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ABSTRACT
The vascular hypothesis for the patho -
genesis of systemic sclerosis was per -
haps Professor LeRoy’s most important
scientific contribution. One early and
important consequence of vascular in -
jury is the release of activated throm -
bin. In this manuscript we present our
data and review the current under -
standing of the role played by thrombin
in the process of fibrosis, particularly
as it relates to scleroderma lung dis -
ease. Thro m b i n ’s cellular effects are
intimately involved in promoting myofi -
b roblast differentiation, endothelial
cell activation, extracellular matrix
protein deposition, and the induction of
i m p o rtant pro f i b rotic factors. Such
studies confirm that thrombin is one of
the major mediators in the develop -
ment and pro g ression of pulmonary
fibrosis. Therefore, targeting the major
receptor of thrombin, PAR-1, and its
downstream signaling molecules may
lead to novel therapeutic approaches
for the management of sclero d e r m a
lung fibrosis. We are indebted to Dr.
LeRoy for his many contributions to the
field of scleroderma, and for all that he
did to stimulate our interest in these
studies.

Introduction
Pulmonary fibrosis in systemic sclero-
sis (SSc, scleroderma) is an irreversible
and progressive disease process often
leading to death (1-3). Characterized
by microvascular and tissue injury and
inflammation, it culminates in exces-
sive deposition of extracellular matrix
(ECM) proteins, often resulting in se-
vere lung dysfunction (3-6). Cells pre-
dominantly responsible for ECM accu-
mulation in the lung are activated fi-
broblasts or myofibroblasts (7-13). The
presence of myofibroblasts in human
and animal models of pulmonary fibro-
sis is now well documented (14-17).
Myofibroblasts may arise from diffe-

rentiation of fibroblasts or other pre-
cursor cells, e.g. pericytes, endothelial
cells, epithelial cell and fibrocytes (17-
20). Myofibroblasts appear to be the
principal mesenchymal cells responsi-
ble for tissue remodeling, collagen de-
position, and the restrictive nature of
the lung parenchyma associated with
pulmonary fibrosis (8-10,13,16).
The conceptual process of fibrogenesis
involves the presence of tissue injury,
the release of fibrogenic factors, and
the induction of myofibroblasts, culmi-
nating in enhanced extracellular matrix
deposition (2, 3, 21-23). Several factors
capable of inducing the myofibroblast
phenotype have been described. Trans-
forming growth factor-β1 (TGF-β1), a
factor that also plays a central role in
promoting ECM protein synthesis, is
perhaps the best studied. Recently, we
have reported that the serine protease,
thrombin, also mediates the differentia-
tion of lung fibroblasts to a myofibro-
blast phenotype, apparently at an even
earlier stage than TGF-β1 (27, 28).
In recent years, increasing evidence has
accumulated to implicate involvement
of the coagulation system in various
fibrotic diseases, including pulmonary
fibrosis (29-36). Activation of coagula-
tion proteases, e.g. thrombin, is one of
the earliest events following tissue in-
jury (29, 33, 36). Activation of the coa-
gulation system and generation of
thrombin following injury modulates
tissue repair responses by altering vas-
cular permeability, stimulating fibrob-
last and neutrophil migration, and pro-
moting the adhesion and spreading of
endothelial cells, epithelial cells and fi-
broblasts (33-37). Therefore, during
lung injury thrombin activates various
cell types and induces the secretion of
several profibrotic and angiogenic fac-
tors (37-42). Activation of these cells
by thrombin is a likely mechanism for
the development and progression of
pulmonary fibrosis in general, and lung
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fibrosis associated with scleroderma in
particular.

Role of thrombin in pulmonary
fibrosis
There is compelling evidence that the
serine protease and G protein coupled
receptor ligand, thrombin, is an impor-
tant mediator of idiopathic pulmonary
fibrosis (IPF), interstitial lung fibrosis
associated with SSc, chronic asthma,
and animal models employing bleomy-
cin to induce lung fibrosis (30-40, 44-
48). We, as well as others, have demon-
strated elevated levels of thrombin in
bronchoalveolar lavage (BAL) fluid
from scleroderma patients with lung fi-
brosis (29-31), as well as for other fi-
brosing lung diseases (36). We found
that BAL fluids from normal subjects
contain a low level of thrombin activity
( 4 8 . 6 ± 8 . 7 U/mg of protein), while
BAL fluids from SSc patients contain
significantly higher thrombin activity
(699.9±201) (29).
Thrombin is a potent mitogen for lung
fibroblasts (27-31). Previously, we re-
ported that the mitogenic effect of
thrombin on human lung fibroblasts is
mediated mainly via PDGF-α receptor
up-regulation and enhancement of
PDGF-AA ligand expression (29). Re-
cently we demonstrated that thrombin-
induced DNA synthesis in human lung
fibroblasts is mediated by PKCα and
RhoA (48). Thrombin also induces the
expression of profibrogenic factors,
e.g. transforming growth factor-β ( T G F-
β1), in smooth muscle cells and epithe-
lial cells (39,47). Moreover, thrombin
is a potent stimulator of connective tis-
sue growth factor (CTGF) in fibro-
blasts (36,49-51). Both of these growth
factors are known to participate in vari-
ous fibrotic diseases, including SSc
pulmonary fibrosis (43, 49, 50-55).
Levels of each are elevated in BAL flu-
ids and sera from scleroderma patients
(43). CTGF mediates some of the pro-
fibrotic functions of T G F -β and has
been shown to act synergistically with
TGF-β to promote chronic fibrosis (54,
55). The presence of the active form of
thrombin, together with PAR-1 and
C T G F, was recently demonstrated in
bleomycin-induced pulmonary fibrosis
(49). It has also been demonstrated that

CTGF mediates matrix production in
lung fibroblasts, which seems to be
central to the development of the fibro-
genic response, and that inhibition of
CTGF activity may be an eff e c t i v e
treatment for pulmonary fibrosis (49).
Overexpression of CTGF in various fi-
brotic tissues, including lung, has been
observed, with myofibroblasts being
the cells mainly responsible for CTGF
production (43, 54, 55). High levels of
CTGF in lung tissue have been shown
to correlate with high collagen synthe-
sis in scleroderma patients (43).
Thrombin has been demonstrated to
enhance extracellular matrix proteins,
e.g. fibronectin, by epithelial cells and
fibroblasts, and procollagen by smooth
muscle cells (37, 38, 40) and endothe-
lial cells (41). Studies from our labora-
tory have shown that thrombin is a po-
tent inducer of tenascin C in human
lung fibroblasts (35). We have also
shown that thrombin induces inter-
leukin-8 (IL-8) in lung fibroblasts (34).
Levels of IL-8 are elevated in BAL flu-

ids of scleroderma patients (56). Thus,
thrombin is a potent inducer of profi-
brotic factors and ECM proteins in var-
ious cells within the lung micro-envi-
ronment. Each of these factors is be-
lieved to play an important role in the
development and progression of SSc
lung fibrosis (29, 34-36, 51-58).

Thrombin induces a myofibroblast
phenotype resistant to apoptosis
The appearance of myofibroblasts in
areas of active fibrosis, together with
the results of in vitro studies, strongly
suggests that myofibroblasts are key
contributors to the increased extracel-
lular matrix synthesis characteristic of
SSc and other interstitial lung fibroses
(8-10, 35, 59). Myofibroblasts can be
cultured from BAL fluids of scleroder-
ma patients with interstitial fibrosis
(57). Previously, we reported that such
cells express more collagen I, collagen
III and fibronectin than do normal lung
fibroblasts, and that they have an en-
hanced proliferative response upon ex-
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Fig. 1. -SMA, VWand PAR-1 expression is significantly increased in pulmonary fibrosis asso-
ciated with scleroderma. Masson’s trichrome (blue staining) immunostaining for smooth muscle-α
actin (α-SMA) expression, von Willebrand factor (VW) and proteolytically activated receptor-1 (PAR-
1) in normal and SSc lung tissues. Sections of lung were immunostained with mouse monoclonal anti-
body for α-SMA, von Willebrand factor and PAR-1 (ATAP2 raised against amino acids 42-55 of
human thrombin receptor, PAR-1). α-SMA, VW and PAR-1 are visualized as brown color using
immunoperoxidase method with diaminobenzidine (DAB) as a substrate and counterstained with
hematoxylin. Top panel: normal lung tissue; middle panel: SSc I - represents lung tissue in early stage
of lung involvement; bottom panel: SSc II - represents lung tissue with late stage of lung fibrosis. Sm,
indicates sm-α actin in blood vessel endothelial cells. Black arrows indicate sm-α actin expression in
myofibroblasts, von Willebrand factor in endothelial cells. PAR-1 is expressed both in myofibroblasts
and endothelial cells.
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posure to TGF-β1 and PDGF compared
with normal lung fibroblasts (58). My-
ofibroblasts, the main source of the
profibrogenic factor CTGF (55), are
present in lung tissue of scleroderma
patients with active lung fibrosis (10,
27, 28) (see Fig. 1).
Thrombin activates and diff e r e n t i a t e s
normal lung fibroblasts to a myofibrob-
last phenotype via PAR-1 and via
P K Cε signaling (27). When normal
lung fibroblasts are stimulated with
thrombin, smooth muscle-α actin (SM-
α) interacts with PKCε and serves as a
substrate for this PKC isoform. T h e
SM-α-PKCε complex exists de novo in
untreated fibroblasts derived from scle-
roderma lung, presumably due to acti-
vation in vivo . Myofibroblasts regulat-
ing fibrotic processes, including SSc,
are often resistant to apoptosis, and
their persistence in the injured lung is
postulated to contribute to the pathoge-
nesis of lung fibrosis (60, 61). Apopto-
sis, or programmed cell death, is a fun-
damental process in cellular homeosta-
sis and forms part of normal develop-
ment and tissue turnover (62-65). Re-
pair after lung injury requires the elimi-
nation of proliferating mesenchymal
and inflammatory cells from the alveo-

lar airspace or alveolar wall (64). Mal-
function of apoptosis, or failure by apo-
ptosis to remove unwanted cells, may
prolong inflammation and/or the proli-
feration of fibroblasts, leading to fibro-
sis.
Apoptosis triggered by activation of
the Tumor Necrosis Factor Receptor
(TNFR) superfamily has been shown to
be associated with the development of
pulmonary fibrosis (66-68). Membrane
receptor Fas (CD95), a member of the
TNFR family, and its natural ligand,
FasL, are expressed in various cells and
tissues, including lung (66, 67). FasL
exists as a membrane-bound form and a
soluble form (sFasL), each of which
can activate Fas (64-66). In recent
years, apoptosis mediated by Fas-Fas
ligand in the lung has been implicated
as an important pathway in inflamma-
tion and pulmonary fibrosis (66-68).
Resistance to Fas-induced apoptosis is
seen in pathological conditions, such as
autoimmunity and hematological mali-
gnancy (68). It has been demonstrated
that dermal scleroderma fibroblasts are
specifically resistant to apoptosis in-
duced by Fas receptor stimulation,
while normal dermal fibroblasts are
sensitive to this apoptotic stimulant

(58, 59), for which a role of TGF-β has
been postulated (60-62).
Our studies indicate that lung myofi-
broblasts isolated from SSc patients are
resistant to several apoptotic stimuli,
including FasL-induced apoptosis (48)
(see Fig. 2). Furthermore, we have de-
monstrated that normal lung fibroblasts
stimulated with thrombin became resis-
tant to FasL-induced apoptosis and ex-
hibit a phenotype similar to that ob-
served in scleroderma lung, supporting
a role for thrombin in cell survival (27,
28). Fibronectin and tenascin-C, each
induced in lung fibroblasts by thrombin
(30, 35), have been shown to protect fi-
broblasts from apoptosis (68), preserv-
ing the myofibroblast phenotype.
Thrombin has been also shown to in-
duce cell survival in other cell systems
(70, 71). 

Thrombin signaling via protease-
activated receptor, PAR-1, and its
downstream targets
Protease-activated receptors (PA R s )
are G-protein-coupled receptors that
convert an extracellular proteolytic
cleavage event into a transmembrane
signal (72-78). Unlike most G-protein-
coupled receptors, PARs carry their
own ligands that are unmasked by re-
ceptor cleavage (72, 73). PAR-1 is
widely distributed in many diff e r e n t
cell types, including fibroblasts, and
appears to be the predominant human
thrombin receptor mediating the cellu-
lar action of thrombin (38) (Fig. 1 ) .
Recent studies have shown levels of
PAR-1 to be elevated in kidney and liv-
er fibrosis (72, 74-76). PAR-1 is also
highly elevated after bleomycin-induc-
ed pulmonary injury, where it is predo-
minantly localized to macrophages and
fibroblast-like interstitial cells in fibro-
proliferative foci (49). Recently, we de-
monstrated that PAR-1 is markedly up-
regulated in the lungs of scleroderma
patients, where it coincides with in-
creased numbers of myofibroblasts and
endothelial cells (48) (Fig. 1). 
Most PAR-1 signaling is mediated
through heterotrimeric G proteins, with
the exact intracellular signaling cas-
cade being cell-type specific (72).
Thrombin activates PAR-1 by proteo-
lytic cleavage at the R41/S42 site of the

Fig. 2. Thrombin makes normal and scleroderma (SSc) lung fibroblasts resistant to apoptosis.
Normal and SSc lung fibroblasts were grown to 80% confluency and then stimulated with Camp
(camptothecin 16 µM), Cer (ceramide 6, 20 µM) and FasL(20 ng/ml) in the presence or absence of Thr,
thrombin (0.5 U/ml) in serum-free medium for 24 hours. Contr: control cells were incubated in serum-
free medium only. White bars represent normal lung fibroblasts and black bars represent SSc lung
fibroblasts. For the flow cytometry analysis, single cell suspensions were prepared by trypsinization.
Cells were then fixed in 70% ethanol and stained with propidium iodine (120 mg/ml). Cell fluores-
cence was measured with a FACS scan flow cytometer.A negative control gate was set using cells incu-
bated in serum-free medium only.A minimum of 10,000 events were collected per sample. Measure-
ment of fluorescence was performed at > 620 nm. Apoptotic cells are expressed as a percentage of the
total cells in the population. Thrombin induces resistance to apoptosis induced by camptothecin,
ceramide and FasL.
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N-terminal extracellular domain, con-
verting the inactive receptor to an ac-
tive form capable of interacting with
multiple G proteins, e.g. Gi, Gq, G12/
13, in the same cell (75,76,78). Gq-
dependent signaling activates phospho-
lipase C, which leads to phosphoino-
sitide hydrolysis and results in Ca+ +

mobilization and activation of protein
kinase C (PKC). PKC is required for
DNAsynthesis as well as smooth mus-
cle cell growth (72), both necessary
events in thrombin-mediated cell proli-
feration (72,75,76). Gβγ subunits of
Gi-protein activate phoshoinositide-3-
kinase (PI-3K) followed by Akt pho-
sphorylation, which protects cells from
apoptosis (64, 68, 69). The α subunit of
G12 and G13 binds Rho guanidine-nu-
cleotide exchange factors, activating
small G-protein RhoA and mediating
cytoskeletal reorganization (79-81).
Our recent studies demonstrate that the
PKCα/MAPK and PI3K/p70S6 kinase
pathways represent key signaling
routes in thrombin-induced lung fibro-
blast (82).

PKC and Rho pathways in throm-
bin-activated myofibroblasts
In previous studies we demonstrated
that thrombin induces IL-8 and tena-
scin-C via activation of PAR-1 and
downstream through activation of
PKCγ and PKCε, respectively (34, 35).
Thrombin-induced differentiation of
normal lung fibroblasts to a myofibrob-
last phenotype is mediated by PAR-1
(27) and by multiple downstream sig-
naling pathways such as PKC and Rho
(27,28) (Fig.3). Depletion of PKCε,
inhibition of PKCε or inhibition of Rho
activation abolishes thrombin-induced
SM-α expression/organization and col-
lagen gel contraction by lung fibro-
blasts (27,28), suggesting a role for
each in myofibroblast differentiation. 
The molecular link between Rho and
actin stress fiber formation has recently
been identified (79). The downstream
t a rget of Rho, Rho-kinase, directly
phosphorylates the myosin light chain,
promoting interaction of myosin fila-
ments with actin filaments, followed by
stress fiber formation and increased

contractility (83). Thrombin has been
shown to promote actin reorganization
in endothelial and astrocytoma cells via
Rho-dependent activation of myosin
light chain, but without PKC involve-
ment (79,83). Our results indicate that
thrombin rapidly activates Rho and sig-
nificantly increases Rho-[3 5S ] G T P g S
binding in lung fibroblasts (28). T h r o m-
bin strongly stimulates Rho activity in
vivo and initiates PKCε-RhoAcomplex
formation (28). The Rho inhibitor, tox-
in B, which inactivates Rho by ADP
ribosylation, inhibits thrombin-induced
SM-α expression/organization and col-
lagen gel contraction; toxin B also in-
hibits PKCε/SM-α actin complex for-
mation and PKCε/ R h o A c o - i m m un o-
precipitation by lung fibroblasts (28).
Moreover, we have demonstrated that
PKCε/RhoA complex formation is an
early event in thrombin’s activation of
lung fibroblasts (28). 
Using a yeast two-hybrid system, direct
interactions between the yeast homo-
logues of Rho protein, Rho1p, and the
homologues of mammalian PKC, Pkc-

Fig. 3. Depletion of PKCε or inhibition of RhoAabolishes thrombin-induced smooth muscle-α actin organization and collagen gel contraction in normal
lung fibroblasts. SM-α actin expression and organization in normal (Nml) and scleroderma (SSc) lung fibroblasts analyzed by confocal microscopy after 24
h of thrombin stimulation (0.5 U/ml). Measurements of gel diameter in collagen gel contraction assay were taken after 2 h incubation with thrombin (0.5
U/ml). Normal lung fibroblasts were treated with antisense (AS) oligonucleotides for PKCε (2 µM) or with Rho inhibitor, toxin B (TB) (50 pg/ml). Note that
PKCε depletion abolished thrombin-induced sm-α actin expression, organization and collagen gel contraction in lung fibroblasts. Toxin B inhibited sm-α
actin organization and collagen gel contraction in lung fibroblasts stimulated with thrombin but did not abolish sm-α actin expression. The thrombin-induced
myofibroblast phenotype was observed in untreated SSc lung fibroblasts. (Portions of this material have been published previously and are used with per-
mission, see References 27 and 28).

(b)

Normal Lung Fibroblast        Scleroderma

C Thr Thr + Thr + C Thr
PKCε AS Toxin B

Control Thrombin Thrombin + Thrombin + Scleroderma, Scleroderma
PKCε AS Toxin B Control Thrombin

(a)



1p, have been shown (83). Recent s t u d-
ies also provide evidence that mam-
malian PKC isozymes and Rho GTPas-
es co-immunoprecipitate and partici-
pate in direct protein-protein interac-
tions (84). The association of PKCα
with Rho has been demonstrated in
endothelial cells, suggesting a critical
role in Rho activation (85, 86). Howev-
er, we have observed that Rho protein
is not necessary for thrombin-induced
PKCε activation and translocation to
the membrane, nor does depletion of
PKCε affect Rho activation and throm-
bin-induced GTPgS binding (28). On
the other hand, Rho inhibition prevent-
ed co-immunoprecipitation of PKCε
with SM-α actin, suggesting that the
association of thrombin-activated Rho
with PKC is essential for the regulation
of SM-α actin organization in lung
fibroblasts (28).
We recently found that overexpression
of both constitutively active PKCε and
constitutively active RhoA i n d u c e s
highly organized SM-α actin and the
contraction of collagen gels; individu-
ally, neither was capable of these func-
tions (28). Studies have shown that
Rho alone can increase the activity of
S M -α actin promoter and modulate
S M -α actin expression in other cell
types, such as vascular smooth muscle
cells (81). However, our data suggest
that PKCε, in association with RhoA,
recruits SM-α actin and possibly some
other protein(s) to promote the intracel-
lular events responsible for SM-α actin
expression and organization. T h u s ,
P K Cε- and Rho-mediated signaling
pathways are essential for thrombin-in-
duced differentiation of normal lung fi-
broblasts to the scleroderma myofibro-
blast phenotype. Based on our recent
observations and data from the liter-
ature, we have proposed a hypothetical
mechanism for the development of my-
ofibroblast differentiation leading to
pulmonary fibrosis (see Figure 4).

Thrombin and microvascular
alterations in pulmonary fibrosis
Microvascular changes, such as the en-
hanced proliferation of endothelial cells
and neovascularization, are observed in
lung fibrosis (87-98). Few studies, how-
ever, have addressed the importance of

vascular remodeling in the lung during
the course and development of pul-
monary fibrosis. We have observed the
proliferation of microvascular endothe-
lial cells and the generation of func-
tional capillaries in scleroderma lung
fibrosis (Fig. 1). Early vascular dys-
function in scleroderma lung may
result from the hyperproliferation of
endothelial cells and possibly from the
increased numbers of alveolar capil-
laries (hypervascularity). These micro-
vascular alterations are seen most pro-
minently during early phases of pulmo-
nary fibrosis (Fig. 1) Similarly, enhanc-
ed proliferation of endothelial cells and
neovascularization mediated by IL-8

and IL-10 have been observed in IPF
(89), as well as in bleomycin-induced
pulmonary fibrosis in mice (90).
Thrombin has been shown in vitro and
in vivo to promote endothelial cell acti-
vation followed by angiogenesis, and
this also is mediated by PAR-1 and via
PKC (73). Interestingly, abrogation of
thrombin-induced increases in pulmo-
nary microvascular permeability has
been shown in PAR-1 knockout mice
(98). The authors suggest that PAR-1 is
critical in mediating the permeability-
increasing and vasoconstrictor effects
of thrombin in pulmonary microvessels
(98). Moreover, thrombin-stimulated
lung fibroblasts secrete several proan-
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Fig. 4. Proposed schema for thrombin-activated lung fibroblast and differentiation to a myofi-
broblast phenotype resistant to apoptosis. Thrombin, via its proteolytically activated receptor PAR-
1, activates PKCα, PKCε and RhoA. Activation of PKCε and RhoAresults in PKCε/RhoAimmuno-
complex formation followed by the formation of a complex with SM-α actin (SMA). Ternary complex
PKCe/RhoA/SMAresults in significantly increased SM-α actin expression and organization, causing
differentiation of normal lung fibroblasts to a myofibroblast phenotype. Activated PKCε and RhoA
inhibit FasL-induced apoptosis, resulting in transformation of the lung fibroblast to a phenotype that is
resistant to apoptosis. Additionally, activated PKCα mediates thrombin-induced DNAsynthesis in lung
fibroblasts and participates in the differentiation of these cells. Factors induced by thrombin in lung
fibroblasts, e.g. PDGF, mediate DNAsynthesis, while tenascin C (TN), fibronectin (FN) and connec-
tive tissue growth factor (CTGF) inhibit apoptosis in lung fibroblasts and are involved in the induction
of resistance to apoptosis.
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giogenic factors, e.g. metalloproteinas-
es (MMP’s), which increase endothe-
lial cell invasion, and VEGF, VCAM-1,
IL-8, PDGF, PAI-1 and tenascin-C (91,
93-96, 99). As noted above, thrombin
induces CTGF in fibroblasts, promot-
ing endothelial cell proliferation and
neovascularization in vivo ( 5 1 , 5 5 ) .
Thus, thrombin induces an angiogenic
phenotype in microvascular endothelial
cells in vitro and promotes angiogene-
sis in vivo. The angiogenic action of
thrombin via PAR-1 has also been de-
monstrated in tumor progression and
metastases, including in lung (98). The
presence of thrombin in many disease
conditions in which neovascularization
is activated, such as inflammation, ather-
osclerosis and cancer, as well as in lung
fibrosis, suggest a pivotal role for throm-
bin in the progression of such diverse
pathological conditions (37).

Role of thrombin in cross talk
among activated lung fibroblasts,
epithelial cells and endothelial cells
during the development of pulmo-
nary fibrosis
During the development of lung fibro-
sis, activated fibroblasts interact with
other cell types such as immune cells
(macrophages, monocytes, T cells, mast
cells and eosinophils) and non-immune
cells (epithelial and endothelial cells)
(8-10, 95, 100, 101). There is now con-
siderable evidence that myofibroblasts
are capable of modulating the proper-
ties of other cells through the paracrine
activity of soluble product(s) (49,50,
95). Factors secreted by endothelial
cells are mitogenic for various mesen-
chymal cells and stimulate collagen
production (53-55). Factors secreted by
both cell types promote the migration
of these cells to various areas of tissue
injury in the lung (100,101). Because
thrombin activates lung fibroblasts and
increases the secretion of proangio-
genic factors from these cells, as well
as from endothelial cells, the interac-
tion of these two cell types in the pre-
sence of thrombin may be crucial in the
development of lung fibrosis. Similar-
ly, factors secreted by epithelial cells
are mitogenic for various mesenchymal
cells (fibroblasts and smooth muscle
cells) and stimulate collagen produc-

tion (10,95). Epithelial-mesenchymal
transformation (EMT), besides its role
in embryonic development, tumorige-
nesis and organ remodeling during fi-
brogenesis (101), has been shown to
participate in the progression of lung
fibrosis. Inflammatory factors known
to participate in epithelial cell and fi-
broblast differentiation, such as TGF-
β1, IL-8, IL-11 and fibronectin, are in-
duced by thrombin in several different
cell types (27, 2 8 , 3 7 , 1 0 0 , 101). Be-
cause all of these cell types utilize si-
milar signaling pathways when activat-
ed by thrombin, targeting PAR-1 and/or
its downstream signaling molecules
may prove to be a powerful approach to
the treatment of pulmonary fibrosis.

Thrombin-induced signaling as a
potential therapeutic target in lung
fibrosis
In an animal model of pulmonary fi-
brosis, a direct thrombin inhibitor, UK-
156406, attenuates lung collagen accu-
mulation by lowering the profibrotic
e ffects of thrombin and suppressing
CTGF synthesis (36,49). This peptide
inhibits thrombin’s proteolytic activity
by binding in its catalytic triad (49).
Other direct thrombin inhibitors, e.g.
lepirudin, bivalirudin, argatroban and
melagatran, also interact with thrombin
by blocking its catalytic activity, and
are currently approved for clinical use
in cardiovascular disease (102). Anoth-
er even more attractive way of target-
ing thrombin’s action is by the inhibi-
tion of the thrombin receptor. 
The collection of thrombin receptor an-
tagonist(s) currently available falls into
several categories: (i) peptide antago-
nists; (ii) peptidomimetics; (iii) non-
peptide thrombin receptor inhibitors;
and (iv) statins (103-106). Several pep-
tides with structural similarities to the
tethered ligand have been shown to
prevent thrombin- and tethered ligand-
induced cellular effects (103), but in
vivo studies are still very limited. S t a-
tins, 3-hydroxy-3-methylglutaryl co-
enzyme A (HMG-CoA) reductase inhi-
bitors, suppress tissue factor, and thus
thrombin generation. It has been sug-
gested that statins inhibit PAR-1 ex-
pression and desensitize cells to throm-
bin stimulation (104). Several investi-

gators have demonstrated that statins
downregulate the prenylation of the
proteins involved in signal transduc-
tion, including PKC and Rho (104-
106). Selective inhibition of the profi-
brotic effects of thrombin or PAR-1 by
direct thrombin inhibitors or PAR-1 an-
tagonists at the cellular level may avoid
potential complications, e.g. thrombo-
cytopenia or thrombosis, associated
with the inhibition of thrombin and
other coagulation proteases. We belie-
ve that targeting thrombin and/or PAR-
1 signaling may represent an attractive
therapeutic approach for SSc-associat-
ed lung fibrosis, as well as other forms
of pulmonary fibrosis.
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