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THE SINGULAR DIRECTIONS OF SOLUTIONS OF SOME
EQUATIONS

ZHAO-JUN WU AND DAO-CHUN SUN

Abstract. In this paper, we investigate the location of zeros and Borel
direction of the solutions of the linear differential equation

f (n) + An−2(z)f (n−2) + · · ·+ A1(z)f ′ + A0(z)f = 0,

where A0(z), . . . , An−2(z) are meromorphic functions. Results are obtained
concerning the rays near which the exponent of convergence of zeros of the
solutions attains its Borel direction, which improve some results given by
S.J. Wu and other authors.

1. Introduction and statement of results

In this paper, by meromorphic functions we shall always mean meromorphic
functions in complex plane C, we shall assume that the reader is familiar with
the standard notation of Nevanlinna theory and complex differential equation
(see [7] or [10]). On the angular distribution of meromorphic function, 1919
Julia [9] introduced the concept of Julia direction and showed that every tran-
scendental entire function has at least one Julia direction that is a refinement
of Picard’s theorem. In order to have a similar refinement for Borel’s theorem,
a more refined notion of Borel direction was introduced by Valiron [12] in 1928.

Suppose that g(z) is a ρ(0 < ρ ≤ ∞) order meromorphic function. A ray
arg z = θ is called a Borel direction of order ρ for f if for every 0 < ε < π,

lim sup
r→∞

log n(r, θ, ε, a)

log r
= ρ,

holds for all a in C∞ with at most two exceptions, where n(r, θ, ε, a) is the
number of zeros of f(z) − a in {z : θ − ε < argz < θ + ε} ∩ {0 < |z| < r},
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counting with multiplicities(see [13]). It’s known that every ρ(ρ > 0) order
meromorphic function has at least one Borel direction (see [15]).

In this paper, we consider the connection of the the location of zeros and
Borel direction of solutions of the linear differential equation

(1) f (n) + An−2(z)f (n−2) + · · ·+ A1(z)f ′ + A0(z)f = 0,

where A0(z), . . . , An−2(z) are meromorphic functions of finite order. When
every Aj(z) is a polynomial, Zheng [17] proved the following

Theorem 1. Let f(z) be a transcendental solution of (1) have Stokes’ rays
arg z = θj(j = 1, 2, · · · ,m) of order ρ. Then the number of zeros of f(z)

in |z| ≤ r, but outside the logarithmic strips | arg z − θj| < A log |z|
|z|1/p for θ =

θ1, · · · , θm (A a sufficiently large constant ) is O(rρ−ε) for some ε > 0.

A rays is called a Stokes ray of f(z) of order ρ if and only if for arbitrary
angular Ω contains the ray we have n(r, Ω, f = 0) = crρ(1 + o(1)), c > 0 (see
e.g. [18]). Recently, Zheng [18] indicate that if f(z) is a solution of (1) and has
the exponent λ of convergence of zeros, then a ray is a Borel direction of f(z)
if and only if it is a Stokes ray of order λ with respect zeros. And above all, he
also indicate that let {f1, · · · , fn} be a fundamental system of meromorphic
solutions of (1), if E = f1 · · · fn is not a rational function, then its Borel
directions are exactly stokes’ rays of order λ with respect to its zeros, that is,
its Borel directions are completely determined by the argument distribution of
its zeros.

When there is at least one transcendental coefficient in (1), we pose the
following question,

Question 1. Suppose that there is at least one transcendental meromorphic
coefficients in (1), we ask whether a ray is a infinity order Borel direction of
E if the exponent of convergence of zeros of E in any angle containing the ray
is infinite.

For the case n = 2, S.J. Wu [14] have confirmed the Question 1 in the case of
entire coefficients. The present authors have confirmed the Question 1 in the
case of entire coefficients and n ≥ 2 in [15, 16]. In order to state their results,
we need the following definitions (see e.g. [13]). Let f(z) be a meromorphic
function in the plane and let arg z = θ ∈ R be a ray, we denote, for each ε > 0,
the exponent of convergence of zero-sequence of f(z) in the angular region
{z : θ − ε < arg z < θ + ε, |z| > 0} by λθ,ε(f) and by λθ(f) = lim

ε→0
λθ,ε(f). In

[14] S.J. Wu proved the following result.

Theorem 2. Let A(z) be a transcendental entire function of finite order in the
plane and let f1, f2 be two linearly independent solutions of f ′′ + A(z)f = 0.
Set E = f1f2, then λθ(E) = ∞, if and only if arg z = θ is an infinity order
Borel direction of E.
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In the following, we shall prove the Question 1 is true for n ≥ 2. In order
to state our results, we need give some definitions yet.

Definition 1. Let f(z) be a meromorphic function of infinite order. A real
function ρ(r) is called a proximate order of f(z), if ρ(r) has the following
properties:

1) ρ(r)is continuous and nondecreasing for r ≥ r0 > 0 and tends to +∞
as r →∞.

2) the function U(r) = rρ(r)(r ≥ r0) satisfies the condition

lim
r→∞

log U(R)

log U(r)
= 1, R = r +

r

log U(r)
.

3) lim sup
r→∞

log T (r,f)
ρ(r) log r

= 1.

This definition is duo to K.L. Hiong [8]. A simple proof of the existence of
ρ(r) was given by C.T. Chuang [4]. A ray arg z = θ is called a ρ(r) order Borel
direction of ρ(r) order meromorphic function f , if no matter how small the
positive number 0 < ε < π/2 is, for each value a in C∞

lim sup
r→∞

log n(r, θ, ε, a)

ρ(r) log r
= 1,

with at most two exceptional values a (see [2]).
Now, we are in the position to state our main results.

Theorem 3. Let A0(z), . . . , An−2(z) be meromorphic functions (at lees one
of them is transcendental) of finite order and satisfy max{σ(Ai(z)) : 1 ≤ i ≤
n − 2} < σ(A0(z)) := σ and max{λ( 1

Ai(z)
) : 0 ≤ i ≤ n − 2} < σ. Suppose

that the equation (1) posses a solution base {f1, · · · , fn} and σ(E) = ∞, here
E = f1 · · · fn. If ρ(r) is a proximate order of E, then a ray arg z = θ is a ρ(r)
order Borel direction of E, if and only if

lim sup
ε→0

lim sup
r→∞

log n(r, θ, ε, E = 0)

ρ(r) log r
= 1.

2. Proof of Theorem 3

Our proof requires the Nevanlinna Characteristic for an angel (see e.g. [3,
6, 11]). In convenient, we introduce the following Nevanlinna notations on
angular domains (see [2]). Let f(z) be a meromorphic function, consider a
direction L : arg z = θ0 and an angle α = θ0 − η ≤ arg z ≤ θ0 + η = β,
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0 < η < π
2
. For r > 1, we define k = π

β−α
and

Aαβ(r, f) =
k

π

∫ r

1

(
1

tk
− tk

r2k
){log+ |f(teiα)|+ log+ |f(teiβ)|}dt

t
;

Bαβ(r, f) =
2k

πrk

∫ β

α

log+ |f(teiα)| sin k(θ − α)dθ;

Cαβ(r, f) = 2
∑

b∈4
(

1

|bv|k −
|bv|k
r2k

) sin k(βv − α),

where the summation
∑
b∈4

is taken over all poles b = |b|eiθ of the function f(z)

in the sector 4 : 1 < |z| < r, α < arg z < β, each pole b occurs in the sum∑
b∈4

as many times as it’s order, when pole b occurs in the sum
∑
b∈4

only once,

we denote it C(r, f). Furthermore, for r > 1, we define

Dαβ(r, f) = Aαβ(r, f)+Bαβ(r, f), S(r, f) = Sαβ(r, f) = Cαβ(r, f)+Dαβ(r, f).

In order to prove Theorem 3, we need the following Lemmas.

Lemma 1 ([2]). With the above notations, in order that the direction L :
arg z = θ0 is a ρ(r) order Borel direction of the function f(z) of order ρ(r), it
is necessary and sufficient that for each number η(0 < η < π/2), we have

lim sup
r→∞

log S(r, f)

log U(r)
= 1, U(r) = rρ(r).

Lemma 2 ([6]). With the above notations, let g(z) be a nonconstant mero-
morphic function and Ω(α, β) be a sector, where 0 < β − α ≤ 2π, then, for
any r < R,

Aαβ(r,
g′

g
) ≤ K{(R

r
)k

∫ R

1

logT (t, g)

t1+k
dt + log

r

R− r
+ log

R

r
+ 1},

Bαβ(r,
g′

g
) ≤ 4k

rk
m(r,

g′

g
).

Now, we are in the position to prove the Theorem 3.

Proof of Theorem 3. Suppose that L : arg z = θ is a ρ(r) order Borel direction
of E. Apply Lemma 1, we have for each number η(0 < η < π/2),

(2) lim sup
r→∞

log Sθ−η,θ+η(r, E)

log U(r)
= 1, U(r) = rρ(r).

Let f(z) be a nontrivial solution of (1), it follows from Theorem 1 in [1] that
the order of log T (r, f) is at most σ. Hence, the order of log T (r, E) is at most
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σ. The Wronskian determinant W (f1, f2, . . . , fn) of the fundamental system
of solutions {f1, f2, . . . , fn} is given as follows

W

E
=

W (f1, f2, . . . , fn)

E
=

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f ′1
f1

f ′2
f2

· · · f ′n
fn

· · · · · ·
f
(n−1)
1

f1

f
(n−1)
2

f2
· · · f

(n−1)
n

fn

∣∣∣∣∣∣∣∣∣
Apply Abel Lemma ([10, p.16]), we can derive that W is a positive constant
and denote it by C. Hence

1

E
=

1

C

W

E
=

1

C

∑

1≤il 6=il≤n

(−1)τ

n−1∏

l=1

f
(l)
il

fil

.

Using the lemma 2 in which R = 2r, for sufficiently small ε, we have for any
fi,

(3) Aθ−ε,θ+ε(r,
f ′i
fi

) = O(

∫ 2r

1

log+ T (t, fi)

t1+ π
2ε

dt) = O(

∫ 2r

1

tσ+1

t1+ π
2ε

dt) = O(1).

Since,

m(r,
f ′i
fi

) = O(log rT (r, fi)) = O(rσ+1).

We deduce from lemma 2 that

(4) Bθ−ε,θ+ε(r,
f ′i
fi

) ≤ 4k

rk
m(r,

f ′i
fi

) = O(rσ+1− π
2ε ) = O(1).

Hence,

Dθ−ε,θ+ε(r,
f ′i
fi

) = Aθ−ε,θ+ε(r,
f ′i
fi

) + Bθ−ε,θ+ε(r,
f ′i
fi

) = O(1) i = 1, 2, . . . , n.

Similarly, we have

(5)
Dθ−ε,θ+ε(r,

f
(h)
i

fi
) ≤ ∑h

i=1 Dθ−ε,θ+ε(r,
f
(l)
i

f
(l−1)
i

) + O(1) = O(1)

i = 1, 2, . . . , n; h = 2, 3, . . . , n− 1.

Therefore, we have

Dθ−ε,θ+ε(r,
1

E
) ≤ Dθ−ε,θ+ε(r,

1

C
) + Dθ−ε,θ+ε(r,

∑

1≤il 6=il≤n

(−1)τ

n−1∏

l=1

f
(l)
il

fil

) = O(1).

It’s known that

Sθ−ε,θ+ε(r, E) = Sθ−ε,θ+ε(r,
1

E
)+O(1) = Dθ−ε,θ+ε(r,

1

E
)+Cθ−ε,θ+ε(r,

1

E
)+O(1).

It follows from above argument that

(6) Sθ−ε,θ+ε(r, E) = Cθ−ε,θ+ε(r,
1

E
) + O(1).
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From (2) and (6), we have

lim sup
r→∞

log Cθ−ε,θ+ε(r,
1
E

)

ρ(r) log r
= 1.

Since,

Cθ−ε,θ+ε(r, a) ≤ 2n(r, θ, ε, f = a)

(see [5]), we deduce

lim sup
r→∞

log n(r, θ, ε, E = 0)

ρ(r) log r
≥ 1.

Hence,

lim sup
ε→0

lim sup
r→∞

log n(r, θ, ε, E = 0)

ρ(r) log r
≥ 1.

On the other hand, for any r > 0, we have

n(r, θ, ε, E = 0) ≤ n(r, E = 0) ≤ N(R, E = 0) log
r

R
≤ T (R, f) log

r

R
,

where R = r + r
log U(r)

. Hence

lim sup
ε→0

lim sup
r→∞

log n(r, θ, ε, E = 0)

ρ(r) log r
≤ 1.

It remains to show that if

lim sup
ε→0

lim sup
r→∞

log n(r, θ, ε, E = 0)

ρ(r) log r
= 1,

then L : arg z = θ is a ρ(r) order Borel direction of E. Apply the Lemma 1, it
is sufficient to prove that for any ε > 0,

lim sup
r→∞

log Sθ−ε,θ+ε(r, E)

ρ(r) log r
= 1.

For this, if 0 < η < π
2

is sufficiently small, we have [3],

lim sup
r→∞

log Sθ−η,θ+η(r, E)

ρ(r) log r
≤ 1.

Suppose that for any 0 < η < π
2
, lim sup

r→∞
log Sθ−η,θ+η(r,E)

ρ(r) log r
< 1. Then for any

a ∈ C, we have lim sup
r→∞

log n(r,θ, η
3
,E=a)

ρ(r) log r
< 1.

Suppose that the argument does not hold. Then there exists 0 < ε < π
2
,

such that

lim sup lim
r→∞

log Sθ−ε,θ+ε(r, E)

ρ(r) log r
< 1, lim sup

r→∞

log n(r, θ, ε
3
, E = a)

ρ(r) log r
= 1.
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Apply definition 1, we have

lim sup
r→∞

log n(r, θ, ε
3
, E = a)

log U(R)
= lim sup

r→∞

log n(r, θ, ε
3
, E = a)

log U(r)

log U(r)

log U(R)

≥ lim sup
r→∞

log n(r, θ, ε
3
, E = a)

log U(r)
lim inf

r→∞
log U(r)

log U(R)

≥ 1.

Hence, for any τ > 0 which satisfies 1 − τ > lim sup
r→∞

log Sθ−ε,θ+ε(r,E)

ρ(r) log r
, there

exists {Rn = rn + rn

log U(rn)
}, Rn →∞(n →∞), such that

n(rn) = n(rn, θ,
ε

3
, E = a) ≥ (U(Rn))1−τ .

Let bv = |bv|eiβv (v = 1, 2, . . .) is the root of E = a in angular domain
Ω(θ − ε

3
, θ + ε

3
), counting complicity. Since, θ − ε

3
< βv < θ + ε

3
, v = 1, 2, . . . ,

we deduce ε
6

< βv − θ + ε
2

< 5ε
6
. From the Nevanlinna theory it follows that

Sθ−ε,θ+ε(Rn, E) ≥ Cθ−ε,θ+ε(Rn, a) + O(1) ≥ Cθ− ε
2
,θ+ ε

2
(Rn, a) + O(1)

≥ 2
∑

1<|bv |<rn

θ− ε
2
<βv<θ+ ε

2

(
1

|bv|k −
|bv|k

(Rn)2k
) sin

π

ε
(βv − θ +

ε

2
) + O(1)

≥ 2
∑

1<|bv |<rn

θ− ε
3
<βv<θ+ ε

3

(
1

|bv|k −
|bv|k

(Rn)2k
) sin

π

ε
(βv − θ +

ε

2
) + O(1)

≥
∑

1<|bv |<rn

θ− ε
3
<βv<θ+ ε

3

(
1

|bv|k −
|bv|k

(Rn)2k
) + O(1),

where k = π
ε
. We write above sum as a Stieltjes-integral and application the

partial integration of this Stieltjes-integral now result in
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Sθ−ε,θ+ε(Rn, E) ≥
∫ rn

1

1

tk
dn(t) +

1

R2k
n

∫ rn

1

tkdn(t) + O(1)

≥ k

∫ rn

1

1

tk+1
dn(t) +

n(rn)

rk
n

− rk
nn(rn)

R2k
n

+

+
k

R2k
n

∫ rn

1

tk−1dn(t) + O(1)

≥ n(rn)

rk
n

− rk
nn(rn)

R2k
n

+ O(1)

≥ n(rn)

rk
n

− Rk
nn(rn)

R2k
n

+ O(1)

≥ (
1

rk
n

− 1

Rk
n

)n(rn) + O(1).

Hence,

lim sup
r→∞

log Sθ−ε,θ+ε(r, E)

ρ(r) log r
≥ lim sup

r→∞

log Sθ−ε,θ+ε(Rn, E)

ρ(Rn) log Rn

≥ lim inf
r→∞

log( 1
rk
n
− 1

Rk
n
)

ρ(Rn) log Rn

+ lim sup
r→∞

log n(rn)

ρ(Rn) log Rn

≥ 1− τ + lim inf
r→∞

log(Rk
n − rk

n)− k(log Rk
n + log rk

n)

ρ(Rn) log Rn

= 1− τ + lim inf
r→∞

log{(rn + rn

log U(rn)
)k − rk

n}
ρ(Rn) log Rn

= 1− τ.

This contradicts with the hypothesis of τ . Hence for any 0 < η < π
2
, if

lim sup
r→∞

log Sθ−η,θ+η(r, E)

ρ(r) log r
< 1.

then for any a ∈ C, we have lim sup
r→∞

log n(r,θ, η
3
,E=a)

ρ(r) log r
< 1.

Put a = 0, we have

lim sup
r→∞

log n(r, θ, η
3
, E = 0)

ρ(r) log r
< 1.

Hence,

lim sup
ε→0

lim sup
r→∞

log n(r, θ, ε, E = 0)

ρ(r) log r
< 1.

This contradicts with the hypothesis and the Theorem follows. ¤



THE SINGULAR DIRECTIONS OF SOLUTIONS OF SOME EQUATIONS 199

3. Acknowledgment

The authors would like to thank Prof. J. H. Zheng for his kind help.

References

[1] T. Cao and H. Yi. On the complex oscillation of higher order linear differential equations
with meromorphic coefficients. J. Syst. Sci. Complex., 20(1):135–148, 2007.

[2] C. Chuang. On Borel directions of meromorphic functions of infinite order. II. Bull.
Hong Kong Math. Soc., 2(2):305–323, 1999.

[3] C. Chuang. On Borel directions of meromorphic functions of infinite order. II. Bull.
Hong Kong Math. Soc., 2(2):305–323, 1999.

[4] C.-T. Chuang. Sur les fonctions-types. Sci. Sinica, 10:171–181, 1961.
[5] C. T. Chuang and Z. J. Hu. Commom borel directions of a meromorphic functions of

infinite order and it’s differential polynomial. Chinese Sci. Bull., 37:541–547, 1992.
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