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Abstract

This paper presents and discusses the results of an ongoing
R&D project aiming to design and build a fully automated
prototype of a specialized spherical robotic welding system
for repairing hydraulic turbine surfaces eroded by cavita‐
tion pitting and/or cracks produced by cyclic loading. The
system has an embedded vision sensor built to acquire
range images by laser scanning over the blade’s surface and
produce 3D models to locate the damaged spots to be
registered in a 3D coordinate system into the robot control‐
ler, enabling the robot to repair the flaws automatically by
welding in layers. The paper is focused on the robot
kinematic model and describes an iterative algorithm to
process the inverse kinematics with only five degrees-of-
freedom. The algorithm makes use of data collected from a
vision sensor to ensure that the welding gun axis is
perpendicular to the blade’s surface. Besides this, it
proposes a modelling and optimization mathematical
routine for more efficient robot calibration, which can be
used with any type of robot. This robot calibration optimi‐
zation scheme finds the optimal error parameter vector
based on the condition number of the manipulator trans‐

formation composed from the partial derivatives of the
error parameters. Experimental results proved both the
iterative algorithm to perform the inverse kinematics and
the technique to optimize robot calibration to be very
efficient.

Keywords Robot Calibration, Inverse Kinematics, Turbine
Blade Repairing, Welding Robots, FPGA Applications

1. Introduction

A consolidated process for repairing the blade surface of
hydraulic turbines eroded by cavitation or damaged by
fatigue cracks is the recovery of flaws using electric arc
welding [1, 2, 3]. The welding process is performed
manually after visual inspection of the blade’s surface,
which requires a turbine halt. These are very unfavourable
conditions for human labour, with air temperatures around
40° C and 99% relative air humidity for dozens of hours.

The prototype constructed is a specialized robotic welding
system for repairing damage on the surface of hydraulic
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turbine blades eroded by cavitation and/or fatigue cracks
under cyclic loading by welding in layers, reducing risks
and increasing the efficiency of the repairing process. The
robot is designed to improve the quality of the cavitation
and/or fatigue damage repair, reducing the incidence of
welding defects, welding material consumption, repairing
time and overall repair costs. In addition, the proposed
technology is expected to remove welding personnel from
a harsh environment, achieve a better blade surface profile
and improve welding consistency.

A robot designed with those requirements must have the
ability to weld within a large range of torch orientation
angles; it has to be light, small, accurate and resistant to
loads from any direction on its wrist; rigid to deflections
and with the potential to be fixed at any position. Some of
those characteristics have opposite effects, suggesting that
some of them have to be compensated by the others.
Nonetheless, although a few dedicated robots have already
been constructed for this type of task [4, 5, 6], this robot
features improvements made to the previous ones, since it
was designed to be fully automated, with minimal inter‐
vention by human operators. Additionally, this robot is
capable of operating in conditions comprising large
distances between blades, since the turbines in which it is
to operate are 8 m in diameter and there is at least 500 mm
between blades [7, 8, 9].

It is generally accepted that manipulators designed for
dexterity and kinematic models’ simplicity must have at
least six degrees-of-freedom (d.o.f.). However, it was
decided that this robot’s dexterity could be limited to five
d.o.f. in order to reduce weight and size and to increase
portability. This solution can be justified considering that
the welding torch does not need three orientation angles
within the 3D space, since the torch has a cylindrical
symmetry.

It is well known that welding tasks are generally performed
with a quasi-constant torch orientation during long
displacements when welding. Thus, the robot can track a
seam for welding the beads with a small variation in one of
its Euler angles, mostly rotation around the torch symmetry
axis. Several approaches for finding inverse kinematic
solutions for a five-d.o.f. serial manipulator have been
published in the past few years [10, 11, 12, 13, 14], making
use of either analytical or numerical methods, normally
specific to a certain robot model or topology.

Analytical solutions for the inverse kinematics for high-
degree-of-freedom robots are very difficult or impossible.
A complete analytical formulation for the inverse kinemat‐
ics of the five-d.o.f. Pioneer 2 robotic arm (P2Arm) was
presented in [10], but the correct solution could only be
found after testing some partial solution alternatives. Some
of the former authors [11] proposed a different analytical
solution for the same robot but using some geometrical
restriction during operation for tracking a given trajectory,
while keeping the orientation of one axis in the end-effector

frame. However, different partial solutions had still to be
checked before the correct solution was found. More
recently, it was presented in [13] an analysis of the inverse
kinematics of a five-d.o.f. robot, the Mitsubishi Melfa RV-
2AJ industrial robot, aiming at controlling the z-axis
position only.

Other authors [14] presented a generalized solution for the
five-d.o.f. revolute joint variables of a machine comprising
2-links and a spade-like three-d.o.f. end-effector obtained
by solving a set of algebraic equations emerging from series
of transformation matrices.

An iterative approach can be found in [15] for solving
inverse kinematics by adding a virtual joint to the five-d.o.f.
robot, expressing all joints by one variable and applying the
one-dimensional iterative Newton-Raphson method to
minimize the tip-position error.

In [12], an iterative algorithm was proposed for a five-d.o.f.
welding robot with a wrist offset. The algorithm showed
good results when the position and three orientation angles
were given and tracks were performed, keeping that
orientation constant.

The algorithm proposed here for our spherical robot, with
no wrist offsets but the inclusion of a shoulder, requires a
torch orientation vector, expressed only from two angles,
as a 3D vector parallel to the torch symmetry axis assigned
to every track point.

Other than the inverse kinematics problem, one very
important procedure when building a complex robot from
scratch is to perform a full robot calibration routine to
assure that the kinematic model corresponds to the actual
robot, since there is no previous nominal model. As with
every robot, every time it is necessary to disassemble parts
of that robot, the calibration procedure has to be re-
executed. Once a robot has been completely calibrated, it is
not necessary to recalibrate all the model parameters but
only the ones related to the link that has been disassembled.
For example, if a torch is to be changed or disassembled, it
is necessary to calibrate only the torch parameters. Another
important issue in our robot is that the vision system may
be considered as another link belonging to the robot’s
kinematic chain, since all measurements have to be
assigned to the robot base coordinate system.

Our robot can operate with online or offline programming
modes. Every time the vision system is used to generate a
map and transmit point coordinates to the robot controller,
it works in an offline programming mode. However, one
of the obstacles that makes the viability of offline program‐
ming difficult is the poor accuracy of robot static position‐
ing, turning robot calibration into an important procedure.

During the past few decades many different robot calibra‐
tion methods have been published. The large majority of
them compensate for position errors in the kinematic
model [16, 17, 18] and few are considered modeless
methods that use mathematical regression modelling of the
errors or neural networks, but with the disadvantage of
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needing a large number of sample measurements [19, 20,
21]. Currently, robot calibration is still an active area of
research [22].

The robot calibration optimization method presented in
this article comprises kinematic parameter modelling, since
the control system is open and easily changed. An impor‐
tant contribution of this article is to propose a method to
define which geometric parameters have to be included in
the model and, more importantly, to improve the mathe‐
matical conditioning of the system. The results of the
application of this optimization technique are to reduce the
number of measurement points and to improve the
positional accuracy compared to a non-optimized calibra‐
tion model. There are no works presented to date showing
results of a method like this one with experimental verifi‐
cation.

This article presents initially and briefly, in Sections 2 and
3, the entire robotic system and its kinematic model. Section
4 presents the iterative algorithm developed to perform the
inverse kinematics, making use of data collected from a
vision sensor to ensure that the welding gun’s axis is
perpendicular to the blade surface and to collect the results
of point tracking. In Section 5, a brief revision of robot
calibration theory is discussed. Section 6 proposes and
discusses the mathematical routine to determine the
optimal parameter set to be identified by the robot calibra‐
tion process, based on the analysis of the condition number
of the manipulator transformation partial derivatives of the
error parameters. Section 7 presents experimental results
and proves the success of the solutions.

2. Robot Characteristics

The robotic system prototype constructed has a spherical
topology with five d.o.f., a pan-tilt wrist, electric stepper
motors, rotary and linear actuators. The robot arm carries
an embedded vision sensor for acquiring range images and
modelling 3D structured surface maps. The maps are used
to plan welding trajectories in 3D coordinates automatical‐
ly, according to the welding strategy on the surface blade
region to be welded. The measurement system is imple‐
mented via a mini-PC that is embedded in the system. The
robot controller and welding controller systems are built
on a reconfigurable architecture based on FPGA (Field
Programmable Gate Arrays). The welding process type is
the GMAW (Gas Metal Arc Welding), with a pulsed arc
welding machine and tubular metal cored electrodes. The
robot was designed to have easy assembly and fixation on
the blades (either belts or magnetic paddles), high rigidity
mechanics and trouble-free operation. Portability, low cost,
lightweight, good repeatability and high positioning
accuracy are features of the resulting robot [8].

2.1 Robot prototype

The robot constructed weights 30kg, has a spherical
topology and a 2.0m outer diameter workspace with
dimensions of 30 x 25 x 60-100cm without the welding
torch. Figure 1 shows the constructed system.

The robot was designed to embody an integrated control
system for managing several tasks to be carried out
automatically. The control system was designed to manage
the robot’s actions, such as (a) environment recognition, (b)
calculation of volumes and location to be filled with weld
beads, (c) slicing the volumes by using welding strategies
to weld in layers, (d) calculating trajectories for the welding
torch and (e) managing the robot motion according to the
welding needs.

Figure 1. Robot prototype

3. Kinematic System

3.1 Assignment of joint coordinate frames

For the construction of the forward kinematic model, joint
coordinate systems were assigned in such a way that the
Zn axes point towards the joint axis of motion, and that the
vectors Xn are all parallel when the robot is in its zero
position. The Yn axes are orthogonal to the former ones,
creating an orthonormal system of axes.

The origin of the base frame coincides with the origin of the
first joint, whose axis is perpendicular to the x-y plane. The
origins of the other joint frames are placed as follows: (a) if
the joint axes of a link intersect, then the origin of the frame
fixed to the link is placed at the intersection of the joint axes;
(b) if the joint axes of a link are parallel or do not intersect,
then the origin of the frame fixed to the link is placed at the
distal joint. Thus, the coordinate frame i is placed at joint i
+ 1, i.e., the joint that connects link i to link i+1; (c) if a frame
origin is described relative to another coordinate frame
including more than one direction, then it must be moved
in order to have its relative position described by only one
direction, if possible. Thus, the origins of the coordinate
frames are described using a minimum number of link
parameters [23].

A coordinate frame is attached to the end-effector such that
the z-axis of the frame has the same direction as the z-axis
of the frame placed at the last joint (n-1). For this robot, it
is also necessary to have a separate transformation for this
last frame, which is fixed at the welding torch tip, to ensure
that its z-axis is parallel to the axis of symmetry of the torch
nozzle, ensuring a proper control of the welding torch’s
orientation.

The nomenclature used to represent link length parameters
has an index for joints and direction. The pki length is the
distance between the origins of the coordinate frames i-1
and i, and k is the axis of the coordinate frame i-1 that is
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parallel to the length direction. Figure 2 shows the previous
rules applied to the robot constructed with all coordinate
frames, geometric parameters and link variables.

3.2 Forward kinematic model

Homogeneous transformation matrices relating coordinate
frames from the base (b) to the torch/tool (t) can be derived
as follows:

0 1 2 3 4 5
0 1 2 3 4 5* * * * * * ,
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where Ti+1
i  is the homogeneous transformation between

two successive joint coordinate frames. The welding torch
is attached to Link 4 and its geometric parameters are
shown in Figure 3.

The transformations shown in Eq. (1) can be described
using the Denavit-Hartemberg (D-H) convention, as below:
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where θ and α are rotation parameters and d and l are
translation parameters. The application of Eq. (2) to each of
the consecutive robot joint frames by using the geometric
parameters shown in Figures 2 and 3 produces the follow‐
ing homogeneous transformations:
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Figure 2. Robot at zero position with joint coordinate systems and link
variables

The next and final homogeneous transformation rotates the
Coordinate System 5 around the y5 vector, consistent with
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the geometry of the torch used. Its application is justified
only for the Zt axis to be aligned with the torch axis of
symmetry.
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The elements of the general manipulator transformation,
T5

0 , according to Eq. (1), excluding the rotation of the torch
tip coordinate frame by the angle β, are formulated below,
as for the robot forward kinematic equations.
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Figure 3. Welding torch coordinate frame (xt, yt, zt) and related geometric
parameters (tx, tz)
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3.3 Inverse kinematic model

It is supposed that the vision sensor provides the normal
vector to the surface to be welded, Z, at the point to be
reached by the welding torch, represented in the robot base
coordinate frame. Assuming that the Zt vector is parallel to
the torch axis of symmetry and points outwards, as is
shown in Figures 2 and 3, one wants to establish the triplet
Ωt = [Xt, Yt, Zt] on the welding torch tip so that the torch
reaches the desired position coordinate point, P=[Px, Py,
Pz], with the torch tip Zt axis oriented in the direction of
the surface normal vector, Z.

According to the kinematic model in Figure 2, with θ5 at
its zero position, the vectors Xt and Zt belong to a plane π,
shown in Figure 4a, passing through the torch tip and Links
4 and 3.

It is assumed that Z is a unit vector. Thus, Zt = -Z and,
according to Figures 4a and 4b, one can calculate the vector
V, belonging to the plane π, as: 

 

 

 

 

(a) 

(b) 
 

 

 

Figure 4. The robot position with the torch coordinate system oriented when
the angle θ5 = 0
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Px+d2.  ,  d2. cos  ,  ( ,( ) )sen a a= -é ùë ûV Py Pz

in which α =  atan(Py / Px)–asin( d2 / P ).

The triplet Ωt = [Xt, Yt, Zt] can be calculated from:

( ) ( ) ( );     ;  (  )xx= - - = - - = -Yt Z V Xt Z Yt Zt Z (21)

The vectors Xt and Yt are therefore calculated assuming
that Xt belongs to the plane π, i.e., θ5 = 0. However, for a
solution for the triplet Ωt for any non-zero value of θ5, Xt
and Yt calculated from Eq. (21) are close to the solution and
will be used as initial values in a simple iterative method
to be described later in this article.

A general orientation transformation Hp0 can be formulat‐
ed as:
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whose first three columns determine the components of the
vectors Xt, Yt, Zt in the robot base coordinate frame,
respectively.

The robot’s inverse kinematics provide all the joint values
in Eqs. (9) to (20). However, Eq. (1) is not equal to Eq. (22),
except in the case of θ5 = 0.

Particularly, the equations of the robot’s inverse kinematics
can be found geometrically. For that purpose, the torch
coordinate frame should be rotated by an angle -β around
Yt, in such a way that the Zt axis retrieves its orientation
collinear to the Z5 vector. The vector system (X5, Y5, Z5) at
the torch tip becomes parallel to the vector system (X4, Y4,
Z4) of the flange. Therefore,

0 5 1
5 0 0 5* * t

tT Hp T Hp T-= = (23)

The transformation T5
t  produces an elementary rotation

around the Yt axis.

Equations (17) and (18) can be manipulated algebraically to
make θ5 explicit. There are two solutions for θ5:
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If the component of the product (V) x (Z) in the Zb direction
is positive, the solution chosen for θ5 is negative; if it is
negative, the solution chosen is positive.

From Eqs. (11) and (15), and by using the orthonormality
of the rotation matrix below:
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θ1 can be made explicit as:
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The equations above present a singularity for az = ∓ 1, i.e.,
nz = oz = ax = ay = 0, where the flange Z4 axis is collinear with
the robot base Zb axis. This particular robot configuration
can be easily avoided.

The correct solution for θ1 must be chosen from the sign of
the z components of the normal vector to the plane π
formed by the vectors P and Z.

Closed equations for the joint variables θ4, θ2 and pz3
cannot be easily formulated from the robot’s general
transformation matrix, but they can be expressed using
geometry. From Eqs. (23) and (7), one can determine the
position of the origin of the coordinate frame 4, (Px4, Py4,
Pz4), through the equation:

0 0 4 1 0 5
4 5 5 5 4* * ,T T T T T-= = (28)

where the origin position is described from the entries of
the fourth column of the T4

0  transformation.

From Figures 4a and 4b, pz3 can be obtained as:

( )( )22 23 4 1 2pz l Pz pz px= + - - (29)

in which l = (Px42 + Py42− pz22)

The variable θ2 can be formulated from:

( )( ) ( )
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The variable θ4 can be obtained from:

( )14 cos 2zaq q-= - (31)
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It is clear from the equations above that θ5, θ1 and (θ4+θ2)
only carry information from the torch orientation, while
pz3, θ2 and θ4 define its position.

4. Algorithm for Searching the Correct Inverse
Kinematics Solution

Equations (24), (26), (27), (29), (30) and (31) provide an
explicit solution for the inverse kinematics, assuming
proper values for the welding-torch orientation vectors, Xt
and Yt. However, a robot with five d.o.f. cannot move its
end-effector/tool to any specified pose within the 3D space,
which means that one of the three orientation angles cannot
be chosen freely. Equation (1) cannot be solved for any
robot's pose chosen in Eq. (21). In other words, once a torch
orientation vector, Zt, is chosen, the first two columns of
the rotation transformation matrix, R, in Eq. (22), cannot be
known in order to produce the inverse kinematics solution
that will move the welding torch to the correct pose P=(Px,
Py, Pz).

A solution to this problem is the use of an iterative method
that varies Xt and Yt in Eq. (22) until the solution of Eq. (1)
converges to the correct pose with the desired Zt.

4.1 Algorithm description

Since a welding torch has a cylindrical geometry, one can
assume that the rotation around its symmetry axis does not
need to be specified (around Zt). Thus, the orientation angle
of the orthonormal vectors, Xt and Yt, cannot be specified,
but it can be found numerically as a function of the other
components of the robot’s kinematic model. Then, an initial
value for the angle ϕ (around Zt) can be specified as a
function of the joint angles θ5 and θ1 (they depend only on
the general orientation), which are independent of the torch
position, P. Variables θ2, θ4 and pz3 depend on the torch
orientation and also on position.

The algorithm principle is based on the calculation of the
relative angle, ϕ, between two 2D rotation matrices. An
arbitrary reference angle is the guess for the triplet Ωt, and
the other is calculated from the equations of the inverse and
forward kinematics. The algorithm starts with the choice of
an initial value for the Xt and Yt vectors in Eq. (21),
assuming Zt is provided by the vision sensor (normal to the
surface). The second matrix is calculated from the forward
kinematics using the joint variable values obtained from the
inverse kinematics (Eqs. (9-20)). Therefore, the equation
below can be formulated:

cos
*

sin

x x x x

y y y y

z z z z

Xt Yt n o
Xt Yt n o
Xt Yt n o

é ù é ù
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ë û ë û

(32)

The matrices above are orthonormal. Two properties of
orthonormal matrices ensure that the scalar product

between two columns/rows is null and that the norms of
the columns/rows are unitary. Then, it can be easily
demonstrated that:

. . . sinx x y y z zXt o Xt o Xt o+ + = Æ (33)

. . . cosx x y y z zXt n Xt n Xt n+ + = Æ (34)
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Xt o Xt o Xt o
Xt n Xt n Xt n

-
+ +

Æ =
+ +

(35)

where ϕ is the relative rotation angle of the pair [Xt, Yt]
around the Zt axis calculated from the two matrices. The
proposed algorithm can be established in the following
steps:

1. The torch orientation, Ωt = [Xt, Yt, Zt], is initially
supposed according to Eq. (21). The torch position
vector, P=[X, Y, Z], represented in the robot base
coordinate frame is known and Zt is obtained from the
vision sensor.

2. Equation (23) is used to rotate the triplet Ωt around
Yt, aligning the torch tip coordinate frame with the
coordinate system 5, Ω5, linked to the robot flange. This
keeps the system Ψt = [P, Ω5] on the torch tip.

3. Equations (24-31) are used to determine the joint
variable values, [Θ], corresponding to the torch pose
Ψt.

4. Equations (9-20) are applied to calculate the forward
kinematics, finding the robot position, Pt, with the
joint coordinates, [Θ], calculated in Step 3.

5. The difference between the position specified, P, in
Step 1, and the position calculated in Step 4, Pt, is
found. This difference establishes a position error ∆Pt.
The difference between the torch orientation Ωt and
the new orientation Ωt’, around Zt, is the angle ϕ,
which can be calculated from Eq. (35). This difference
shall be null with this proposed robot.

Once the vectors P, Pt, ∆Pt and Ωt are available, a routine
is applied to update the orientation triplet, Ωt, in such a
way that the values of ∆Pt are reduced to a minimum
specified value, ε, upon which Ωt would provide the
correct orientation of the torch. The rule for updating Ωt is
to consider that the deviation of ϕ from its correct value is
proportional to the Euclidean error, ek = |EK|, in which Ek

= ∆Pt = P-Ptk, between the torch tip position and its desired
position, P, in each iteration k, as shown in Figure 5.

It is assumed that each value of ϕk in an iteration corre‐
sponds to a Ek position error. Figure 6 represents, graphi‐
cally, each value of ϕk in successive iterations until the
solution is achieved. The proportional relationship be‐
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tween ϕκ and ek can be established graphically as shown in
Figure 6 as:

0 1 1

1 1 1

k k

k k k

e e
e e
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b f f f
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+

= Þ =
+ + ±m (36)
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(37)

Figure 5. Positioning error of the welding torch in each iteration k

Equation (36) provides a new rotation value ϕk+1, ∀k:
(1≤k≤n), in each iteration k, until the error en+1 between P
and Ptn+1 is smaller than ε. The final value for ϕ, the angle
γ, is measured between the orientation of the torch coordi‐
nate system proposed by Eq. (1) and the correct one. For
this robot, as soon as the algorithm stops at the solution,
Eq. (35) provides a value for γ that is numerically approx‐
imate to the solution for θ5.

4.2 Results of the inverse kinematics algorithm

To check the algorithm’s efficiency in order to calculate the
inverse kinematic iteratively, different robot poses were
inputted. All cases have demonstrated that the algorithm
converges to the solution with three to four iterations. The
input variables are the position of the welding point to be
welded and the normal vector to the surface obtained from
the vision sensor (Z), both represented in the robot base
frame. The torch orientation must be the same as the normal
vector.

The robot dimensions were determined as shown in Table
1, after calibration, discussed in subsequent sections.

pz1 (mm) pz2 (mm) pz5 (mm) px2 (mm) px5 (mm)
β
(°)

275 36.31 476.9 35.94 18.98 45

Table 1. Robot geometric parameters, according to Figure 2, after model
calibration

Figure 6. Graphical demonstration of the rotation of Xt and Yt around the
Zt axis by an angle ϕ, in successive iterations. For each position Pt attained,
the error and the angle ϕ are shown. The value of ϕ is initially unknown (=
β).

Three cases of position data in three different quadrants of
the robot workspace and torch orientation were inputted
into the iterative algorithm as shown in Table 2. Results
show the convergence of the joint values and the algorithm
parameters.

The chosen value for ε was 0.15 mm, but it can of course be
higher. This error threshold most of the time interrupts the
algorithm typically in the third iteration. Of course, the
poses were chosen to be feasibly reached by the torch. Some
indetermination could be found when θ1 was close to 45°,
135°, 235° and 315°, but the singularity can be easily
avoided with a forward and backward coordinate trans‐
formation. The robot was tested at many different positions
and orientations during welding and no singularities were
found. Z is a unitary vector, normal to the plate surface and
pointing from the plate outwards.

The results of the inverse kinematics were used in the
forwards kinematic model to check the accuracy of the
algorithm, and the results are shown in Table 3. Physical
measurements of the tracking process are not always
feasible and were not performed, furthermore the position
accuracy depends on that of the kinematic model after
calibration. This matter will be discussed in the following
sections. Figure 7 shows a weld bead welded by the robot,
with a speed of 10mm/s in a straight line. Details of the
control system will not be presented in this article.

5. The Robot Calibration System

Robot calibration is the process of improving the robot’s
accuracy by modifying its nominal kinematic model in the
robot controller. Robot calibration can be divided into two
main groups: static and dynamic calibration [24].
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Static calibration systems calibrate geometric parameters,
such as joint positions and axis misalignments, and also
non-geometric parameters, such as link and joint elasticity,
gear errors (eccentricity and transmission errors), gear
backlash and thermal expansion. Both geometric and non-
geometric parameters can be included in static calibration
models because these parameters can be identified only
using robot pose data. Although there are some publica‐
tions [25, 26] related to non-geometric parameter calibra‐
tion, these extra parameters increase significantly the
complexity of the model. It has been reported [27, 28] that
the different types of parameters follow an order of
quantitative importance for improving the accuracy of
kinematic models: geometrical parameters, joint elasticity
and link elasticity. Transmission and coupling (i.e., gear

Track Point 1 – P1

P = 560 350 10 Z = −0.099 −0.099 0.990

Iteration 0 1 2 3

e(mm) 21.095 31.359 0.356 0.110

θ1 (deg) 30.597 31.493 28.793 28.754

θ2 (deg) 89.462 89.508 89.377 89.377

d3 (mm) 290.452 290.057 291.895 291.930

θ4 (deg) 37.773 37.691 37.928 37.928

θ5 (deg) 2.823 2.653 3.168 3.173

ϕ (deg) -0.998 3.030 0.026 -0.019

Track Point 2 – P2

P = −500 −180 50 Z = 0.318 0.424 0.848

Iteration 0 1 2 3 4

e(mm) 88.317 138.79 11.95 0.166 0.002

θ1 (deg) -155.44 -150.4 -163.8 -165.1 -165.1

θ2 (deg) 142.98 137.68 132.21 128.11 128.05

d3 (mm) 101.49 129.92 88.571 92.01 92.076

θ4 (deg) -34.80 -31.14 -20.51 -15.82 -15.75

θ5 (deg) 20.947 17.434 26.779 27.609 27.619

ϕ (deg) -7.04 19.359 1.826 0.027 0.002

Track Point 3 – P3

P = 900 −550 −10 Z = −0.577 0.577 0.577

Iteration 0 1 2 3

e(mm) 38.970 27.951 0.211 0.065

θ1 (deg) -30.998 -34.704 -33.146 -33.156

θ2 (deg) 122.883 123.284 123.154 123.157

d3 (mm) 665.745 671.615 668.926 668.939

θ4 (deg) -40.636 -41.954 -41.473 -41.479

θ5 (deg) -16.224 -11.909 -13.721 -13.709

ϕ (deg) 5.351 -2.234 0.017 0.009

Table 2. Variable joint values and geometric parameters at each iteration of
the algorithm, showing convergence

parameters) have little influence on increasing the model
accuracy. This article will consider only static calibration
with geometric parameter errors, since this type of param‐
eter is the main source (≈ 90%) of pose errors in industrial
robots [28].

Dynamic robot calibration has importance only in large
robots at high speeds and accelerations, requiring extensive
and difficult experimental procedures [29, 30], which does
not correspond to this case.

In general, a robot calibration system consists of an external
measurement system, a calibration model including the
parameters to be calibrated and the robot controller, as
shown in Figure 8 [31].

In this work, the measurement system used was a Meas‐
urement Arm ITG ROMER, with an accuracy reported by
the manufacturer of 0.087 mm. The measuring arm was
used to measure the positions of the welding torch tip
mounted on the robot flange, in several locations within its
workspace. The system can be seen in Figure 9.

    

Figure 7. Weld beads, welded by the robot at a speed of 10mm/s

Position and Orientation Errors

Position
Track Points

P1 P2 P3

Px (mm) 560.0931 -560.0016 899.9818

Py (mm) 349.9404 -179.9998 -549.9381

Pz (mm) 9.9991 49.9997 -9.9994

∆P (mm) -0.0473 -0.001431 0.0478

Orientation
Track Points

P1 P2 P3

Ztx 0.0991 -0.3179 0.5773

Zty 0.099 -0.424 -0.5773

Ztz -0.9901 -0.848 -0.5774

∆Z (deg) 1.1140 0.9998 0.9997

Table 3. Position and orientation errors of the inverse kinematics for each
of the three track points within three different quadrants
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The procedures for robot calibration have four steps: (a)
kinematic modelling, (b) position measurements, (c)
parameter identification and (d) kinematic parameter
updating or model compensation.

Figure 8. Block diagram of a robot calibration system

Figure 9. ITG ROMER measurement arm

5.1 Parameter identification modelling

Robot calibration consists basically in the problem of fitting
a nonlinear model to experimental data. As a result, error
parameters are identified by minimization of an error
function.

A robot kinematic model is a complex non-linear function
that relates link geometric parameters and joint variables
to the robot end-effector pose, such as in:

1 2 n P=T . T . ..T , (38)

where P is the manipulator transformation, Ti are the link
transformations defined in Eq. (1) and n is the number of
links. A kinematic model using the D-H convention can be
expressed as (from Eq. (2)):

,P P P PP d ld lq aq a
¶ ¶ ¶ ¶D = D + D + D + D¶ ¶ ¶ ¶ (39)

where θ, α, d and l are parameters defining the transfor‐
mation from a robot joint frame to the next joint frame,
where d and l are translation parameters and θ and α are
the rotation parameters.

The partial derivatives shown in Eq. (39) represent the
contribution of the pose errors produced by each of the
geometric error parameters of each joint, producing the
total pose deviation of the robot´s end-effector, which can
be measured physically. Considering the measured robot
pose (M) and the transformation from the robot base frame
to the measurement system (B), then ∆P is the vector shown
in Figure 10.

The transformation B can also be seen as a link that belongs
to the robot model and has to be identified. Then the error
value ∆P can be calculated using Eq. (40).

P M P B M CD = - - = - (40)

The transformation P can be updated iteratively each time
a new set of geometric parameters are identified, and the
calibration process ends up with P minimizing the devia‐
tions from the measured poses.

Rewriting Eq. (39) in a matrix form for various measured
poses of the robot end-effector, Eq. (40) can be rewritten as
the Jacobian matrix containing the partial derivatives of P,
since ∆x is the vector of the model parameter errors as:

1 1 1 1

1 1

2 2 2 2
2 2

n n
n n n n

P P P P
d lP J

P P P PP J
d l x x

d
P JlP P P P

d l

q a q
a

q a

q a

é ù¶ ¶ ¶ ¶
ê ú¶ ¶ ¶ ¶é ù é ùD é ùDê úê ú ê úê ú¶ ¶ ¶ ¶D Dê úê ú ê úê ú¶ ¶ ¶ ¶= = D Þ D =ê úê ú ê úê úDê úê ú ê úê úê úD Dê úê ú ê úë ûë û ë û¶ ¶ ¶ ¶ê ú

¶ ¶ ¶ ¶ë û

J P
M MM M M M

D (41)

Figure 10. Calibration transformations

The size of the Jacobian matrix is a function of the number
of measured points measured in the workspace (m) and the
number of error parameters in the model (n). The matrix
order is (ηm x n), where η is the number of space degrees
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of freedom (three positions and three orientation parame‐
ters). Thus, the calibration problem is reduced to the
solution of a non-linear system of the type J.x = b.

There are many methods available to solve this type of
system and one that is widely used is the Squared Sum
Minimization (SSM). Numerous publications that discuss
these methods and related algorithms extensively can be
easily found [32]. A widely used method for solution of
nonlinear least squares problems, which is successful in
practice, is the algorithm proposed by Levenberg-Mar‐
quardt (L-M algorithm). Several versions of this algorithm
have proved to be globally convergent. The algorithm turns
out to be an iterative solution method by introducing few
alterations in the Gauss-Newton method to overcome
numerical divergence problems.

Each iteration of the algorithm follows three steps, where
xk is the parameter vector of the kinematic model in the kth

iteration and ∆xk are the corrections to be inserted into the
model [23], described by the following:

a. Calculation of the robot’s Jacobian (J(xk));

b. Calculation of the vector Δxk  using the relation

( ) ( ){ } ( ) ( )
1

;
T T

k k k k k kx x x x P xm
-

é ù é ùD = - +ë û ë ûJ J I J D

c. Update xk +1 = xk + Δxk  and k =k + 1.

where μk  is obtained from the relations as expressed in Eq.
(42).
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5.2 Kinematic modelling for robot calibration

In parameterized kinematic models for robot calibration,
three properties are the most important: completeness,
continuity and minimality [24]. Completeness is regarded
as the ability of the model to describe every possible
geometrical variation in the links and joints of a robot.
Continuity and minimality characterize proportion and
redundancies in parameters of the calibration model,
respectively.

In our case, the robot has only perpendicular axes. The D-
H convention, shown in Eq. (2), can be safely used in
parameterized error models when modelling perpendicu‐
lar axes, which is not true for parallel axes due to singular‐
ities that occur in the Jacobian matrix. This topic is
discussed in detail in [23].

The transformations shown in Eq. (40) have to include
parameterized errors in the kinematic model for the robot
calibration. The geometric parameters included in the
identification model of this robot can be seen in Table 4,
where δs are the error parameters that model the geometric
differences between the robot nominal model and the
corrected model, which is closer to the actual robot. The
parameters can be identified by the calibration system
algorithm and are all initialized to zero. The transforma‐
tions between the world coordinate frame (at the frame
origin of the measurement system) and the robot base
coordinate frame (W–B), joint to joint transformations
(J R  or  P − J R  or  P) (R: rotative; P: prismatic) and last joint to the
TCP coordinate frame (JR − JTCP) include all the geometric
parameters of rotation and translation. This first model is
complete, but there is no guarantee that it is minimal.

The first (W-B) and the last (JR - JTCP) transformations shown
in Table 4 are the transformations that locate the coordinate
system of the robot base with respect to the world coordi‐
nate system, and the TCP with respect to robot flange,
respectively. As both systems can vary in position and
orientation that cannot be measured, it is necessary that
their elementary transformations belong to the Euclidean
group, with six parameters. However, if only position data
are measured in the TCP with the external measurement
system, there is no need to include orientation error
parameters in the last transformation.

Joint Type D-H Parameterization

W - B [Tx(pxb).Ty(pyb).Tz(pzb).Rx(δxb). Ry(δyb). Rz(δzb)]

JR ⊥ JR [Rz(θ1+δθ1).Tz(pz1+δpz1).Tx(px1+δpx1).Rx(α1+δα1)]

JR ⊥ JP [Rz(θ2+δθ2).Tz(pz2+δpz2).Tx(px2+δpx2).Rx(α2+δα2)]

JP ⊥ JR [Rz(θ3+δθ3).Tz(pz3+δpz3).Tx(px3+δpx3).Rx(α3+δα3)]

JR ⊥ JR [Rz(θ4+δθ4).Tz(pz4+δpz4).Tx(px4+δpx4).Rx(α4+δα4)]

JR - JTCP [Rz(θ5+δθ5).Tx(px5+δpx5).Ty(py5+δpy5).Tz(pz5+δpz5)]

Table 4. Initial robot kinematic model parameters and transformation
equations. (⊥ = perpendicular, R = rotary, P = prismatic, W = world, B = base)

A proper choice of the error parameters to be included in
the identification model is very important to ensure the
minimality and continuity of the model, such that the error
parameters do not impose parametric redundancies that
produce ill-conditioned solutions into the nonlinear
identification routines. Therefore, a finite number of
parameters may have to be excluded from the complete
model shown in Table 4. The mathematical basis and the
strategies to optimize the model parameterization and
ensure a good model fitting are discussed in the next
section.

6. Kinematic Model Optimization

A very useful tool to analyse, evaluate and optimize
kinematic models and parameter identification routines is
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the Singular Value Decomposition (SVD) [32] of the J
matrix, which is an algorithm equivalent to a linearization
in the least-square sense. The SVD is a powerful tool to deal
with equations or matrices that are either singular or
numerically quasi-singular.

The Jacobian matrix in Eq. (41) can be written as (h = 3.m if
only positions are measured):

. ,. T
hxn hxn nxn nxnJ U S V= (43)

where the number of rows, h, is larger than or equal to the
number of columns, n; S is a square diagonal matrix with
positive or null entries; U is an orthogonal matrix and VT is
the transpose of an orthogonal matrix. This matrix decom‐
position is always possible, no matter how ill-conditioned
the J matrix is.

If J has rank r, the singular values of S can be ordered to be
non-increasing such that all values are non-negative and
exactly r of them are positive.

6.1 Condition number

In numerical analysis, the condition number can be viewed
as an observability index [33] of model parameters to be
identified. It can also be considered as an amplification
factor in numerical perturbation and error analysis [32].

The condition number of the matrix J can be calculated
from:

( ) ( ) 1T T. .k J  J J J .J ,
-

= (44)

where .  is a given norm.

If the previous norm is Euclidean, the condition number
can be directly calculated from the largest, S1, and the
smallest, Sr, non-zero singular values as:

( )k 1

r

S
S

=J (45)

6.2 Jacobian column scaling

A procedure to improve the Jacobian matrix condition can
be implemented by performing column scaling. Scaling
factors can be valuated from the expected error of the robot
(≅ 1 mm) [24, 34]. These factors can be calculated using the
model function P(x) (Eq. 38), by using the first-order
approximation in xk:

P( )P(q,x) k

k k

q, x x P(q,x) ,
x x

+ D -¶
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¶ D
(46)

where x=[x1
T, x2

T,..., xn
T]T, n is the number of parameters and

q is the robot pose.

For the robot pose q, the value
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(47)

is the parameter variation that, using a first-order approx‐
imation, produces a TCP's position displacement of 1 mm.
The denominator is the norm of the kth column of the
Jacobian.

If the σxk(q) values are calculated for a large set of joint
positions, q=[q1,..., qm], without restriction of position and
orientation, the values
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q q q q
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(48)

are very close to the minimum deviation among all possible
positions [24]. The σxk values are denominated as extreme
values and are to be employed for column scaling of the
linearized least-square system in Eq. (41).

6.3 Optimization scheme

The main purpose of calibration model optimization is to
reduce the number of parameters in the model in order to
eliminate dependencies or quasi-dependencies between
them, not to the point of restricting the model accuracy but
far enough so that the condition number of the scaled
Jacobian is less than 100. The experience of research groups
in mathematics demonstrates that a condition number
smaller than 100 is required for reliable results [24, 32].

Therefore, the procedures for model optimization can
follow the following steps:

a. Model-based scaling (Eq. 48) using extreme scaling
values must be computed to reduce the condition
number k(J) many times.

b. Quasi-dependencies and non-identifiabilities are
pinpointed by investigating the column vector Vr

corresponding to the smallest singular value Sr of the
SVD as follows:

J.V U.S= (49)

and so

r rJ.V S= (50)

If J has rank r, then Sr+1 =... = Sn = 0. The optimization
procedure is then performed by following the two previous
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steps. The first step improves the condition k(J). If k(J) is
higher than 100 then the next step determines the model
parameters that produce rank deficiencies. Thus, an
optimal model is obtained by excluding a small number of
parameters from the complete model successively, until
K(J) is less than 100 during the parameter identification
routine. However, in practice, most of the available pose
measurement systems used in robot metrology (ultra‐
sound, contact, CCD cameras, laser systems, theodolites,
etc.) have an accuracy ranging from 0.05 mm to 0.5 mm,
depending on its type and complexity. If measurement
noise is increased by using measuring systems with lower
accuracies, then usually k(J) is also increased, and the
threshold of k(J) = 100 will not be achieved by excluding
only a few parameters from the model. If that is the case,
the routine of the kinematic model optimization stops if k(J)
has only a small reduction on the exclusion of one more
parameter. It is important to note that the optimization
procedure described aims to exclude the most redundant
parameter from the parameterized model at a time. In this
way, regardless of the number of parameters in the model,
there will always be an improvement in the condition
number with the exclusion of another parameter. However,
if a parameter is removed from the parameterized model
that has not been identified by the optimization routine
then there will be no guarantee that the condition number
will improve, or that there will be an improvement in the
kinematic model accuracy.

7. Experimental Results

The model optimization method aiming at eliminating
redundant parameters from the calibration model was
tested in an experimental procedure, where the actual robot
had been measured at 24 positions that were selected to
cover a large range of the robot’s joint positions. The results
of the experiment are shown in Table 5.

The calibration process was initially carried out with the
maximum number of parameters shown in Table 5. The
algorithm stopped when the Euclidean norm of the
parameter error vector did not change significantly.
Equations (49) and (50) were then used to calculate the
condition number, K(J), and to identify the parameters
corresponding to the smallest singular value in a model,
easily observed from the largest entry in the last column of
the scaled V matrix. Frequently, two parameters have
approximately the same largest value in the interval 0<vi<1,
where vi is the entry in the ith line of the last column of V,
which means that they are mutually redundant. The
parameter to be eliminated from the model is the one with
a null value in the nominal model (not necessary for the
nominal model).

The results showed in Table 5 show clearly that as long as
a parameter is removed from the model, the condition
number of the Jacobian reduces as well. The model with 18
parameters presented a condition number below 100 in the

sequence. That coincides with the smallest average position
error.

However, the precision of the calibrated model has to be
checked moving the robot to other points than the ones at
which the measured points were collected. Therefore, the
accuracy evaluation step is to correct the nominal model
using the parameter errors obtained from the calibration
routine and to proceed the measurement process at other
locations, but calibrating only the first six parameters of the
model, i.e., only the robot base parameters.

The robot was evaluated at another quadrant of the
workspace, far from the region at which it had been
previously calibrated. The results shown in Table 6
demonstrate that the highest accuracy had been obtained
using the model with 18 parameters. One can realize that
the robot’s position accuracy had improved each time that
a parameter had been removed, and started decreasing
when the number of parameters was below 18. This
behaviour clearly agrees with the mathematical concepts of
completeness and minimality, which means that too many
parameters produce redundancies in the kinematic model
and using fewer parameters than is necessary cannot model
the robot’s geometry completely.

Number of parameters to be identified

26 25 24 23 22 21

E (mm) 0.310 0.342 0.346 0.338 0.336 0.343

Ave
(mm)

0.585 0.576 0.913 0.801 0.832 0.843

Std (mm) 0.240 0.229 0.307 0.302 0.298 0.308

K 530x106 254x108 14x107 1x106 60x103 16x103

Iter. 13 15 12 17 16 14

Par. pz1 t1 pz4 px3 t5 px4

Number of parameters to be identified

20 19 18 17 11

E (mm) 0.373 0.387 0.328 0.124 0.084

Ave
(mm)

0.741 0.719 0.704 0.799 0.888

Std (mm) 0.334 0.315 0.274 0.327 0.421

K 7 x103 198 27 19 14

Iterat. 6 6 5 5 4

Par. a4 a2 t2 - -

E : Euclidean norm of the parameter error vector after calibration;
Ave : Average of the position errors after calibration;
Std : Standard deviation of the position errors after calibration;
K : Condition number calculated by Eq. (28) in the last iteration;
Iter.: Number of iterations;
Par.: Parameter identified as redundant after calibration.

Table 5. Statistics of the calibration process as a function of the number of
parameters to be identified in the model
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CALIBRATION EVALUATION RESULTS

No. Param.
E

(mm)
Ave (mm)

Std Dev.
(mm)

K Iterat.

26 0.428 110.45 42.16 7.7 5

25 0.186 0.923 0.413 7.7 2

24 0.214 1.166 0.349 7.7 2

23 0.212 1.104 0.344 7.7 2

22 0.170 1.079 0.355 7.7 2

21 0.230 1.140 0.308 7.7 2

20 0.164 0.847 0.404 7.7 2

19 0.167 0.872 0.389 7.7 2

18 0.121 0.750 0.406 7.7 2

17 0.220 1.073 0.589 7.7 2

11 0.156 1.200 0.656 7.7 2

Abbreviations have the same meanings as in Table 5

Table 6. Statistics of the calibration evaluation procedure, with robot joint
positions other than the ones used to calibrate the model, within another
quadrant of the workspace.

The parameter optimization scheme had been proved to be
successful, pinpointing the optimal error parameter vector
to be identified in order to improve the robot’s accuracy.

8. Conclusions

This article presented a robot constructed to repair hy‐
draulic turbine defects by welding in layers automatically
by using a 3D surface map acquired from a specialized
vision sensor. The discussion focused on the kinematic
model, the algorithm to perform the iterative inverse
kinematics and the mathematical procedure for parameter-
identification optimization of the robot’s calibration
system.

Experimental results showed that the iterative algorithm
for inverse kinematics is very efficient, converging to the
solution in three to four iterations and showing very good
tracking. Experimental work with welding in straight lines
also proved the reliability of the solution. The mathematical
scheme to find the optimal set of geometric parameters for
robot calibration proved to be efficient and simple, able to
find the best set of geometrical parameters to be identified
by the robot’s calibration procedures, leading to the best
accuracy for the robot model among all possible parameter
sets.
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