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28 (2012), 47–58
www.emis.de/journals

ISSN 1786-0091

A NEW PARANORMED SEQUENCE SPACE AND SOME
MATRIX TRANSFORMATIONS

NEYAZ AHMAD SHEIKH AND AB HAMID GANIE

Abstract. In this paper, we introduce the space rq(u, p). We proved its
completeness property and has shown its linear isomorphism to l(p). Also,
investigations have been made for computing its α-, β- and γ- duals. Fur-
thermore, we constructed the basis of rq(u, p). Finally, we characterize the
classes (rq(u, p) : l∞), (rq(u, p) : c) and (rq(u, p) : c0) of infinite matrices.

1. Preliminaries, Background and Notations

A sequence space is defined to be a linear space of real or complex sequences.
Throughout the paper N, R and C denotes the set of non-negative integers,
the set of real numbers and the set of complex numbers respectively. Let ω
denote the space of all sequences (real or complex); l∞ and c respectively,
denotes the space of all bounded sequences, the space of convergent sequences.
A linear Topological space X over the field of real numbers R is said to be a
paranormed space if there is a subadditive function h : X → R such that h(θ) =
0,h(−x) = h(x) and scalar multiplication is continuous, that is, |αn − α| → 0
and h(xn − x) → 0 imply h(αnxn − αx) → 0 for all α′s in R and x′s in X ,
where θ is a zero vector in the linear space X. Assume here and after that (pk)
be a bounded sequence of strictly positive real numbers with supk pk = Hand
M = max {1, H}. Then, the linear spaces l(p) and l∞(p) were defined by
Maddox [7] (see also [11, 12, 16]) as follows:

l(p) = {x = (xk) :
∑
k

|xk|pk < ∞}, with 0 < pk ≤ H < ∞,

l∞(p) = {x = (xk) : sup
k
|xk|pk < ∞},
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which are complete spaces paranormed by

g1(x) =

[∑
k

|xk|pk
]1/M

and g2(x) = sup
k

|xk|pk/M iff inf pk > 0.

We shell assume throughout that p−1
k + (pk

′)−1 provided 1 < inf pk≤ H <
∞ and we denote the collection of all finite subsets of N by F , where N =
{0, 1, 2, . . .}.

For the sequence space X and Y , define the set

(1) S(X : Y ) = {z = (zk) ∈ ω : xz = (xkzk)∈ Y ∀ x ∈ X}.

With the notation of (1) , the α-, β- and γ- duals of a sequence space X,
which are respectively denoted by Xα , Xβ and Xγ and are defined by

Xα = S(X : l1), Xβ = S(X : cs) and Xγ = S(X : bs).

If a sequence space X paranormed by h contains a sequence (bn) with the
property that for every x ∈ X there is a unique sequence of scalars (αn) such
that

lim
n

h(x−
n∑

k=0

αkbk) = 0

then (bn) is called a Schauder basis (or briefly basis ) for X. The series
∑

αkbk
which has the sum x is then called the expansion of x with respect to (bn) and
written as x =

∑
αkbk.

Let X and Y be two subsets of ω. Let A = (ank) be an infinite matrix
of real or complex numbers ank, where n, k∈ N. Then, the matrix A defines
the A−transformation from X into Y , if for every sequence x = (xk) ∈ X
the sequence Ax = {(Ax)n},the A-transform of x exists and is in Y ; where
(Ax)n =

∑
k ankxk. For simplicity in notation, here and in what follows, the

summation without limits runs from 0 to ∞. By (X : Y ) ,we denote the class
of all such matrices. A sequence x is said to be A-summable to l if Ax converges
to l which is called as the A-limit of x.

For a sequence space X, the matrix domain XA of an infinite matrix A is
defined as

(2) XA = {x = (xk) : x = (xk)∈ ω}.

Let (qk) be a sequence of positive numbers and let us write,

Qn =
n∑

k=0

qk

for n∈ N. Then the matrix Rq = (rqnk) of the Riesz mean (R, qn) is given by

rqnk =

{
qk
Qn

if 0 ≤ k ≤ n,

0, if k > n.
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The Riesz mean (R, qn) is regular if and only if Qn → ∞ as n → ∞ (see,
Petersen [14, p. 10]).

The approach of constructing a new sequence space by means of matrix
domain of a particular limitation method has been studied by several authors
(see,[2, 3, 4, 10, 11, 13]). In the present paper, following (see, [2, 3, 4]),
we introduce Riesz sequence space rq(u, p), and prove that the space rq(u, p)
is a complete paranormed linear space and show it is linearly isomorphic to
the space l(p). We also compute α-, β- and γ-duals of the space rq(u, p).
Furthermore, we construct the basis for the space rq(u, p). in the final section
of the present paper we characterize the classes (rq(u, p) : l∞), (rq(u, p) : c)
and (rq(u, p) : c0) of infinite matrices.

2. The Riesz Sequence space rq(u, p) of non-absolute type

In the present section, we introduce Riesz sequence space rq(u, p), prove
that the space rq(u, p) is a complete paranormed linear space and show it is
linearly isomorphic to the space l(p). We also compute α-, β- and γ-duals of
the space rq(u, p). Finally, we give basis for the space rq(u, p), where u = (uk)
is a sequence such that uk 6= 0 for all k ∈ N.

We define the Riesz sequence space rq(u, p) as the set of all sequences such
that Rq transform of it is in the space l(p), that is,

rq(u, p) =

{
x = (xk) ∈ ω :

∑
k

∣∣∣∣∣ 1Qk

k∑
j=0

ujqjxj

∣∣∣∣∣
pk}

< ∞, (0 < pk ≤ H < ∞).

In the case (uk) = e = (1, 1, . . .), the sequence spaces rq(u, p) reduces to rq(p),
introduced by Altay and Başar [1].

With the notation of (2) that

rq(u, p) = {l(p)}Rq .

Define the sequence y = (yk), which will be used, by the Rq-transform of a
sequence x = (xk), i.e.,

(3) yk =
1

Qk

k∑
j=0

ujqjxj.

Now, we begin with the following theorem which is essential in the text.

Theorem 2.1. rq(u, p) is a complete linear metric space paranormed by g
defined

g(x) =

[∑
k

∣∣∣∣∣ 1Qk

k∑
j=0

ujqjxj

∣∣∣∣∣
pk] 1

M

with 0 < pk ≤ H < ∞.



50 NEYAZ AHMAD SHEIKH AND AB HAMID GANIE

Proof. The linearity of rq(u, p) with respect to the co-ordinate wise addition
and scalar multiplication follows from the inequalities which are satisfied for
z, x ∈ rq(u, p) (see[9, p. 30])

(4)

[∑
k

∣∣∣∣∣ 1Qk

k∑
j=0

ujqj(zj + xj)

∣∣∣∣∣
pk] 1

M

≤

[∑
k

∣∣∣∣∣ 1Qk

k∑
j=0

ujqjzj

∣∣∣∣∣
pk] 1

M

+

[∑
k

∣∣∣∣∣ 1Qk

k∑
j=0

ujqjxj

∣∣∣∣∣
pk] 1

M

and for any α ∈ R (see [8])

(5) |α|pk ≤ max{1, |α|M}.
It is clear that, g(θ) = 0 and g(x) = g(−x) for all x ∈ rq(u, p). Again the

inequality (4) and (5), yield the subadditivity of g and

g(αx) ≤ max{1, |α|}g(x).
Let {xn} be any sequence of points of the space rq(u, p) such that g(xn −

x) → 0 and (αn) is a sequence of scalars such that αn → α. Then, since the
inequality,

g(xn) ≤ g(x) + g(xn − x)

holds by subadditivity of g, {g(xn)} is bounded and we thus have

g(αnx
n − αx) =

[∑
k

∣∣∣∣∣ 1Qk

k∑
j=0

ujqj(αnx
n
j − αxj)

∣∣∣∣∣
pk] 1

M

≤ |αn − α| g(xn) + |α| g(xn − x)

which tends to zero as n → ∞. That is to say that the scalar multiplication
is continuous. Hence, g is paranorm on the space rq(u, p).

It remains to prove the completeness of the space rq(u, p). Let {xi} be any
Cauchy sequence in the space rq(u, p), where xi = {xi

0, x
i
2, . . .}. Then, for a

given ε > 0 there exists a positive integer n0(ε) such that

(6) g(xi − xj) < ε

for all i, j ≥ n0(ε). Using definition of g and for each fixed k ∈ N that

∣∣(Rqxi)k − (Rqxj)k
∣∣ ≤ [∑

k

∣∣(Rqxi)k − (Rqxj)k
∣∣pk] 1

M

< ε

for i, j ≥ n0(ε), which leads us to the fact that {(Rqx0)k, (R
qx1)k, . . . } is a

Cauchy sequence of real numbers for every fixed k ∈ N. Since R is complete,
it converges, say, (Rqxi)k → ((Rqx)k as i → ∞. Using these infinitely many
limits (Rqx)0, (R

qx)1, . . . , we define the sequence {(Rqx)0, (R
qx)1, . . . }. From

(6) for each m ∈ N and i, j ≥ n0(ε).
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(7)
m∑
k=0

∣∣(Rqxi)k − (Rqxj)k
∣∣pk ≤ g(xi − xj)M < εM .

Take any i, j ≥ n0(ε). First, let j → ∞ in (7) and then m → ∞, we obtain

g(xi − x) ≤ ε.

Finally, taking ε = 1 in (7) and letting i ≥ n0(1) we have by Minkowski’s
inequality for each m ∈ N such that[

m∑
k=0

|(Rqx)k|pk
] 1

M

≤ g(xi − x) + g(xi) ≤ 1 + g(xi),

which implies that x ∈ rq(u, p). Since g(x− xi) ≤ ε for all i ≥ n0(ε), it follows
that xi → x as i → ∞, hence we have shown that rq(u, p) is complete. �

Note that one can easily see the absolute property does not hold on the space
rq(u, p), that is g(x) 6= g(|x|) for at least one sequence in the space rq(u, p)
and this says that rq(u, p) is a sequence space of non-absolute type.

Theorem 2.2. The Riesz sequence space rq(u, p) of non-absolute type is lin-
early isomorphic to the space l(p), where 0 < pk ≤ H < ∞.

Proof. To prove the theorem, we should show the existence of a linear bijection
between the spaces rq(u, p) and l(p), where 0 < pk ≤ H < ∞. With the
notation of (3), define the transformation T from rq(u, p) to l(p) by x → y =
Tx. The linearity of T is trivial. Further, it is obvious that x = θ whenever
Tx = θ and hence T is injective.

Let y ∈ l(p) and define the sequence x = (xk) by

xk =
1

ukqk
{Qkyk−Qk−1yk−1} for k ∈ N.

Then

g(x) =

[∑
k

∣∣∣∣∣ 1Qk

k∑
j=0

ujqjxj

∣∣∣∣∣
pk] 1

M

=

[∑
k

∣∣∣∣∣
k∑

j=0

δkjyj

∣∣∣∣∣
pk] 1

M

=

[∑
k

|yk|pk
] 1

M

= g1(y) < ∞.

Thus, we have x ∈ rq(u, p). Consequently, T is surjective and is paranorm
preserving. Hence, T is a linear bijection and this says us that the spaces
rq(u, p) and l(p) are linearly isomorphic. �

First we state some lemmas which are needed in proving the theorems.
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Lemma 2.3 ([5, Theorem 5.10]). (i) Let 1 < pk ≤ H < ∞ for every k ∈ N.
Then A∈ (l(p) : l1) if and only if there exists an integerB > 1 such that

sup
N∈F

∑
k

∣∣∣∣∣∑
n∈N

ankB
−1

∣∣∣∣∣
p
′
k

< ∞.

(ii) Let 0 < pk ≤ 1 for every k ∈ N. Then A∈ (l(p) : l1) if and only if

sup
N∈F

sup
k

∣∣∣∣∣∑
n∈N

ankB
−1

∣∣∣∣∣
pk

< ∞.

Lemma 2.4 ([6, Theorem 6]). (i) Let 1 < pk ≤ H < ∞for every k ∈ N.
Then A∈ (l(p) : l∞) if and only if there exists an integer B > 1 such that

(8) sup
n

∑
k

|ankB−1|pk′
< ∞.

(ii) Let 0 < pk ≤ 1 for every k ∈ N. Then A ∈ (l(p) : l∞) if and only if

(9) sup
n,k

|ank|pk < ∞.

Lemma 2.5 ([6, Theorem 1]). Let 0 < pk ≤ H < ∞ for every k ∈ N. Then
A ∈ (l(p) : c) if and only if (8) and (9)hold and

lim
n

ank = βk for k ∈ N

also holds.

Theorem 2.6. Let 1 < pk ≤ H < ∞ for every k ∈ N. Define the sets D1(u, p)
and D2(u, p), as follows

D1(u, p) =
⋃
B>1

{a = (ak) ∈ ω : sup
n∈F

∑
k

∣∣∣∣∣∑
n∈N

(−1)n−k an
unqn

QkB
−1

∣∣∣∣∣
p
′
k

< ∞}

and

D2(u, p) =⋃
B>1

{
a = (ak) ∈ ω :

∑
k

∣∣∣∣4( ak
ukqk

)
QkB

−1

∣∣∣∣p
′
k

< ∞ and

{(
ak
ukqk

QkB
−1

)p
′
k

}
∈ l∞

}
.

Then

[rq(u, p)]α = D1(u, p) and [rq(u, p)]β = [rq(u, p)]γ = D2(u, p).

Proof. Let us take any a = (ak) ∈ ω. We can easily derive with (3) that

(10) anxn =
n∑

i=n−1

(−1)n−i an
unqn

Qiyi = (Cy)n
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for n ∈ N where, C = (cnk) is defined as

cnk =

{
(−1)n−k an

unqn
Qk, if n− 1 ≤ k ≤ n,

0, if 0 ≤ k < n− 1 or k > n,

where n, k ∈ N. Thus we observe by combining (10) with (i) of Lemma 2.4
that ax = (anxn) ∈ l1 whenever x = (xn) ∈ rq(u, p) if and only if Cy ∈ l1
whenever y ∈ l(p). This gives the result that [rq(u, p)]α = D1(u, p). Consider
the equation,

(11)
n∑

k=0

akxk =
n−1∑
k=0

4
(

ak
ukqk

)
Qkyk +

an
unqn

Qnyn = (Dy)n for n ∈ N,

where, D = (dnk) is defined as

dnk =


4
(

ak
ukqk

)
Qk, if 0 ≤ k ≤ n− 1,

an
unqn

Qk, if k = n,

0, if k > n,

where n, k ∈ N. Thus we deduce from Lemma 2.5 with (11) that ax = (anxn) ∈
cs whenever x = (xn) ∈ rq(u, p) if and only if Dy ∈ c whenever y ∈ l(p).
Therefore, we derive from (8) that

(12)
∑
k

∣∣∣∣4( ak
ukqk

)
QkB

−1

∣∣∣∣p
′
k

< ∞ and sup
k∈N

∣∣∣∣ ak
ukqk

QkB
−1

∣∣∣∣p
′
k

< ∞

which shows that that [rq(u, p)]β = D2(u, p).
As this, from Lemma 2.4 together with (11) that ax = (akxk) ∈ bs whenever

x = (xn) ∈ rq(u, p) if and only if Dy ∈ l∞ whenever y = (yk) ∈ l(p). Therefore,
we again obtain the condition (12) which means that [rq(u, p)]γ = D2(u, p). �

Theorem 2.7. Let Let 0 < pk ≤ 1 for every k ∈ N. Define the sets D3(u, p)
and D4(u, p), as follows

D3(u, p) =

{
a = (ak) ∈ ω : sup

N∈F
sup
k

∣∣∣∣∣∑
n

(−1)n−k an
unqn

QkB
−1

∣∣∣∣∣
pk

< ∞

}
and

D4(u, p)

=

{
a = (ak) ∈ ω : sup

k

∣∣∣∣4( ak
ukqk

)
Qk

∣∣∣∣pk < ∞ and sup
k

∣∣∣∣ ak
ukqk

Qk

∣∣∣∣pk < ∞
}
.

Then [rq(u, p)]α = D3(u, p) and [rq(u, p)]β = [rq(u, p)]β = D4(u, p).
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Proof. This is obtained by proceeding as in the proof of Theorem 2.6, above
by using second parts of Lemmas 2.3, 2.4 and 2.5 instead of the first parts. So,
we omit the details. �
Theorem 2.8. Define the sequence b(k)(q) = b

(k)
n (q) of the elements of the

space rq(u, p) for every fixed k ∈ N by

b(k)n (q) =

{
(−1)n−k Qk

unqn
, if k ≤ n ≤ k + 1,

0, if 0 ≤ n < k or n > k + 1.

Then, the sequence b(k)(q) is a basis for the space rq(u, p) and any x ∈ rq(u, p)
has a unique representation of

(13) x =
∑
k

λk(q)b
(k)(q)

where, λk(q) = (Rqx)k for all k ∈ N and 0 < pk ≤ H < ∞.

Proof. It is clear that b(k)(q) ⊂ rq(u, p), since

(14) Rqb(k)(q) = e(k) ∈ lp for k ∈ N and 0 < pk ≤ H < ∞.

Let x ∈ rq(u, p) be given. For every non-negative integer m, we put

(15) x[m] =
m∑
k=0

λk(q)b
(k)(q).

Applying Rq to (15) with (14) we obtain

Rqx[m] =
m∑
k=0

λk(q)R
qb(k)(q) =

m∑
k=0

(Rqx)ke
(k)

and (
Rq(x− x[m])

)
i
=

{
0, if 0 ≤ i ≤ m,

(Rqx)i , if i > m,

where i,m ∈ N. Given ε > 0, there exists an integer m0 such that(
∞∑

i=m

|(Rqx)i|pk
) 1

M

<
ε

2
,

for all m ≥ m0. Hence

g
(
x− x[m]

)
=

(
∞∑

i=m

|(Rqx)i|pk
) 1

M

≤

(
∞∑

i=m0

|(Rqx)i|pk
) 1

M

<
ε

2
< ε,

for all m ≥ m0, which proves that x ∈ rq(u, p) is represented as (13).
Let us show the uniqueness of the representation for x ∈ rq(u, p) given

by (13). Suppose, on the contrary; that there exists a representation x =
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k µk(q)b

k(q). Since the linear transformation T from rq(u, p) to l(p) used in
the Theorem 2.2 is continuous we have

(Rqx)n =
∑
k

µk(q)
(
Rqbk(q)

)
n
=
∑
k

µk(q)e
(k)
n = µn(q)

for n ∈ N, which contradicts the fact that (Rqx)n = λn(q) for all n ∈ N. Hence,
the representation (13) is unique. �

3. Matrix Mappings on the space rq(u, p)

In this section, we characterize the matrix mappings from the space rq(u, p)
to the spaces l∞, c and c0.

Theorem 3.1. (i) Let 1 < pk ≤ H < ∞ for every k ∈ N. Then A ∈
(rq(u, p) : l∞) if and only if there exists an integer B > 1 such that

C(B) = sup
n

∑
k

∣∣∣∣4( ank
ukqk

)
QkB

−1

∣∣∣∣p
′
k

< ∞(16) {(
ank
ukqk

QkB
−1

)pk
}

∈ l∞ for n ∈ N.(17)

(ii) Let 0 < pk ≤ 1 for every k ∈ N. Then A ∈ (rq(u, p) : l∞) if and only if

(18) sup
n

∣∣∣∣4( ank
ukqk

)
Qk

∣∣∣∣pk < ∞.

Proof. We only prove the part (i) and (ii) may be proved in a similar fashion.
So, let A ∈ (rq(u, p) : l∞) and 1 < pk ≤ H < ∞ for every k ∈ N. Then Ax
exists for x ∈ rq(u, p) and implies that {ank}k∈N ∈ {rq(u, p)}β for each n ∈ N.
Now the necessities of (16) and (17) hold and x ∈ rq(u, p). In this situation,
since {ank}k∈N ∈ {rq(u, p)}β for every fixed n ∈ N, the A-transform of x exists.
Consider the following equality obtained by using the relation (3) that

(19)
m∑
k=0

ankxk =
m−1∑
k=0

4
(

ank
ukqk

)
Qkyk +

ank
umqm

Qmym for m, n ∈ N.

Taking into account the assumptions we derive from (19) as m → ∞ that

(20)
∑
k

ankxk =
∑
k

4
(

ank
ukqk

)
Qkyk for n ∈ N.

Now, by combining (20) and the inequality which holds for any B > 0 and any
complex numbers a, b

|ab| ≤ B
(∣∣aB−1

∣∣p′ + |b|p
)

with p−1+(p′)−1 = 1 (see [6]), one can easily see that
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sup
n∈N

∣∣∣∣∣∑
k

ankxk

∣∣∣∣∣ ≤ sup
n∈N

∣∣∣∣∣∑
k

4
(

ank
ukqk

)
Qk

∣∣∣∣∣ |yk|
≤ B

[
C(B) + gB1 (y)

]
< ∞. �

Theorem 3.2. Let 0 < pk ≤ H < ∞ for every k ∈ N. Then A ∈ (rq(u, p) : c)
if and only if (16),(17) and (18) hold and there is a sequence (αk) of scalars
such that

(21) lim
n

4
(
ank − αk

ukqk

)
Qk = 0, forevery k ∈ N.

Proof. Let A ∈ (rq(u, p) : c) and 1 < pk ≤ H < ∞ for every k ∈ N. Since
c ⊂ l∞, the necessities of (16) and (17) are trivial by Theorem 3.1 (above).

Because of A−transform of every x ∈ rq(u, p) exists and is in c by hypothesis,

Ax(k) is also in c for every k ∈ N, which shows that
{
4
(

ank

ukqk

)
Qk

}
n∈N

∈ c

where x(k) =
{
x
(k)
n (q)

}
is defined by

x(k)
n (q) =

{
(−1)n−k Qk

unqn
, if k ≤ n ≤ k + 1,

0, if 0 ≤ n < k or n > k + 1,

and is in the space rq(u, p) for every k ∈ N. This proves necessity of (21).
Conversely, suppose that (16), (17) and (21) hold, and x ∈ rq(u, p). Then

{ank} ∈ {rq(u, p)}β for each n ∈ N, which implies that Ax exists. We observe
for every m,n ∈ N that

m∑
k=0

∣∣∣∣4( ank
ukqk

)
QkB

−1

∣∣∣∣pk ≤ sup
n

∑
k

∣∣∣∣4( ank
ukqk

)
QkB

−1

∣∣∣∣pk
which gives the fact by letting m,n → ∞ with (21) and (16) that

(22)
∑
k

∣∣∣∣4( αk

ukqk

)
QkB

−1

∣∣∣∣pk < ∞.

Also, we have from (17) by letting n → ∞ that
{(

ank

ukqk
QkB

−1
)pk}

∈ l∞ which

leads us together (22) that (αk) ∈ D2(u, p). That is to say that the series∑
k

αkxk converges for every x ∈ rq(u, p).

Let us now consider the equality obtained from (20) with ank − αk instead
of ank:

(23)
∑
k

(ank − αk)xk =
∑
k

4
(
ank − αk

ukqk

)
Qkyk for n ∈ N.

Thus, we have at this stage from Lemma 2.6 with βk = 0 for all k ∈ N that

the matrix
{
4
(

ank−αk

qk

)
Qk

}
n,k∈N

belong to a class of (l(p) : c0). Thus, we see
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by (23) that

(24) lim
n

∑
k

(ank − αk)xk = 0.

Combining (24) with the above results one can see that Ax ∈ c, which is what
we wished to prove. �

Now, if we take αk = 0 for each k ∈ N, we have the following corollary:

Corollary 1. Let 0 < pk ≤ H < ∞ for every k ∈ N. Then A ∈ (rq(u, p) : c0)
if and only if (16), (17) and (18)hold and (20) also holds with αk = 0 for each
k ∈ N.
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