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DUAL BANACH ALGEBRAS AND CONNES-AMENABILITY

FARUK UYGUL

Abstract. In this survey, we first study dual Banach algebras and com-
pletely contractive dual Banach algebras. Then, we discuss the Connes-
amenability and operator Connes-amenability of these algebras and present
some new advances in this area.

1. Introduction

Abstract harmonic analysis studies locally compact groups and Banach al-
gebras associated with them. Amenability (which was first defined for discrete
groups by von Neumann in [22]) is a distinctive property of locally compact
groups ([3]). The class of amenable groups includes all finite, abelian and com-
pact groups. On the other hand, F2, the free group on two generators, is not
amenable. In 1972, B. Johnson defined the concept of amenability for Banach
algebras ([7]) and proved that the group algebra L1(G) of a locally compact
group G is amenable if and only if G is amenable. Since then it has been a very
active area of research. Studying the amenability of a Banach algebra associated
with a locally compact group gives us plenty of information about the underly-
ing group. For example, the measure algebra M(G) of a locally compact group
G is amenable if and only if G is discrete and amenable ([1]).

The theory of abstract operator spaces, which was initiated by Ruan’s repre-
sentation theorem in [13], has become a very powerful tool in abstract harmonic
analysis. This is because many of the classical spaces of interest, for example
the Fourier algebras, have natural operator space structures on them. Taking
this operator space structure into account while studying these objects yields
fruitful results. In his paper ([13]), Ruan also defined the concept of operator
amenability and proved that the Fourier algebra A(G) is operator amenable if
and only if G is amenable.
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Dual Banach algebras form a very special class of Banach algebras which in-
cludes the Fourier-Stieltjes algebra and the measure algebra of a locally compact
group. In [14], Runde defined the concept of Connes-amenability which is bet-
ter suited for dual Banach algebras. For example, the measure algebra M(G)
is Connes-amenable if and only if G is amenable ([16]). There is also an op-
erator space version of Connes-amenability called operator Connes-amenability
which is defined for completely contractive dual Banach algebras. In [18], Runde
and Spronk proved that the reduced Fourier-Stieltjes algebra Br(G) of a locally
compact group G is operator Connes-amenable if and only if G is amenable.

2. Notes From Abstract Harmonic Analysis

Definition 2.1. A topological group is a group equipped with a topology such
that the group operations and the topology are compatible. That is, the maps

G×G → G, (g, h) 7→ gh and G → G, g 7→ g−1

are continuous. If the topology on G is a locally compact Hausdorff topology
(that is, there is a neighborhood base for the identity element consisting of
compact sets), then G is called a locally compact group.

Clearly, every discrete group is locally compact. Also, the set of real numbers
with addition and the unit circle of the complex plane with multiplication are
locally compact groups. However, if E is an infinite dimensional Banach space,
then (E, +) is not a Banach space.

Abstract harmonic analysis studies locally compact groups and Banach alge-
bras related to them. There are many interesting Banach algebras associated
with a locally compact group, for instance the Fourier algebras, the group al-
gebra and the measure algebra. We should point out that one advantage of
working with locally compact groups is the existence of (left) Haar measure
(which is unique up to a positive constant multiple) on them which allows us to
define Lp-spaces related to them.

Let G be a locally compact group. A unitary representation of G is a homo-
morphism π from G into the group U(Hπ), unitary operators on some non-zero
Hilbert space Hπ, that is continuous with respect to the strong operator topol-
ogy. The collection of all equivalence classes of unitary representations of G with
respect to unitary equivalence is denoted by ΣG. We call f a coefficient function
of a representation π of G on some Hilbert space H if there are ξ, ζ ∈ H such
that

f(x) = 〈π(x)ξ, ζ〉 (x ∈ G).
The Fourier-Stieltjes algebra of G is the the algebra of coefficient functions of

continuous unitary representations of G and is denoted by B(G). More explicitly,

(1) B(G) :=
{
f : G → C : f(x) = 〈π(x)ξ, ζ〉, ∀x ∈ G

}

where π ∈ ΣG and ξ, ζ ∈ Hπ.
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The left regular representation of G is defined by λ : G → B(L2(G))

(λ(g)ξ)(h) := ξ(g−1h) (g, h ∈ G, ξ ∈ L2(G)).

We define the Fourier algebra, A(G) of G to be the space of all coefficient
functions of λ, that is:

A(G) :=
{
f : G → C : ∃ ξ, ζ ∈ L2(G) such that f(x) = 〈λ(x)ξ, ζ〉, ∀x ∈ G

}
.

Fourier and Fourier-Stieltjes algebras were first defined in 1964 by Eymard ([5])
for arbitrary locally compact groups. Fourier-Stieltjes algebra becomes a Banach
space with the norm defined by

‖f‖B(G) := inf
{‖ξ‖‖ζ‖ : f is represented as in (1)

}
.

Indeed in [5], Eymard proved more:

Theorem 2.2. Let G be a locally compact group. Then (with pointwise multi-
plication) B(G) is a commutative unital Banach algebra that contains A(G) as
a norm-closed ideal.

For more information on Fourier algebras, we refer the reader to [5].

3. Amenability

A bounded linear functional, m : L∞(G) → C, is called a mean if

‖m‖ = 〈1,m〉 = 1,

where L∞(G) is the space of all measurable essentially bounded functions on G.
For a function f : G → C, we define its left translate Lgf by g ∈ G through

(Lgf)(h) := f(gh) (h ∈ G).

A mean m on L∞(G) is called left invariant if

〈Lgf, m〉 = 〈f, m〉 (g ∈ G, f ∈ L∞(G)).

The existence of left invariant means on discrete groups (which was first inves-
tigated by J. von Neumann ([22])) has strong ties with the well-known Banach-
Tarski paradox. We have the following definition due to M. Day ([3]).

Definition 3.1. A locally compact group G is amenable if there is a left invari-
ant mean on L∞(G).

All finite, abelian, and compact groups are amenable; however, the free group
on two generators is not ([22]).

The concept of amenability also carries over to Banach algebras.

Definition 3.2. Let A be a Banach algebra and X be a Banach A-bimodule.
A bounded linear map D : A → X is called a derivation if

D(ab) = a.D(b) + D(a).b (a, b ∈ A).
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Each x ∈ X defines a map

adx : A → X, a 7→ a.x− x.a.

It is easy to verify that adx is a derivation. Derivations of this type are called
inner derivations.

Amenability for Banach algebras was defined first by Johnson in [7] in 1972.

Definition 3.3. A Banach algebra A is said to be amenable if every derivation
from A into X∗ is inner for each Banach A-bimodule X.

Johnson in [7] also gave the first connection between group amenability and
Banach algebra amenability:

Theorem 3.4. Let G be a locally compact group. Then G is amenable if and
only if L1(G) is an amenable Banach algebra.

For more information on amenability, we refer the reader to the monographs
[8] and [15].

4. Operator Spaces

If E is a linear space, then for each m,n ∈ N, Mm,n(E) will denote the space
of all m×n matrices with entries in E. If m = n, then Mm,n(E) will be denoted
by Mn(E) and in particular, Mn = Mn(C) will denote the space of all scalar
n× n matrices.

Definition 4.1. Let E be a linear space with a norm ‖ · ‖n on Mn(E) for each
n ∈ N such that

(2)
∥∥∥∥

x 0
0 y

∥∥∥∥
n+m

= max{‖x‖n, ‖y‖m} (n,m ∈ N, x ∈ Mn(E), y ∈ Mm(E))

and

(3) ‖αxβ‖n ≤ ‖α‖‖x‖n‖β‖ (n ∈ N, x ∈ Mn(E), α, β ∈ Mn).

Then (‖ · ‖n)n∈N is called a matricial norm for E. Moreover, if each ‖ · ‖n is
complete, then E is called an abstract operator space.

A concrete operator space is a closed subspace of B(H) for some Hilbert space
H.

Definition 4.2. Let E and F be two abstract operator spaces, and let T ∈
B(E,F ). Then say that

(1) T is completely bounded if

‖T‖cb := sup
{ ∥∥∥T (n)

∥∥∥
B(Mn(E),Mn(F ))

: n ∈ N
}

< ∞.

(2) T is a complete contraction if ‖T‖cb ≤ 1.
(3) T is a complete isometry if T (n) is an isometry for each n ∈ N.
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Not every linear bounded operator between operator spaces is completely
bounded:

Example 4.3. Let H = l2. Then the (Banach space) adjoint operator

B(H) → B(H), T 7→ T ∗

is an isometry but is not completely bounded ([4]).

The set of completely bounded operators from E to F is denoted by CB(E, F ).

If E and F are two operator spaces, then CB(E, F ) turns into an abstract
operator space with the identification

Mn(CB(E, F )) = CB(E,Mn(F )), (n ∈ N).

The following theorem is known as Ruan’s representation theorem that initi-
ated the theory of abstract operator spaces ([13]).

Theorem 4.4. Let X be an abstract operator space. Then there is a complete
isometry from X into B(H) for some Hilbert space H.

Thanks to Ruan’s representation theorem, we do not have to distinguish
abstract and concrete operator spaces. Operator spaces arise naturally in func-
tional analysis. Every infinite dimensional Banach space X can be turned into
an operator space in at least two different ways, namely minX and maxX.

As we mentioned before, not all bounded maps between two operator spaces
are completely bounded. However, this is true for some operator spaces. The
following result is known as Smith’s Lemma ([19]):

Lemma 4.5. Let E be an abstract operator space and A be a commutative
C∗-algebra. Then for every T ∈ B(E,A) we have

‖T‖cb = ‖T‖.
In particular, if A = C, then we have:

Corollary 4.6. Let E be an abstract operator space. Then for every T ∈ E∗

we have ‖T‖cb = ‖T‖.
Due to the duality theorem, the dual and the predual (if it exists) of an

operator space have natural operator space structures. More explicitly, if X is
an operator space and φ = (φi,j) ∈ Mn(X∗) for some n ∈ N, then

‖φ‖n = sup
{
|〈φi,j , xk,l〉|n2 : x = (xk,l) ∈ Mn(X), ‖x‖n ≤ 1

}
.

Now by using the duality theorem, we can give more examples of (abstract)
operator spaces.
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Examples. 1. If G is a locally compact group, then as a dual of a commutative
C∗-algebra, the measure algebra M(G) is an operator space.
2. If G is a locally compact group, then as a predual of a von Neumann algebra,
the Fourier algebra A(G) is an operator space.
3. If G is a locally compact group, then as a dual of a C∗-algebra algebra, the
Fourier-Stieltjes algebra B(G) is an operator space.

Investigating Fourier algebras with their operator structures yields fruitful
results. For example, the long time open problem “amenability of the Fourier
algebra” was solved recently only by taking the operator space structure of the
Fourier algebra into account. In 2005, Forrest and Runde ([6]) proved that:

Theorem 4.7. Let G be a locally compact group. Then the Fourier algebra
A(G) is amenable if and only if G has an abelian subgroup of finite index.

Definition 4.8. A completely contractive Banach algebra is an algebra which
is also an operator space such that multiplication is a completely contractive
bilinear map.

Examples. 1. Every closed subalgebra of B(H), where H is a Hilbert space, is
a completely contractive Banach algebra.
2. If A is a Banach algebra, then max A is a completely contractive Banach
algebra.
3. If G is a locally compact group, then the Fourier-Stieltjes algebra B(G)
is a Hopf–von Neumann algebra ([18]) and hence, it is a completely contractive
Banach algebra. Since A(G) is a closed ideal of B(G) ([5]), it is also a completely
contractive Banach algebra.

If A is a completely contractive Banach algebra, then a Banach A-bimodule X
is called an operator A-bimodule if X is an operator space and the module actions
of A on X are completely bounded. In [13], Ruan gave the following definition:
a completely contractive Banach algebra A is called operator amenable if every
completely bounded derivation from A into X∗ is inner, for every A-bimodule
X. In [13], Ruan also proved that:

Theorem 4.9. Let G be a locally compact group. Then A(G) is operator
amenable if and only if G is amenable.

For more information on operator spaces, we refer the reader to [11] and [4].

5. Dual Banach Algebras and Connes-amenability

Definition 5.1. A Banach algebra A is called a dual Banach algebra if there
exists a closed submodule A∗ of A∗ such that A = (A∗)∗.

Note that A∗ does not have to be unique. In general, however, when we
study a dual Banach algebra, we fix its predual. Thus, we can talk about the
w∗-topology on A without any ambiguity. It is easy to see that A is a dual
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Banach algebra if and only if multiplication in A is separately w∗-continuous.

Example 5.2. 1. Every von Neumann algebra is a dual Banach algebra.
2. If E is a reflexive Banach space, then B(E) is a dual Banach algebra with
the predual E∗⊗̂E, where ⊗̂ represents the projective tensor product of Banach
spaces.
3. If G is a locally compact group, then the measure algebra M(G) and the
Fourier-Stieltjes algebra B(G) are dual Banach algebras with preduals C0(G)
and C∗(G) respectively.

For more information on dual Banach algebras, we refer the reader to [14].

Definition 5.3. A completely contractive dual Banach algebra is a Banach
algebra which is a dual operator space such that multiplication is completely
contractive and separately w∗-continuous.

Note that there are operator spaces for which there exist predual Banach
spaces but not predual operator spaces (Lemma 2.7.15, [3]).

In 2007, the following representation theorem was proved by Daws ([2]) and
Uygul ([21]) independently.

Theorem 5.4. Every completely contractive dual Banach algebra is completely
isometric to a w∗-closed subalgebra of CB(E) for some reflexive operator space
E.

The construction of such a reflexive operator space heavily relies on the theory
of real and complex interpolation of operator spaces defined by Xu ([25]) and
Pisier ([9] and [10]) respectively.

Definition 5.5. Let A be a dual Banach algebra and let X be a dual Banach
A-bimodule. An element x ∈ X is called normal if the maps

A → X, x 7→
{

a.x,

x.a

are w∗-w∗-continuous.
We say that X is normal if every element of X is normal.

When we are studying amenability properties of dual Banach algebras, it is
very natural to take the w∗-topology into account. This leads us to the following
definition:

Definition 5.6. A dual Banach algebra A is called Connes-amenable if every
w∗-continuous derivation from A into a normal, dual Banach A-bimodule is
inner.

The Connes amenability of a dual Banach algebra (associated with a locally
compact group) reflects the properties of the underlying group. For instance, as
proved in [15], M(G) is Connes-amenable if and only if G is an amenable group.
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The Connes-amenability of the Fourier-Stieltjes algebra is an open problem.
In [16], Runde proved that when G is the direct product of a family of finite
groups or when G is an amenable discrete group, the Fourier-Stieltjes algebra
B(G) is Connes-amenable if and only if G has an abelian subgroup of finite
index, and he conjectured that this is true for all locally compact groups. In
2008, Uygul in [20] proved this conjecture for discrete groups.

Theorem 5.7. Let G be a discrete group. B(G) is Connes-amenable if and only
if G has an abelian subgroup of finite index.

Let A be a completely contractive dual Banach algebra. Then A is said
to be operator Connes-amenable if every w∗-continuous completely bounded
derivation from A into a normal dual operator Banach A-bimodule is inner. It
is known ([18]) that B(F2) is operator Connes-amenable. On the other hand,
Br(G) (as defined in [5]) is operator Connes-amenable if and only if G is an
amenable group.

The group von Neumann algebra of G is defined to be the von Neumann
algebra generated by {λ(g) : g ∈ G} in B(L2(G)). The dual space of A(G) can
be identified by V N(G). The following theorem was proved by Uygul in 2008
[20]:

Theorem 5.8. Let G be a locally compact group. Then G is amenable if and
only if WAP (V N(G))∗ is operator Connes-amenable.
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