∣∣
≤ 1

60 · 210N5

N∑
n=1

max
|x−xn|≤h

2

|ϕIV (x)|.

In [7] we then used this with the further obvious estimate

max
|x−xn|≤h

2

|ϕIV (x)| ≤ ‖ϕIV ‖∞,

resulting in the further estimation of (17) by ‖ϕIV ‖∞
60·210N4 .

(18)

∣∣∣∣∣
∫ 1/2

0

ϕ(x)dx−
N∑

n=1

{
ϕ

(
2n− 1

4N

)
1

2N
+ ϕ′′

(
2n− 1

4N

)
1

192N3

}∣∣∣∣∣
≤ ‖ϕIV ‖∞

60 · 210N4
.
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We intend to use the quadrature formula (18) to compute approximate values
of d′(5), d′′(5), d′′′(5) and then even d(j)(t0) with various values of t0 ∈ [5, 6]
and j ∈ N. However, use of direct estimations of ‖HIV

t0,j,±‖∞ in the quadrature
would result in step numbers as high as 800, already inconveniently large for
our purposes. Thus here we invoke a further, more detailed analysis of the
quadrature formula, aiming at bounding the step number further down below
500 with the improved error estimation.

The basic idea is that we try to apply (17) directly. For continuous ϕIV ,
the local maximum are attained at certain points ξn ∈ [xn − h/2, xn + h/2],

and the error bound becomes
∑N

n=1 |ϕIV (ξn)|. In fact this sum is a Riemann
approximate sum of the integral (and not the maximum) of the function ϕIV ,

so we will get approximately 2N ·
∫ 1/2

0
|ϕIV |. That is, we arrive at the L1 norm,

instead of the L∞ norm, of the function ϕIV .
So we try to make use of this observation for Ht0,j,± in place of ϕ. Again,

direct estimation of the error in this approximation
∑N

n=1 |HIV
t0,j,±(ξn)| ≈ 2N ·∫ 1/2

0
|HIV

t0,j,±|, even if theoretically possible, does not provide nice and numeri-

cally advantageous results. Instead, we estimate the function HIV
t0,j,±, similarly

as above, with functions involving G, logG and even derivatives of G, and then
split the estimation of the sum

∑N
n=1 |HIV

t0,j,±(ξn)| to estimations of similar Rie-

mann sums of such simpler functions. For such combinations asGt(x) logj G(x)
or Gt(x) logj G(x)G′(x), we will find suitable error bounds and explicit compu-
tations or estimations of the L1-norms, finally resulting improved estimations
of the error in the quadrature formula. More precisely, we can derive the
following improved special quadrature estimation, which subsequently will be
used for Ht0,j,± (with various j and t0) in place of ϕ.

Lemma 7. Let Br, Dr > 0, 1 ≤ tr ≤ T and jr ≥ 0 for r = 0, 1, . . . , R. Assume

(19) |ϕIV (x)|

≤
R∑

r=0

{
BrG

tr(x) · | logG(x)|jr +DrG
tr(x)|G′(x)| · | logG(x)|jr

}
.

Then for arbitrary N ∈ N the quadrature formula

(20)

∣∣∣∣∣
∫ 1/2

0

ϕ−
N∑

n=1

{
ϕ

(
2n− 1

4N

)
1

2N
+ ϕ′′

(
2n− 1

4N

)
1

192N3

}∣∣∣∣∣
≤ 1

60 · 210N5

R∑
r=1

{BrQN(G, tr, jr) +Dr Q
∗
N(G, tr, jr)}
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holds true with

(21) QN(G, t, j) := χ(j 6= 0)

(
max
[0,1/9]

vt| log v|j
)
N

+ logj 9

{
N

∫
T
Gt +

1

2
Var(Gt)

}
and

(22) Q∗
N(G, t, j) := χ(j 6= 0)

(
max
[0,1/9]

vt| log v|j
){

14

9
N + 1700

}
+ logj 9

{
N

t+ 1
Var(Gt+1) + 88Var(Gt) + 1700

√∫
T
G2t

}
.

Proof. As in the preceding arguments, we denote xn := (2n−1)/(4N) and h :=
1/(2N) for n = 1, . . . , N and even for n = 1−N, . . . , N . By the inequality (17),
the condition (19) and making use that all the arising terms in this estimate
are continuous and even, we find with some appropriate, symmetrically chosen
ξn ∈ [xn − h/2, xn + h/2] that∣∣∣∣ ∫ 1/2

0
ϕ−

N∑
n=1

{
ϕ(xn)h+ ϕ′′(xn)

h3

24

} ∣∣∣∣ ≤ h5

60 · 25
N∑

n=1

max
|x−xn|≤h

2

|ϕIV (x)|(23)

≤ h5

60 · 25
N∑

n=1

max
|x−xn|≤h

2

∣∣∣∣∣
R∑

r=0

{
BrG

tr(x)| logG(x)|jr

+DrG
tr(x)|G′(x)|| logG(x)|jr

}∣∣
=

h5

60 · 25
1

2

N∑
n=1−N

R∑
r=0

{
BrG

tr(ξn)| logG(ξn)|jr

+DrG
tr(ξn)|G′(ξn)|| logG(ξn)|jr

}
=

N−5

60 · 211
R∑

r=0

{
Br

N∑
n=1−N

Gtr(ξn)| logG(ξn)|jr

+Dr

N∑
n=1−N

Gtr(ξn)|G′(ξn)|| logG(ξn)|jr
}
.

So we are left with the estimation of the inner sums. There are two type of
sums here, the first being without |G′(ξn)| and the second with its appearance.
For a more concise notation let us introduce the exponent κ ∈ {0, 1}, and then
consider the generic inner sum

S := S(t, j, κ) :=
N∑

n=1−N

Gt(ξn)|G′(ξn)|κ| logG(ξn)|j.

To start with, when j = 0 we can directly compare this sum to the corre-
sponding integral. Recall that for any function ψ of bounded total variation
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Var(ψ) := Var(ψ, [a, b]) on an interval [a, b], and for any partition of [a, b] as
a = x0 < x1 < · · · < xi < · · · < xM−1 < xM = b with the fineness of the parti-
tion δ := maxi=1,...,M(xi − xi−1) and with any selection of nodes θi ∈ [xi−1, xi],

the Riemann sum
∑M

i=1 ψ(θi)(xi − xi−1) approximates
∫ b

a
ψ(x)dx within the

error δVar(ψ). So we obtain

(24) S(t, 0, κ) =
N∑

n=1−N

Gt(ξn)|G′(ξn)|κ ≤ 2N

∫
T
Gt|G′|κ + 2NhVar(Gt|G′|κ).

If κ = 0, then the first term is 2N
∫
TG

t, and for κ = 1 it is nothing else

than 2N Var( 1
t+1
Gt+1) on T. As 2Nh = 1, for κ = 0 the second term is

Var(Gt), while for κ = 1 we can also obtain a similar type estimate using that

Var(|Ψ|, [a, b]) = Var(Ψ, [a, b]) =
∫ b

a
|Ψ′|. Namely we obtain

Var(Gt|G′|) =
∫
T
|(GtG′)′|(25)

≤
∫
T
tGt−1G′2 +

∫
Gt|G′′| ≤M1

∫
T
tGt−1|G′|+

∫
Gt|G′′|

≤ 176Var(Gt) +

√∫
T
G2t

∫
T
G′′2 ≤ 176Var(Gt) + 3400

√∫
T
G2t

with an application of the Cauchy-Schwartz inequality and computing√∫
G′′2 = 8π2 ·

√
1 + 362 + 492

2
≈ 3395.144... < 3400.

So collecting terms furnishes

(26) S(t, 0, κ) ≤

{
2N

∫
TG

t +Var(Gt) if κ = 0,

2N 1
t+1 Var(G

t+1) + 176Var(Gt) + 3400
√∫

TG
2t if κ = 1.

Observe that the right hand side of this estimate is just 2QN(G, t, 0) and
2Q∗

N(G, t, 0) when κ = 0 and 1, respectively, so the part of the assertion for
j = 0 is proved.

For j > 0 we estimate S(t, j, κ) by first cutting the sum into parts according
to ξn ∈ X := {x ∈ T : 0 ≤ G(x) ≤ 1/9} and ξn /∈ X. The first of these
sums can then be estimated by max0≤v≤1/9 v

t| logj v| ·
∑

ξn∈X |G′(ξn)|κ, the sum
being ≤ constant 2N for κ = 0 while for κ = 1 approximately 2N

∫
X
|G′| =

2N
∫
T |G

′|χX , where χX is the characteristic function of X.
That latter integral of |G′| on X is just the total variation of G(t) along its

segments of range between 0 and 1/9. More precisely, as G is a trigonometric
polynomial, hence piecewise smooth with at most (actually, exactly) 2 degG =
14 monotonicity intervals Im (m = 1, . . . , 14) within T = ∪14

m=1Im, this whole
total variation can amount at most 14 times the maximal possible variation
from 0 to 1/9 on each part of X belonging to one monotonic segment Im. That
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is,
∫
X
|G′| =

∑14
m=1

∫
X∩Im |G′| =

∑14
m=1 Var(G,X ∩ Im) ≤ 14 · 1/9. In all, the

contribution of the main term 2N
∫
X
|G′| is at most 14/9 ·2N . (In reality, that

variation is numerically even less, but this term will not be too interesting
anyway.)

Next we apply the general Riemann sum error estimate to |G′|χX to infer

∑
ξn∈X

|G′(ξn)| =
N∑

n=1−N

|G′(ξn)|χX(ξn)

≤ 2N

∫
T
|G′|χX + 2N · h · Var(|G′|χX)

≤ 28

9
N +Var(G′χX).

We now show that this latter variance does not exceed Var(G′). In view of
the additivity of the total variation on intervals,

Var(G′χX) =
14∑

m=1

Var(G′χX , Im),

so it suffices to prove Var(G′χX , Im) ≤ Var(G′, Im). Recall that Im = [am, bm]
is, by construction, one of the intervals of monotonicity of G, hence a segment
of T where G′ has constant sign, with zeroes (and sign changes) of G′ at both
endpoints. Then either G(am) is a local minimum of G and G(bm) is a local
maximum of it, or conversely, corresponding to the cases when on Im G′ ≥ 0
or G′ ≤ 0, respectively. By symmetry, we can restrict to the first case, when
G is increasing on Im. If G > 1/9 on Im, that is, if already G(am) > 1/9,
then Im ∩ X = ∅ and Var(G′χX , Im) = 0 < Var(G′, Im). Also if G ≤ 1/9
on the whole interval Im, then Var(G′χX , Im) = Var(G′, Im). The only case
when Im ∩X is nontrivial is when Im ∩X = [am, cm] with am < cm < bm and
G(am) < G(cm) = 1/9 < G(bm). In this case, however, G′χX = G′ on [am, cm[,
has a jump from G′(cm) to 0 at cm, and constant zero afterwards until the end
of the interval Im, whence

Var(G′χX , Im) = Var(G′, [am, cm]) + |G′(cm)− 0|
= Var(G′, [am, cm]) + |G′(cm)−G′(bm)|
≤ Var(G′, [am, cm]) + Var(G′, [cm, bm]) = Var(G′, Im).

So indeed we have Var(|G′|χX) ≤ Var(G′). Finally, using the above estimation

of
√∫

G′′2,

Var(|G′|χX) ≤ Var(G′) =

∫
|G′′| ≤

√∫
G′′2 < 3400.
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Writing in the maximum of vt| log v|j, collection of terms results in

(27)
∑
ξn∈X

Gt(ξn)|G′(ξn)|κ| logG(ξn)|j

≤
(
max
[0,1/9]

vt| log v|j
){

2N if κ = 0,
28
9
N + 3400 if κ = 1.

In the second sum over ξn /∈ X we have G(ξn) ∈ [1/9, 9], hence | logG(ξn)| ≤
log 9, so bringing out this estimate from the sum and then extending the
summation to all n leads to

(28)
∑
ξn /∈X

Gt(ξn)|G′(ξn)|κ| logG(ξn)|j

≤ logj 9
N∑

n=1−N

Gt(ξn)|G′(ξn)|κ = logj 9 S(t, 0, κ).

Summing up, if j 6= 0 then the upper estimate of

(29)
N∑

n=1−N

Gt(ξn)|G′(ξn)|κ| logG(ξn)|j

<

{(
max[0,1/9] v

t| log v|j
)
2N + logj 9 · 2QN(G, t, 0) if κ = 0,(

max[0,1/9] v
t| log v|j

) {
28
9
N + 3400

}
+ logj 9 · 2Q∗

N(G, t, 0) if κ = 1.

follows for the generic term, and so taking into account the notations (21) and
(22), from (29) and (23) the lemma follows. �

6. Derivatives of the difference function d(t) at the left
endpoint

With the improved quadrature we now calculate the values of d′(5), d′′(5)
and d′′′(5) first.

Lemma 8. We have d′(5) > 0.

Remark 9. Actually, d′(5) = 0.00287849... by numerical calculation, but for-
mally we don’t need an a priori knowledge of the value. Of course, putting
together the argument we needed to take it into account, but the proof of the
Lemma is deductive.
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Proof. From (16), substituting j = 1 and t = 5 and denoting, as elsewhere
` := |L| = | logG|

|HIV | ≤ G|G′|{839, 573, 504 + 654, 213, 120`}(30)

+G2|G′|{337, 497, 600 + 430, 848, 000`}
+G3|G′|{10, 080, 000 + 22, 400, 000`}
+G3{1, 248, 480, 000 + 2, 774, 400, 000`}
+G4 {11, 600, 000 + 58, 000, 000`} .

This estimate is of the form of condition (19), suitable for the application of
our improved quadrature in Lemma 7, which we invoke with N := 500 here.
Therefore, we compute the expressions (21) and (22) with N = 500 and with
the occurring pairs of values of t and j = 0, 1 as follows.

First of all, observe that according to [7, Lemma 6] for j = 1 and t = 1, 2, 3, 4
we have max

[0,1/9]
vt| log v|j = 9−t logj 9 (as the maximum place v0 = exp(−j/t)

is larger, than 1/9). For the computation of
∫
TG

t and Var(Gt) we refer to
Corollaries 3 and 6. These lead to

Q∗
500(G, 1, 0) ≤ 123, 987 + 6509 + 6585 = 137, 081,

Q∗
500(G, 1, 1) ≤

log 9

9

(
7000

9
+ 1700

)
+ log 9 · 137, 081 ≤ 301, 803,

Q∗
500(G, 2, 0) ≤ 616, 734.71 + 43, 643.12 + 42, 973.37 = 703, 352,

Q∗
500(G, 2, 1) ≤

log 9

92

(
7000

9
+ 1700

)
+ log 9 · 703, 352 ≤ 1, 545, 490,

Q∗
500(G, 3, 0) ≤ 3, 632, 988 + 325, 636 + 318, 808 = 4, 277, 432,

Q∗
500(G, 3, 1) ≤

log 9

93

(
7000

9
+ 1700

)
+ log 9 · 4, 277, 432 ≤ 9, 398, 487,

Q500(G, 3, 0) ≤ 46, 500 + 1851 = 48, 351,

Q500(G, 3, 1) ≤
log 9

93
500 + log 9 · 48, 351 ≤ 106, 240,

Q500(G, 4, 0) ≤ 319, 500 + 14, 532 = 334, 032,

Q500(G, 4, 1) ≤
log 9

94
500 + log 9 · 334, 032 ≤ 733, 944.
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It remains to apply Lemma 7 both for H+ and H− with the coefficients Br, Dr

read from (30) and the corresponding Q500(G, t, j), Q
∗
500(G, t, j) estimated ac-

cording to the above list. Executing the numerical computations leads to

(31)

∣∣∣∣∣
∫ 1/2

0

H± −
500∑
n=1

{
H±

(
2n− 1

2000

)
1

1000
+H ′′

±

(
2n− 1

2000

)
1

192 · 5003

}∣∣∣∣∣
≤ 0.0009745....

Thus the quadrature approximation to integrals of H± lead to approximate
values within the error δ := 0.001. This error estimation is applied to both

H+ and H−. The approximate value of d′(5) =
∫ 1/2

0
H− −

∫ 1/2

0
H+ from the

quadrature is found to be 0.002878492... > 0.002, while the total error incurred
is still bounded by 2δ. Therefore, d′(5) > 0.002 − 2δ = 0 and the assertion is
proved. �

Lemma 10. We have d′′(5) > 0.

Remark 11. By numerical calculation, d′′(5) ≈ 0.033815603.

Proof. Now we want to use the improved quadrature again, hence we start
with substituting t = 5, j = 2 into formula (16) to derive

|HIV | ≤ G|G′|{774, 152, 192 + 1, 679, 147, 008`+ 654, 213, 120`2}(32)

+G2|G′|{172, 339, 200 + 674, 995, 200`+ 430, 848, 000`2}
+G3|G′|{2, 240, 000 + 20, 160, 000`+ 22, 400, 000`2}
+G3{277, 440, 000 + 2, 496, 960, 000`+ 2, 774, 400, 000`2}
+G4

{
23, 200, 000`+ 58, 000, 000`2

}
.

Now we may set the step number to N = 400. The values of the occurring
Q400(G, t, j) and Q

∗
400(G, t, j) can now be estimated as follows.

Q∗
400(G, 1, 0) ≤ 112, 282 Q∗

400(G, 1, 1) ≤ 247, 274 Q∗
400(G, 1, 2) ≤ 543, 316

Q∗
400(G, 2, 0) ≤ 580, 005 Q∗

400(G, 2, 1) ≤ 1, 274, 463 Q∗
400(G, 2, 2) ≤ 2, 800, 281

Q∗
400(G, 3, 0) ≤ 3, 550, 835 Q∗

400(G, 3, 1) ≤ 7, 801, 987 Q∗
400(G, 3, 2) ≤ 17, 142, 718

Q400(G, 3, 0) ≤ 39, 051 Q400(G, 3, 1) ≤ 85, 804 Q400(G, 3, 2) ≤ 188, 530
Q400(G, 4, 0) does not occur Q400(G, 4, 1) ≤ 593, 541 Q400(G, 4, 2) ≤ 1, 304, 143

Applying Lemma 7 for either H+ or H− with the coefficients Br, Dr read
from (32) and the corresponding QN(G, t, j), Q

∗
N(G, t, j) above, the numerical

computations yield

(33)

∣∣∣∣∣
∫ 1/2

0

H± −
400∑
n=1

{
H±

(
2n− 1

4 · 400

)
1

2 · 400
+H ′′

±

(
2n− 1

4 · 400

)
1

192 · 4003

}∣∣∣∣∣
≤ 0.0071... =: δ.



HARDY-LITTLEWOOD MAJORANT PROBLEM 137

This quadrature error estimation is applied for both H+ and H−, so the
total error incurred is still bounded by 2δ, while the approximate value of

d′′(5) =
∫ 1/2

0
H− −

∫ 1/2

0
H+ from the quadrature is found to be ≈ 0.033815603.

Therefore, d′′(5) > 0.033815603− 2δ > 0. �

Lemma 12. We have d′′′(5) > 0.

Remark 13. By numerical calculation, d′′′(5) ≈ 0.183547634....

Proof. Now it suffices to apply the less refined estimates from (15) with t =
5, j = 3 to get

|HIV (x)| ≤ 959, 512, 576 · v{84 + 426`+ 462`2 + 120`3}(34)

+ 1, 263, 820, 800 · v2{6 + 72`+ 141`2 + 60`3}
+ 11, 600, 000 · v4

{
3`2 + 5`3

}
+ 335, 840, 000 · v3{6`+ 27`2 + 20`3}.

In this estimation all the occurring functions of type vs`m have maximum on
[0, 9] at the right endpoint v = 9 in view of [7, Lemma 6]. Therefore we can
further estimate substituting ` = log 9 and v = 9. Thus we finally obtain
|HIV (x)| ≤ 2.82932 · 1014.

To bring the error below δ = 0.091 we chose the step number N large enough
to have

2.83 · 1014

60 · 210N4
< δ i.e. N ≥ N0 :=

4

√
2.83 · 1014

60 · 210 · 0.091
≈ 475....

Calculating the quadrature formula with N = 500, we obtain the approxi-

mate value d′′′(5) =
∫ 1/2

0
H− −

∫ 1/2

0
H+ ≈ 0.18354763424..., whence d′′′(5) >

0.18354763424...− 2 · 0.091 > 0. �

7. Signs of derivatives of d(t) and conclusion of the proof of
Conjecture 1

After examining the values of derivatives of d at the left endpoint t = 5,
now we divide the interval [5, 6] to 3 parts. First we will prove in Lemma 15
that dIV (t) > 0 in [5, 5.13]. In view of the above proven Lemmas 8, 10 and 12,
it follows, that in this interval also d′′′(t), d′′(t), d′(t) > 0.

Next we will consider d′ in the interval [5.13, 5.72]. Lemmas 17 and 19 will
furnish d′ > 0 also in this domain. Consequently, d is increasing all along
[5, 5.72], and as d(5) = 0, it will be positive in (5, 5.72]. Finally we will show
Lemma 20, giving that d(t) is concave in the interval [5.72, 6]. As d(5.72) > 0
and d(6) = 0, this entails that the function remains positive on [5.72, 6), too,
whence d > 0 on the whole of (5, 6).

Now we compute a good approximation of dIV (t) on the interval [5, 5.13]
and using it show that dIV (t) stays positive in this interval.
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In [5, 5.13] the fourth derivative of d(t) has the Taylor approximation

dIV (t) =
n∑

j=0

d(j+4)(5.065)

j!
(t− 5.065)j +Rn(d

IV , 5.065, t),(35)

where

Rn(d
IV , 5.065, t) :=

d(n+5)(ξ)

(n+ 1)!
(t− 5.065)n+1 .

Therefore using (4) we can write

|Rn(d
IV , 5.065, t)| ≤

‖Hξ,n+5,+‖L1[0,1/2] + ‖Hξ,n+5,−‖L1[0,1/2]

(n+ 1)!
· 0.065n+1

(36)

≤
1
2‖Hξ,n+5,+‖∞ + 1

2‖Hξ,n+5,−‖∞
(n+ 1)!

· 0.065n+1

≤
max|ξ−5.065|≤0.065 ‖Hξ,n+5,+‖∞ +max|ξ−5.065|≤0.065 ‖Hξ,n+5,−‖∞

(n+ 1)!
· 0.065n+1.

So once again we need to maximize (12), that is functions of the type vξ| log v|m,
on [0, 9]. From [7, Lemma 6] we get, say for all n ≤ 30

(37) max
5≤ξ≤5.13

‖Hξ,n+5,±(x)‖∞ ≤ max
ξ∈[5,5.13]

max
v∈[0,9]

vξ| log v|n+5 = 95.13 logn+5 9.

Choosing n = 6 yields ‖Hξ,n+5,±(x)‖∞ ≤ 452, 775, 589, and the Lagrange re-
mainder term (36) of the Taylor formula (35) can be estimated as |Rn(d

IV , t)| ≤
0.0008808... < 0.0009 =: δ7.

Now we have to calculate the value of d(j)(t) – that is, the two integrals in
(3) – numerically for k = 5, t = 5 and j = 4, 5, . . . , 10 to determine the Taylor
coefficients in the above expansion. However, this cannot be done precisely,
due to the necessity of some numerical integration in the calculation of the two
integrals in formula (3). We apply our numerical quadrature to derive at least
a good approximation.

Denote dj ≈ dj+4 the numerical quadrature approximations. We set δ :=
0.187 and want that |dIV (t)− P6(t)| < δ for

(38) P6(t) :=
n∑

j=0

dj
j!

(t− 5.065)j .

In order to achieve this, we set the partial errors δ0, . . . , δ6 with
∑7

j=0 δj < δ,
and ascertain that the termwise errors in approximating the Taylor polynomial
T6(d

IV ) by P6 satisfy analogously as in [7, (37)]

(39)

∥∥∥∥d(j+4)(5.065)− dj
j!

(t− 5.065)j
∥∥∥∥
∞

=

∣∣d(j+4)(5.065)− dj
∣∣

j!
· 0.065j < δj (j = 0, . . . , 6).
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That the termwise error (39) would not exceed δj will be guaranteed by Nj

step quadrature approximation of the two integrals in (3) defining d(j+4)(5.065)
with prescribed error ηj each. Therefore, we set ηj := δjj!/(2 · 0.065j), and
note that in order to have (39)

(40) Nj > N?
j :=

4

√
‖HIV

5.065,j+4,±‖∞
60 · 210ηj

=
4

√
‖HIV

5.065,j+4,±‖∞2 · 0.065j

60 · 210j!δj

suffices by the quadrature formula (18). That is, we must estimate ‖HIV
5.065,j+4,±‖∞

for j = 0, . . . , 6 and thus find appropriate values of N?
j .

Lemma 14. For j = 0, . . . , 6 we have the numerical estimates of Table 1 for
the values of ‖HIV

5.065,j,±‖∞. Setting δj for j = 0, . . . , 6 as is given in the table,
the quadrature of order 500 := Nj ≥ N?

j with the listed values of N?
j yield

the approximate values dj as listed in Table 1, admitting the error estimates
(39) for j = 0, . . . , 6. Furthermore, we have for the Lagrange remainder term
‖R6(d

IV , t)‖∞ < 0.0009 =: δ7 and thus with the approximate Taylor polynomial
P6(t) defined in (38) the approximation |dIV (t) − P6(t)| < δ := 0.187 holds
uniformly in [5, 5.13].

Table 1. Estimates for values of ‖HIV
5.065,j+4,±‖∞, δj, N

?
j and dj

for j = 0, . . . , 6.

j ‖HIV
5.065,j+4,±‖∞ δj N?

j dj

0 9.28687 · 1014 0.15 474 0.381737508
1 2.52880 · 1015 0.03 460 -2.087768122
2 6.81644 · 1015 0.005 392 -23.85760346
3 1.82039 · 1016 0.0005 342 -140.6261273
4 4.82014 · 1016 0.0002 196 -641.9545799
5 1.28469 · 1017 0.0002 85 -2521.387336
6 3.80117 · 1017 0.0002 36 -8940.14559

Proof. We start with the numerical upper estimation of HIV
5.065,j,±(x) for x ∈ T.

For that, now we substitute t = 5.065 in the general formula (15). This results
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in

|HIV
5.065,j,±(x)| ≤ 959, 512, 576 · v1.065

{
j(j − 1)(j − 2)(j − 3)`j−4(41)

+ 14.26j(j − 1)(j − 2)`j−3 + 73.75535j(j − 1)`j−2

+ 163.4085485j`j−1 + 130.313837600625`j
}

+ 1, 263, 820, 800 · v2.065
{
j(j − 1)(j − 2)`j−3

+ 12.195j(j − 1)`j−2 + 48.572675j`j−1 + 63.105974625`j
}

+ 11, 600, 000 · v4.065
{
j`j−1 + 5.065`j

}
+ 335, 840, 000 · v3.065

{
j(j − 1)`j−2 + 8.13j`j−1 + 20.589225`j

}
.

Otherwise, almost all the functions vs`m (with ` := | log v|) occurring here
satisfy that their maximum on 0 ≤ v ≤ 9 is achieved at the right endpoint
v = 9. By [7, Lemma 6], equation (14) this is the case whenever m/s ≤ 1/σ0;
note that here we consider the degree 6 Taylor polynomial of dIV , which entails
m ≤ 10 while the minimal occurring value of s is s = 1.065. So checking the
condition m/s ≤ 1/σ0 ≈ 1/0.126 ≈ 7.9365.., we obtain that v = 9 remains the
actual maximum place except for s = 1.065 and m = 9 or 10. It occurs two
times: when maxv∈[0,9] v

1.065`9 = (9/(e · 1.065))9 = 27126.00128... when j = 9,
and when j = 10 as power j − 1; together with for s = 1.065 and m = 10,
when maxv∈[0,9] v

1.065`10 = (10/(e · 1.065))10 = 241857.246....
We collect the resulting numerical estimates of ‖HIV ‖ in Table 1 and list

the corresponding values of N?
j read from formula (40). Moreover, we list

in the table the values of dj, too, as furnished by the numerical quadrature
formula (18) with step size h = 0.001, i.e. N = Nj = 500 > N?

j (j = 0, . . . , 6)
steps. �

Lemma 15. We have dIV (t) > 0 for all 5 ≤ t ≤ 5.13.

Proof. We approximate dIV (t) by the polynomial P6(t) constructed in (38)
as the approximate value of the order 5 Taylor polynomial of dIV around
t0 := 5.065. As the error is at most δ = 0.187, it suffices to show that p(t) :=
P5(t)− δ > 0 in [5, 5.13]. Now P6(5.13) = 0.188694031... so p(5) = P6(5.13)−
δ = 0.188694031...− 0.187 > 0.

Moreover,

p′(t) = P ′
6(t) =

6∑
j=1

dj
(j − 1)!

(t− 5.065)j−1
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and p′(5) = −0.806502699... < 0. From the explicit formula of p(t) we consec-
utively compute also

p′′(5) = −15.96427771... < 0,

p′′′(5) = −103.8163124... < 0,

p(4)(5) = −496.9504606... < 0,

p(5)(5) = −1940.277873... < 0.

Finally, we arrive at p(6)(t) = d6 = −8940.14559..., which is constant, so
p(6)(t) < 0 for all t ∈ R. From the found negative values at 5 it follows
consecutively that also p(5)(t) < 0, p(4)(t) < 0, p′′′(t) < 0, p′′(t) < 0 and
p′(t) < 0 on [5, 5.13]. Therefore, p is decreasing, and as p(5.13) > 0, p(t) > 0
on the whole interval 5 ≤ t ≤ 5.13. �

Next we set forth proving that d′(t) > 0 for all t ∈ [5.13, 5.72]. In this
interval we use the refined process, applying (20). Still, for the entire interval
we obtain step numbers N ≈ 550, so in order to push down N under 500,
we divide the interval into 2 parts, and apply the method for both sections
[5.13, 5.33] and [5.33, 5.72] separately. That is, we construct approximating
Taylor polynomials around 5.23 and 5.525.

So now setting t0 = 5.23 or t0 = 5.525, the Taylor approximation of radii
r0 = 0.1 and r0 = 0.195, respectively, will have the form

d′(t) =
n∑

j=0

d(j+1)(t0)

j!
(t− t0)

j +Rn(d
′, t0, t),(42)

Rn(d
′, t0, t) :=

d(n+2)(ξ)

(n+ 1)!
(t− t0)

n+1 .

Therefore instead of [7, (36)] we can use

|Rn(d
′, t0, t)| ≤

‖Hξ,n+2,+‖L1[0,1/2] + ‖Hξ,n+2,−‖L1[0,1/2]

(n+ 1)!
· rn+1

0(43)

≤
1
2
‖Hξ,n+2,+‖∞ + 1

2
‖Hξ,n+2,−‖∞

(n+ 1)!
· rn+1

0

≤
max|ξ−t0|≤r0 ‖Hξ,n+2,+‖∞ +max|ξ−t0|≤r0 ‖Hξ,n+2,−‖∞

(n+ 1)!
· rn+1

0 .

So once again we need to maximize (12), that is functions of the type | log v|mvξ,
on [0, 9]. From [7, Lemma 6] and as ξ ≥ 5 for all cases, we obtain for all
n+ 2 ≤ 5/σ0 ≈ 39.68..., i.e. for n ≤ 37

(44) max
|ξ−t0|≤r0

‖Hξ,n+2,±(x)‖∞ ≤ max
|ξ−t0|≤r0

max
0≤v≤9

vξ| log v|n+2 ≤ 9t0+r0 logn+2 9.

Consider the case t0 = 5.23. We find (executing numerical tabulation of values
for orientation), that d′ is increasing from d′(5.13) ≈ 0.0089834... to even more
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positive values as t increases from 5.13 to 5.33. This suggest that it will suffice
to approximate d′ with an overall error just below d′(5.13) ≈ 0.0089834....

We now chose n = 8, when according to (44) ‖Hξ,10,±(x)‖∞ ≤ 319, 784, 241.
Therefore the Lagrange remainder term (43) of the Taylor formula (42) with
n = 8 can be estimated as |R8(d

′, t)| ≤ 0.00000176248 · · · < 0.000002 =: δ9.
As before, the Taylor coefficients d(j+1)(5.23) cannot be obtained exactly,

but only with some error, due to the necessity of some kind of numerical
integration in the computation of the formula (3). Hence we must set the

partial errors δ0, . . . , δ8 in |dj−d(j+1)(5.23)

j!
(t − 5.23)j| < δj such that their sum

would satisfy
∑9

j=0 δj =: δ < 0.0089834 in order to have that at least d′(5.13) >

P8(5.13)− δ > 0 for the approximate Taylor polynomial

(45) P8(t) :=
8∑

j=0

dj
j!

(t− 5.23)j .

In order to achieve this, we set the partial errors δ0, . . . , δ8 with
∑9

j=0 δj < δ,
and ascertain that the termwise errors in approximating the Taylor polynomial
T8(d

′) by P8 satisfy analogously to [7, (37)]

(46)

∥∥∥∥d(j+1)(5.23)− dj
j!

(t− 5.23)j
∥∥∥∥
∞

=

∣∣d(j+1)(5.23)− dj
∣∣

j!
· 0.1j < δj (j = 0, . . . , 8).

We use the refined quadrature (20) setting N = 500 for all j = 1, . . . , 8. For
this, first we need some estimate of the form (19) for |HIV

5.23,j+1,±| and for all
j = 0, . . . , 8. Once such an estimate is found with certain exponents (tr, jr)
and corresponding coefficients Br, Dr, the improved quadrature formula (20)
furnishes an error estimate by means of

(47) W :=W (B,D, t, j) :=
R∑

r=1

{BrQN(G, tr, jr) +Dr Q
∗
N(G, tr, jr)} .

Namely, the error bound of numerical integration by using our quadrature

will then be ηj =
W

60 · 210 · 5005
, and the corresponding termwise error bound

becomes δj =
ηj

2(j − 1)! · 0.1j−1
.

Lemma 16. For j = 0, . . . , 8 we have the numerical estimates of Table 2
for the values of W . Setting δj as given in the table for j = 0, . . . , 8, the
approximate quadrature of order Nj := N := 500 yield the approximate values

dj as listed in Table 2, admitting the error estimates (46) for j = 0, . . . , 8.
Furthermore, ‖R9(d

′, t)‖∞ < 0.000002 =: δ9 and thus with the approximate
Taylor polynomial P8(t) defined in (45) the approximation |d′(t) − P8(t)| <
δ := 0.004784113 holds uniformly for t ∈ [5.13, 5.33].
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Table 2. Estimates for values of W and δj, dj for j = 0, . . . , 8,
with N = 500.

j estimate for W δj dj

0 3.46227 · 1015 0.003606534 0.016265345
1 9.78474 · 1015 0.001019244 0.084372338
2 2.73203 · 1016 0.000142293 0.223408446
3 7.54351 · 1016 1.30964 · 10−5 -0.41545758
4 2.06152 · 1017 8.94756 · 10−7 -8.507038066
5 5.5806 · 1017 4.84427 · 10−8 -57.99608037
6 1.4977 · 1018 2.16681 · 10−9 -288.5739971
7 3.98926 · 1018 8.24499 · 10−11 -1204.823065
8 1.05675 · 1019 2.7301 · 10−12 -4474.521416

Proof. Substituting t = 5.23 in (16) yields

|HIV (x)| ≤ G1.23|G′|5451776
{
j(j − 1)(j − 2)(j − 3)| logL|j−4(48)

+ 14.92j(j − 1)(j − 2)| logL|j−3 + 80.9774j(j − 1)| logL|j−2

+ 94.465234j| logL|j−1 + 159.34903641| logL|j
}

+G2.23|G′|7180800
{
j(j − 1)(j − 2)| logL|j−3 + 12.69j(j − 1)| logL|j−2

+ 52.6787j| logL|j−1 + 71.456967| logL|j
}

+G3.23|G′|1120000
{
j(j − 1)| logL|j−2 + 9.46j| logL|j−1 + 22.1229| logL|j

}
+G3.23138720000

{
j(j − 1)| logL|j−2 + 9.46j| logL|j−1 + 22.1229| logL|j

}
+G4.2311600000

{
j| logL|j−1 + 5.23| logL|j

}
.

Considering sums of |HIV (ξn)|, this will be estimated by means of Lemma 7.
So we insert values of j, t and apply Lemma 7 with step number N = 500,
getting estimations for W as is shown in Table 2. We also calculate

δj =
W/(60 · 210 · 5005)
2(j − 1)! · 0.1j−1

. �

Lemma 17. We have d′(t) > 0 for all 5.13 ≤ t ≤ 5.33.

Proof. We approximate d′(t) by the polynomial P8(t) constructed in (45) as
the approximate value of the order 8 Taylor polynomial of d′ around t0 := 5.23.
As the error of this approximation is at most δ, it suffices to show that p(t) :=
P8(t)− δ > 0 in [5.13, 5.33]. Moreover,

p′(t) = P ′
8(t) =

8∑
j=1

dj
(j − 1)!

(t− 5.23)j−1.
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Now P8(5.13) = 0.008983405..., and P8(5.33) = 0.025709673..., so P8(5.13) −
δ > 0 and P8(5.33)− δ > 0. If we suppose, that p attain 0 in this interval, that
means, the total variation here Var(p) ≥ P8(5.13)+P8(5.33)−2δ. As Var(p) =∫ 5.33

5.13
|p′|dt, we have an estimation for the integral mean of |p′| note Ip′ ≤

Var(p)/0.2 = 0.12546539.... As it is greater then max(|p′(5.13)|, |p′(5.33)|) and
the continuous function has to attain its integral mean, we have an estimation
for total variation of p′: Var(p′) ≤ 2Ip′ − |p′(5.13) + p′(5.33)|. We also have
an estimation for integral mean of |p′′|: Ip′′ ≤ Var(p′)/0.2 = 0.43413663....
This process can be continued, till p(5) (see Table 3). On the other hand,
from the explicit formula of p(t) we consecutively compute also p(5)(5.13) < 0,
p(6)(5.13) < 0... Finally, we arrive at p(8)(t) = d8=-4474.521416... However,
p(8) is constant, so p(7)(t) < 0 and p(8)(t) < 0 in [5.13, 5.33]. It means, that
p(4)(t) is decreasing in the interval. It is contradiction, as the calculated lower
bound for integral mean of |p(4)| is greater than max(|p(4)(5.13)|, |p(4)(5.13)|),
and the function should attain this value. �

Table 3. Estimates for values of p(j)(5.13), p(j)(5.33) and total
variation, integral mean of p(j) on interval [5.13, 5.33] for j =
0, . . . , 8

.

j p(j)(5.13) p(j)(5.33) Var(p(j)) integral mean Ip(j)

0 0.0089834050 0.025709673 0.0250930779
1 0.061152858 0.102950595 0.086827326 0.12546539
2 0.230976823 0.128352476 0.508943962 0.43413663
3 0.188714272 −1.609630427 3.66852346 2.544719808
4 −3.968140009 −15.96896377 16.74813082 18.3426173
5 −34.41704242 −93.62334897
6 −190.4642977 −431.4289106
7 −757.3709229 −1652.275206
8 −4474.521416 −4474.521416

In case t0 = 5.525 numerical tabulation of values gives that d′ is positive
as t increases from 5.33 to 5.72, and d′(5.33) ≈ 0.025709673 . . . , d′(5.72) ≈
0.034577102. We chose n = 9 then ‖Hξ,n+2,±(x)‖∞ ≤ 1, 655, 335, 712, for
this case the Lagrange remainder term (43) of the Taylor formula (42) can be
estimated as |Rn(d

′, t)| ≤ 0.0000725269 · · · ≤ 0.000073 =: δ9. Similarly to (45)
and (46) we now write

(49) Pn(t) :=
n∑

j=0

dj
j!

(t− 5.525)j ,
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(50)

∥∥∥∥d(j+1)(5.525)− dj
j!

(t− 5.525)j
∥∥∥∥
∞

=

∣∣d(j+1)(5.525)− dj
∣∣

j!
· 0.195j < δj (j = 0, 1, . . . , n).

We also use the refined quadrature (20) setting N = 500 for all j = 1, . . . , 9.
For this, first we need some estimate of the form (19) for |HIV

5.525,j+1,±| and for all
j = 0, . . . , 9. As before, once such an estimate is found with certain exponents
(tr, jr) and corresponding coefficients Br, Dr, the improved quadrature formula
(20) furnishes an error estimate by means of W defined in (47), with the error

of the quadrature being ηj =
W

60 · 210 · 5005
, and the error of the corresponding

term arising from the quadrature becoming δj =
ηj

2(j − 1)! · 0.195j−1
.

Lemma 18. For j = 0, . . . , 9 we have the numerical estimates of Table 4 for
W. Setting δj as given in the table for j = 0, . . . , 9, the approximate quadratures

of order N := 500 yield the approximate values dj as listed in Table 4, admitting
the error estimates (50) for j = 0, . . . , 9. Furthermore, ‖R10(d

IV , t)‖∞ <
0.000073 =: δ10 and thus with the approximate Taylor polynomial P9(t) defined
in (49) the approximation |d′(t)− P9(t)| < δ := 0.0124555 holds uniformly for
t ∈ [5.33, 5.72].

Table 4. Estimates for values of W and δj, dj for j = 0, . . . , 9,
with N = 500.

j estimate for W δj dj

0 6.89883 · 1015 0.007186277 0.045016622
1 1.93082 · 1016 0.003921976 0.070827581
2 5.34273 · 1016 0.00105811 −0.6357179
3 1.46288 · 1017 0.000188317 −7.162905157
4 3.96656 · 1017 2.48926 · 10−5 −45.0748687
5 1.06584 · 1018 2.60863 · 10−6 −220.5767067
6 2.84009 · 1018 2.2591 · 10−7 −922.6394344
7 7.50943 · 1018 1.66398 · 10−8 −3454.236354
8 1.97155 · 1019 1.06486 · 10−9 −11, 901.56441
9 5.14412 · 1019 6.01989 · 10−11 −38, 448.6079
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Proof. Substituting t = 5.525 in (16) yields

|HIV (x)| ≤ G1.525|G′|5, 451, 776
{
j(j − 1)(j − 2)(j − 3)| logL|j−4

+ 16.1j(j − 1)(j − 2)| logL|j−3 + 94.70375j(j − 1)| logL|j−2

+ 120.35253125j| logL|j−1 + 222.521187890625| logL|j
}

+G2.525|G′|7, 180, 800
{
j(j − 1)(j − 2)| logL|j−3 + 13.575j(j − 1)| logL|j−2

+ 60.426875j| logL|j−1 + 88.127203125| logL|j
}

+G3.525|G′|1, 120, 000
{
j(j − 1)| logL|j−2 + 10.05j| logL|j−1 + 25.000625| logL|j

}
+G3.525138, 720, 000

{
j(j − 1)| logL|j−2 + 10.05j| logL|j−1

+ 25.000625| logL|j
}
+G4.52511, 600, 000

{
j| logL|j−1 + 5.525| logL|j

}
.

Now the quadrature formula error is to be estimated by means of Lemma 7.
So we insert the values of j, t and apply Lemma 7 with N = 500, obtaining the
estimations for W as is shown in Table 4. We also get a value of δj calculating

δj =
W/(60 · 210 · 5005)
2(j − 1)! · 0.195j−1

. �

Lemma 19. We have d′(t) > 0 for all 5.33 ≤ t ≤ 5.72.

Proof. We approximate d′(t) by the polynomial P9(t) constructed in (49) as the
approximate value of the order 9 Taylor polynomial of d′ around t0 := 5.525.
As the error is at most δ, it suffices to show that p(t) := P9(t) − δ > 0 in
[5.33, 5.72]. To apply the same method as in Lemma 17, we divide the interval
into two parts: [5.33, 5, 56] and [5.56, 5.72]. Moreover,

p′(t) = P ′
9(t) =

9∑
j=1

dj
(j − 1)!

(t− 5.525)j−1.

Now P9(5.33) = 0.025709673..., P9(5.56) = 0.047052108..., and P9(5.72) =
0.034577105... so in these points P9 − δ > 0. In the interval [5.33, 5.56] we get
for the integral mean of |p(j)| (estimating with total variation, as in Lemma 17),
Ip(j) > max(|p(j)(5.33)|, |p(j)(5.56)|) for j = 1, 2 (see Table 5). The function
has to attain this estimated integral mean value, so it cannot be monotonic.
On the other hand p(j)(5.33) < 0 for j = 3, . . . , 9. But p(9) is a constant,
that is negative in the entire interval, hence p(j) are also negative in the whole
interval for j = 3, . . . , 8. It follows that p′′ is decreasing in the interval, which
is a contradiction.

In case of the interval [5.56, 5.72] the process is similar:

Ip′ > max(|p′(5.56)|, |p′(5.72)|),
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and p(j)(5.56) < 0 for j = 2, . . . , 9, while p(9) is a constant, so p(j) are also
negative in the interval for j = 2, . . . , 9. So p′ should be monotonic in the
interval, and it is a contradiction. �

The last step is to prove that d is concave in the interval [5.72, 6].

Lemma 20. We have d′′(t) < 0 for 5.72 ≤ t ≤ 6.

Numerical tabulation of values give that d′′ is decreasing from d′′(5.72) ≈
−0.260774... to even more negative values as t increases from 5.72 to 6. In the
interval [5.72, 6] the second derivative of d(t) has the Taylor-approximation

d′′(t) =
n∑

j=0

d(j+2)(5.86)

j!
(t− 5.86)j +Rn(d

′′, 5.86, t),(51)

where

Rn(d
′′, 5.86, t) :=

d(n+3)(ξ)

(n+ 1)!
(t− 5.86)n+1 .

Therefore instead of [7, (36)] we can use

|Rn(d
′′, 5.86, t)| ≤

‖Hξ,n+3,+‖L1[0,1/2] + ‖Hξ,n+3,−‖L1[0,1/2]

(n+ 1)!
· 0.14n+1(52)

≤
1
2
‖Hξ,n+3,+‖∞ + 1

2
‖Hξ,n+3,−‖∞

(n+ 1)!
· 0.14n+1

≤
max|ξ−5.86|≤0.14 ‖Hξ,n+3,+‖∞ +max|ξ−5.86|≤0.14 ‖Hξ,n+3,−‖∞

(n+ 1)!
· 0.14n+1.

So once again we need to maximize (12), that is functions of the type | log v|mvξ,
on [0, 9]. From [7, Lemma 6] it follows

(53) max
|ξ−5.86|≤0.14

‖Hξ,n+3,±(x)‖∞ ≤ 96 logn+3 9.

We chose n = 8 then ‖Hξ,n+3,±(x)‖∞ ≤ 3, 062, 485, 120, for this case the
Lagrange remainder term (52) of the Taylor formula (51) can be estimated as
|Rn(d

′′, t)| ≤ 0.011209281 · · · < 0.00035 =: δ9.
As before, the Taylor coefficients dj+2(5.86) cannot be obtained exactly, but

only with some error, due to the necessity of some kind of numerical integration
in the computation of the formula (3). Hence we must set the partial errors
δ0, . . . , δ8 with

∑9
j=0 δj < δ := 0.2494, say, so that d′′(t) < Pn(t) + δ for

(54) Pn(t) :=
n∑

j=0

dj
j!

(t− 5.86)j .
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.3
85

61
44

7
−
1
1
0.
7
0
5
1
5
5
6

5
−
93

.9
43

95
30

3
−
25

5
.0
72

25
73

−
4
8
3.
1
8
9
5
3
6
6

6
−
42
7
.8
26

56
83

−
10

51
.1
02

16
2

−
1
8
7
0
.0
0
9
2
8
7

7
−
18
64

.4
35

45
2

−
38

94
.3
40

88
1

−
6
5
0
6
.0
4
5
5
7
1

8
−
44
04

.0
85

87
−
13

,2
47
.2
65

6
−
1
9
,3
9
9
.0
4
2
9

9
−
38

,4
48
.6
07

8
−
38

,4
48
.6
07

8
−
3
8
,4
4
8
.6
0
7
8
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The analogous criteria to [7, (37)] now has the form:

(55)

∥∥∥∥d(j+2)(5.86)− dj
j!

(t− 5.86)j
∥∥∥∥
∞

=

∣∣d(j+2)(5.86)− dj
∣∣

j!
· 0.14j < δj (j = 0, 1, . . . , n).

That the termwise error (55) would not exceed δj will be guaranteed by Nj

step quadrature approximation of the two integrals in (3) defining d(j+2)(5.86)
with prescribed error ηj each. Therefore, we set ηj := δjj!/(2 · 0.14j), and note
that in order to have (55)

(56) Nj > N?
j :=

4

√
‖HIV

5.86,j+2,±‖∞
60 · 210ηj

=
4

√
‖HIV

5.86,j+2,±‖∞2 · 0.14j

60 · 210j!δj
suffices by the integral formula (18) and [7, Lemma 5]. That is, we must
estimate ‖HIV

5.86,j+2,±‖∞ for j = 0, . . . , 8 and thus find appropriate values of
N?

j .

Lemma 21. For j = 0, . . . , 8 we have the numerical estimates of Table 6 for
the values of ‖HIV

5.86,j,±‖∞. Setting δj as seeing in the table for j = 0, . . . , 8 and
δ9 = 0.00035, the approximate quadrature of order Nj ≥ N?

j with the listed

values of N?
j yield the approximate values dj as listed in Table 6, admitting the

error estimates (55) for j = 0, . . . , 9. Furthermore, ‖R9(d
′′, t)‖∞ < 0.01121 =:

δ9 and thus with the approximate Taylor polynomial P8(t) defined in (54) the
approximation |d′′(t)− P8(t)| < δ := 0.2494 holds uniformly for t ∈ [5.72, 6].

Table 6. Estimates for values of ‖HIV
5.86,j+2,±‖∞ and δj, N

?
j and

dj for j = 0, . . . , 8.

j ‖HIV
5.86,j+2,±‖∞ δj N?

j dj

0 1.07968 · 1015 0.16 485 -0.982761617
1 2.93801 · 1015 0.062 483 -7.57978318
2 7.91604 · 1015 0.015 453 -42.74047825
3 2.1135 · 1016 0.002 446 -200.2495965
4 5.59555 · 1016 0.002 246 -823.1734963
5 1.46998 · 1017 0.002 128 -3064.925687
6 3.83405 · 1017 0.002 64 -10,561.40925
7 9.93361 · 1017 0.002 31 -34,212.60072
8 2.55779 · 1017 0.002 14 -105,414.5993
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Proof. We start with the numerical upper estimation of HIV
5.86,j,±(x) for 5.72 ≤

x ≤ 6. In the general formula (15) now we consider the case t = 5.86.

|HIV (x)| ≤ 959, 512, 576 · v1.86
{
j(j − 1)(j − 2)(j − 3)`j−4(57)

+ 117.44j(j − 1)(j − 2)`j−3 + 111.5576j(j − 1)`j−2

+ 309.72742j`j−1 + 314.40339216`j
}

+ 1, 263, 820, 800 · v2.86
{
j(j − 1)(j − 2)`j−3 + 14.58j(j − 1)`j−2

+ 69.8588j`j−1 + 109.931256`j
}

+ 11, 600, 000 · v4.86
{
j`j−1 + 5.86`j

}
+ 335, 840, 000 · v3.86

{
j(j − 1)`j−2 + 10.72j`j−1 + 28.4796`j

}
.

Applying that all the occurring functions of type vs`m have maximum on [0, 9]
at the right endpoint v = 9 in view of [7, Lemma 6], we can further estimate
substituting ` = log 9 and v = 9. We collect the resulting numerical estimates
of ‖HIV ‖∞ in Table 6 and list the corresponding values of N?

j and dj, too, as
given by the formulas (56) and the numerical quadrature formula (18) with
step size h = 0.001, i.e. N = Nj = 500 steps. �

Lemma 22. We have d′′(t) < 0 for all 5.72 ≤ t ≤ 6.

Proof. We approximate d′′(t) by the polynomial P8(t) constructed in (54) as the
approximate value of the order 8 Taylor polynomial of d′′ around t0 := 5.86.
As the error is at most δ, it suffices to show that p(t) := P8(t) + δ < 0 in
[5.72, 6]. Now P8(5.72) = −0.2607741259... so P8(5.72) + δ < 0. Moreover,

p′(t) = P ′
8(t) =

8∑
j=1

dj
(j − 1)!

(t− 5.86)j−1

and p′(5.72) = −3.226759... < 0. From the explicit formula of p(t) we consec-
utively compute also

p′′(5.72) = −21.525764... < 0,

p′′′(5.72) = −110.671188... < 0,

p(4)(5.72) = −483.626484... < 0,

p(5)(5.72) = −1873.40227... < 0,

p(6)(5.72) = −6804.70822... < 0,

p(7)(5.72) = −19, 454.5568... < 0.

Finally, we arrive at p(8)(t) = d8=-105,414.6... We have already checked that
p(j)(5.72) < 0 for j = 0 . . . 7, so in order to conclude p(t) > 0 for 5.72 ≤ t ≤ 6
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it suffices to show p(8)(t) < 0 in the given interval. However, p(8) is constant,
so p(t) < 0 for all t ∈ R. It follows that also p(t) > 0 for all 5.72 ≤ t ≤ 6. �

Acknowledgement

The author is grateful to Professor Szilárd Révész for continuous guidance and
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