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Abstract L-type voltage-gated calcium channels (VGCCs) are
multisubunit membrane proteins that regulate calcium influx
into excitable cells. Within the last two years there have been
four separate reports describing the structure of the skeletal
muscle VGCC determined by electron microscopy and single
particle analysis methods. There are some discrepancies between
the structures, as well as reports for both monomeric and di-
meric forms of the channel. This article considers each of the
VGCC structures in terms of similarities and differences with an
emphasis upon translation of data into a biological context.

© 2004 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.

Key words: L-type voltage-gated calcium channel;
Single particle analysis; Electron microscopy; Angular
reconstitution; Muscle excitation—contraction coupling

1. Introduction

Muscle contraction is regulated by elevation of the intra-
cellular Ca** concentration mediated by the interplay between
two membrane proteins, the L-type voltage-gated calcium
channels, VGCCs, and ryanodine receptors, RyRs. Despite
the involvement of the same proteins (VGCCs and RyRs),
albeit tissue-specific isoforms, the molecular mechanisms gov-
erning skeletal and cardiac muscle excitation—contraction
(E-C) coupling are believed to significantly differ. In skeletal
muscle a direct mechanical interaction of the VGCC and the
RyR (RyR1) is thought to form the basis of E-C coupling
whereby upon depolarisation of the membrane the VGCC
acts as a voltage sensor with conformational changes of the
channel leading to a physical interaction with RyR1, promot-
ing its opening, and triggering the release of Ca’* from inter-
nal stores [1]. In contrast, depolarisation of cardiac myocytes
is suggested to lead to the opening of the L-type calcium
channels with Ca?* influx through the VGCCs stimulating
the opening of the RyR (RyR2), resulting in a cascade of
Ca?* ions released into the cytosol, i.e. calcium-induced cal-
cium release, CICR [2,3]. However, there remain substantial
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deficiencies in the current understanding of the mechanisms
involved for mediating both mechanical coupling and CICR
at the molecular level.

The skeletal muscle VGCC is composed of four non-cova-
lently associated polypeptides, the pore forming oy1.1 sub-
unit, and three auxiliary subunits 0,8;, Bi, and y; forming a
heterooligomeric membrane protein, with an approximate
molecular mass of 430 kDa [4]. The cardiac L-type calcium
channel is assembled from three tissue-specific isoforms of o
(a11.2), 028, and B (largely the B, and B3 isoforms) with no
evidence as yet for a cardiac y polypeptide. The role of the y
subunit in muscle E-C coupling is not well understood; how-
ever, from studies of y; null mice it was demonstrated that
though the y; polypeptide is involved in modulating the cur-
rent amplitude and inactivation kinetics of the channel, it is
not necessary for propagating skeletal muscle E-C coupling
[5]. Therefore the absence of a cardiac y subunit in the channel
assembly cannot provide a simple explanation as to the differ-
ences in mechanisms of muscle E-C coupling. The II-III in-
tracellular loop of the ay1.1 polypeptide has been implicated
as a major determinant for VGCC interaction with RyR1 [6],
though involvement of several other ‘microdomains’ such as
the I-1I loop and regions of C-terminus have been described
[7]. The molecular mechanisms governing E-C coupling are
further complicated by the potential involvement of proteins
such as calmodulin, calmodulin kinase II and triadin, e.g.
[8-12].

2. Ultrastructure and spatial organisation of VGCC and RyR
in cardiac and skeletal muscle

Some of the first glimpses into the ultrastructure and spatial
organisation of both the VGCCs and RyRs came from work
by Franzini-Armstrong and coworkers using freeze-fracture
methods e.g. [13,14]. The VGCCs were shown to be localised
to the T-tubular (T-t) membranes, invaginations of the plasma
membrane, and physically separated from the RyRs residing
in the junctional sarcoplasmic reticulum (jSR). Freeze-fracture
replicas showed that in both skeletal and cardiac muscles
VGCCs were clustered, but into different geometries with
the skeletal muscle VGCCs seeming to form ordered tetrads
whereas the cardiac VGCCs adopted a more random distri-
bution. Similar studies of the RyRs in skeletal and cardiac
muscle found highly ordered organisations with minor differ-
ences detectable in terms of spatial arrangement between the
two tissue types.
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Fig. 1. 3D reconstruction of the RyR1 from rabbit skeletal muscle (adapted from Samso et al. [29] with permission). Left panel: Cytoplasmic
view, opposing the T-t membrane. Middle panel: View showing the sarcoplasmic surface illustrating the density forming the transmembrane as-
sembly (TA). Right panel: Side view, normal to the four-fold axis. Dashed white lines indicate putative position of the jSR. The densities
shaded in blue in each of the panels (indicated by the white arrows) represent the locations of bound imperatoxin A-biotin:streptavidin as de-

termined in [28].

3. Electron microscopy (EM) and single particle analysis (SPA)
methods of the RyRs

The application of EM techniques, coupled with image pro-
cessing, for analysing membrane protein structures has led
over the past 10 years to some significant breakthroughs
from studies of two-dimensional (2D) crystals, e.g. the nico-
tinic acetylcholine receptor (nAchR) [15] and aquaporin [16],
as well as single protein molecules, e.g. the voltage-gated so-
dium [17] and potassium channels [18], the skeletal muscle
VGCC [19-23], and RyR [24,25]. Advantages of the single
particle approach are that (i) only low microgram quantities
are required for analysis, (ii) it is suitable for the study of
large, multisubunit complexes, (iii) different conformational
states can be captured, and (iv) it can be used for studying
protein—protein (ligand) interaction (for review of SPA see
[26]). It was from EM/SPA methods that the first detailed
structure (~3 nm resolution) for the skeletal muscle RyR1
was first determined [24]. The RyR1 was shown to be com-
posed of two distinct parts, a large complex cytoplasmic
loosely packed structure (28 X 28 X 14 nm) attached to a small-
er transmembrane domain constituting ~20% of the RyR1
mass (see Fig. 1). Following a similar strategy, the structure
of the cardiac isoform (RyR2) was revealed, at a similar res-
olution, to have a virtually identical three-dimensional (3D)
structure to RyR1 though minor differences at the edge of
the cytoplasmic domain were observed [27], the significance
of this is not established. Further applications of EM/SPA
to investigate the structure of the RyRs include 3D mapping
of proteins such as calmodulin with RyR1 [28]. In terms
of understanding the interaction of the skeletal muscle
VGCC with RyR1, studies using the toxin imperatoxin A
(IpTx,), proposed to mimic the II-III loop of o;1.1, have
been undertaken [29] revealing that for each RyR1 tetramer
four IpTx, were associated. Using difference mapping the
IpTx, binding sites were localised, as illustrated in Fig. 1
(blue domains indicating the IpTx, binding sites), to the edges
of the cytoplasmic assembly and located ~ 11 nm away from
the transmembrane pore. The centre-to-centre distance be-
tween each of the IpTx, binding domains was shown to be
~ 15 nm.

4. Structural studies of skeletal muscle VGCC monomers and
dimers

Since the VGCCs are enriched in the skeletal muscle T-t
membranes (though yields remain typically less than 100 ug/
400 g wet muscle tissue) studies have tended until recently [23]
to concentrate upon the skeletal muscle form. Structural data
for the quaternary organisation of the VGCCs have, to date,
all been determined using EM/SPA methods. In 2001 Murata
et al. [19] published 2D projection images (~2.7 nm res-
olution) of negatively stained (uranyl acetate) monomeric
rabbit skeletal muscle VGCCs, revealing an asymmetric rod-
like structure with a height of ~21 nm and diameter of
~10 nm with a small spherical domain, roughly 7 nm in
diameter, extending from one end of the rod as shown in
Fig. 2A. From a combination of antibody labelling experi-
ments and examination of structures after removal of the
020 subunit it was concluded that the spherical protuberance
was formed by the 0,8 polypeptide, and that the rod-shaped
view represented the side orientation of the VGCC complex
with the skeletal muscle channel spanning the T-t membrane
by ~21 nm.

The following year (2002) Serysheva and coworkers pre-
sented the first 3D structure of a monomeric rabbit skeletal
muscle VGCC [20] determined from frozen-hydrated protein,
as shown in Fig. 2B. The 3D structure, at 3 nm resolution,
was found to be comprised of two domains, termed a heart
region and a handle region, tilted with respect to each other,
with overall dimensions of ~11.5X13.0X12.0 nm and cavity
with a radius of ~3 nm formed between the two domains.
Clearly, the 3D volume in terms of height is some 7 nm short-
er than the projection images presented by Murata et al.
which cannot alone be accounted for by the differences in
sample preparation, i.e. negative staining compared to cryo-
EM methods, suggesting significant differences exist between
the two structures. The heart-shaped portion of the complex
was proposed to span the membrane and house the oy 1.1, B
and v polypeptides, with the handle-shaped domain and upper
portion of the heart region formed by the 0,8 subunit, as
depicted in Fig. 2B.

Earlier this year (2003) a further 3D structure for a mono-



M.-C. Wang et al.IFEBS Letters 564 (2004) 245-250 247

A Extracellular B

.

iy E
e N Extracellular
Cytoplasm
‘le g » D
Intracellular

10 nm
—

Fig. 2. Reported structures for the L-type VGCC. A: Projection image showing putative side view of a monomeric form of the skeletal muscle
VGCC negatively stained (uranyl acetate) at 2.7 nm resolution, taken from Murata et al. [19] with permission. B: Putative side view of the 3D
structure of the skeletal muscle VGCC (3.0 nm resolution) determined from unstained frozen-hydrated samples, displayed using surface render-
ing enclosing a volume corresponding to the molecular mass (~430 kDa) of a monomer taken from [20] with permission. C: Surface-rendered
3D structure (~2.5 nm resolution) of a skeletal muscle VGCC dimer embedded in trehalose/ammonium molybdate, displayed at 36 above the
mean density, to reveal the principal protein densities. The black outline illustrates the approximate contribution, at high thresholds, of the
foremost monomer. The C2 symmetry axis is indicated by the dotted black vertical line. The putative position of the T-t membrane is indicated
in the figure in accordance with data reported in [21,23]. D: Solid body representation of a putative side view (i.e. along the membrane plane,
indicated by the shaded bar) of the 3D structure (at 2.3 nm resolution) of a monomeric skeletal muscle VGCC from unstained frozen-hydrated
samples, adapted from [22] with permission. The 3D volume is displayed at two thresholds, with the light grey envelope encompassing a volume
of ~550 kDa, and the higher threshold (dark grey) delineating the globular density. E: 3D structure of the cardiac L-type VGCC [31]. Side
view (i.e. along the membrane plane) of the cardiac VGCC determined from negatively stained (uranyl acetate) protein purified from bovine
heart displayed using surface rendering at a threshold of 1o above the mean density. The putative position of the lipid bilayer is indicated by
the white dashed lines, with the white dotted vertical line indicating the C2 symmetry axis. The principal protein densities forming the mono-

mer arch are labelled 1-3 on the figure.

meric rabbit skeletal muscle VGCC was determined from un-
stained samples but at a higher resolution of ~2.3 nm (see
Fig. 2D) [22]. This structure surprisingly bore little resem-
blance to the Serysheva volume, as can be seen by comparing
Fig. 2B and D. The 3D structure showed a ‘leg’ domain ex-
tending out from a large globular density, measuring
16.5X14.5X 8.0 nm, with the attached ‘leg’ having a length
of ~9.5 nm. Antibody labelling with anti-B and anti-a2 IgGs
led to the proposal that the leg domain formed part of the o2
protein, though it was concluded to be too small to alone
accommodate the entire subunit. From the antibody labelling
data the 3D structure was orientated with respect to the T-t
membrane as shown in Fig. 2D, placing the globular domain
within the bilayer, with the leg extending on the extracellular
side. Therefore the major protein density is residing within the
membrane as opposed to the models proposed by Murata et
al. [19] and Serysheva et al. [20] in which the rod- and heart-
shaped structures (respective equivalents to the globular do-
main), span the membrane with an asymmetric distribution of
the protein mass across the membrane.

We have also reported a 3D structure, at 2.7 nm resolution,
for the skeletal muscle (rabbit) VGCC but of a dimeric form
of the complex [21]. The 3D structure was determined from
negatively stained (uranyl acetate) purified skeletal muscle
VGCC, using the random conical tilt technique [30]. This

structure has recently been refined after embedding the puri-
fied channel in trehalose/ammonium molybdate [23], with a
3D reconstruction performed using the angular reconstitution
method [31], to a resolution of 2.5 nm. The two structures
derived using different negative stains and reconstructive
methods generated very similar 3D volumes as described in
[23]. In both studies the skeletal muscle dimer was found to be
formed by two arch-shaped monomers 22-23 nm in height
and ~8 nm thick, with contacts at the tips of the arches
leading to the formation of a central aqueous cavity roughly
7 nm in diameter. Two finger-like protrusions, extending out
from the arches, coil around on each side and isolate the
central chamber from the external environment. Antibody
(anti-B) and lectin gold labelling permitted orientation of the
skeletal muscle dimer with respect to the T-t membrane [23] as
depicted in Fig. 2C. Moreover, by using negative staining
techniques it was possible to determine that the cavity was
not entirely sealed off from the extracellular milieu with the
stain found to penetrate through to the interior via a series of
small holes perforating the outer surface of the finger do-
mains.

On examination of the preparative methods leading to the
monomeric and dimeric forms it can be found that one of the
principal differences lie with the detergent used for channel
solubilisation. For purification of the VGCC dimers CHAPS
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was used as the solubilising agent, with exogenous lipid (aso-
lecithin) added to all buffers throughout the purification (de-
tergent:lipid ratio of 2:1) whereas digitonin was employed for
the isolation of the monomeric form in [19,20,22]. Interest-
ingly, rotary shadowed images of freeze-dried, purified rabbit
skeletal muscle VGCC complexes using CHAPS/asolecithin in
the Campbell laboratory [32] showed channel complexes with
very similar dimensions and gross structural features to the
dimers reported in [21,23]. Dissociation of the VGCC dimers
showed monomeric complexes [23] that could be associated
with various orientations of the 3D structure presented by
Wolf [22] and projection images in [19].

5. Comparison of the monomeric and dimeric skeletal muscle
VGCC structures

Examination of the structures shown in Fig. 2A, B and D
[19,20,22] finds significant differences between the structures
proposed for a monomeric skeletal muscle VGCC that cannot
alone be attributed to either the use of negative staining or
cryo-EM techniques, since both of the 3D structures (B and
D) were determined from unstained frozen-hydrated speci-
mens. In addition, both 3D studies employed the angular
reconstitution method [33,34], though different software was
utilised for each reconstruction. The 3D structure reported in
[22] (Fig. 2D) is at a higher resolution than that presented in
[20] (Fig. 2B) and is therefore inevitably more detailed; but
whether the same structure at 3 nm resolution would show
similar features to that in [20] is unclear.

The 3D dimer structure shown in Fig. 2C is displayed at a
threshold (36 above the mean density) to display the principal
structural features. The monomer arches show a clear similar-
ity in terms of overall dimensions to the rod-shaped structures
reported by Murata and coworkers [19], with a finger density
correlating to the protruding spherical domain, as highlighted
in the figure by the black outline indicating the approximate
boundaries of the foremost monomer. Though it is hard to
equate the dimeric structure to the Serysheva model in [20]
there are features common to the monomeric 3D structure
presented by Wolf and coworkers [22]. For example, the
monomer ‘leg domain’ can be matched to one of the dimer
fingers, suggested in both reports to be formed by the on
polypeptide, with the globular domain of the monomer cor-
responding to a monomer arch in the dimer. The length of the
globular domain in [22] is slightly shorter than the height of
the monomer arch in [21,23] and this discrepancy may be
explained, in part, by a different detergent annulus and the
use of negative stains for studies of the dimeric structure.
However, correlation of the two structures in this manner
may open the way for an alternative interpretation of the
monomer structure orientation with respect to the T-t
membrane with rotation of the structure as shown in Fig.
2D by 90° counterclockwise so that the globular domain
spans the membrane. With the monomeric VGCC placed
within the T-t membrane as shown in Fig. 2D the B polypep-
tide is localised to the lipid bilayer. It is well established that
the B polypeptide is hydrophilic [35] and is shown by many
functional and other studies to be localised to the periphery of
the membrane boundary on the intracellular side of the mem-
brane. Therefore, an advantage of the reorientation of the
monomeric 3D volume of Wolf et al. [22], so that the globular
domain traverses the bilayer, is that the B subunit would be
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placed within the cytosol and not embedded within the T-t
membrane.

6. Structural studies of the cardiac VGCC

We have recently purified the cardiac VGCC from bovine
heart. Intriguingly, both stable monomeric and dimeric forms
were isolated using digitonin for solubilisation, as discussed in
[23]. Comparison of the skeletal and cardiac VGCC dimer
structures revealed a common architectural design. This is
particularly apparent when the cardiac 3D volume is viewed
in a similar orientation to the skeletal muscle dimer (Fig. 2C)
as shown in Fig. 2E, with the monomer arch and associated
finger domains clearly apparent. The backbone of the cardiac
monomer arch is kinked in the middle compared to that in the
skeletal muscle structure (Fig. 2C) and is resolved into three
protein densities numbered 1-3 on the figure. Differences
between the two structures in the region tentatively assigned
to the transmembrane domain as reported in [23] were iden-
tified with a tapering of the cardiac VGCC structure com-
pared to the skeletal muscle form. This finding was in keeping
with the concept of the cardiac channel composition lacking
the y subunit, proposed to be an integral membrane polypep-
tide [36]. In addition, the overall dimensions of the cardiac
VGCC were found to be slightly smaller than the skeletal
muscle counterpart, with a height of ~19 nm and a width
of ~14.5 nm.

7. Oligomeric forms of the VGCCs and RyRs

Physiologically functional oligomeric forms of integral
membrane proteins are not unusual, for example the RyR
exists as a homotetramer as described, as does the type 1
inositol 1,4,5-trisphosphate receptor [37,38]. However, when
purifying proteins using detergents, detergent-induced oligo-
merisation can occur and therefore isolation of an oligomeric
form does not necessarily represent the functional unit. The
finding that both the skeletal and cardiac muscle VGCCs can
be isolated as dimers, formed by a head-to-head association
and thus in principle having the potential to be physiologically
viable, is nevertheless intriguing. Although the concept of
functional dimeric VGCCs appears to be novel, data from
other types of experiments can be found that lend support
to the possibility of a functional oligomeric form. For exam-
ple, Hymel et al. [39] reported that upon functional reconsti-
tution of purified skeletal muscle VGCC their data could only
be explained by the association of the VGCCs into larger
oligomeric functional complexes. It has also proven extremely
difficult to express the o 1.1 polypeptide in heterologous sys-
tems and this may also pertain to the dimeric structure. Of
possible relevance for both geometric and stoichiometric asso-
ciation of VGCCs and RyRs is the finding by Marks and
coworkers that RyR tetramers (RyR1 and RyR2) when re-
constituted into proteoliposomes formed oligomers of tet-
ramers that were functional, with the channels gating simul-
taneously [40]. Previous modelling of the VGCC dimer with
RyR1 as described in [21] found that the VGCC putative
interaction sites with RyR1 correlated roughly to the spacing
of the IpTx, binding sites [29]. In a similar manner we present
here (Fig. 3) a possible configuration of the skeletal muscle
VGCC dimer (refined structure recently reported in [23]) and
RyR1 complex. Illustrated in Fig. 3A is a potential arrange-
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Fig. 3. Model depicting putative interaction sites of two skeletal muscle VGCC dimers with a RyR1 tetramer. A: Two VGCC dimers (surface
rendered and displayed at 2.56 above the mean density) superimposed on the RyR extracellular face with respect to the jSR (adapted from
[29]). B: Side view (parallel to the membrane plane) of the VGCC-RyR1 complex.

ment of two VGCC dimers superimposed onto the face of the
RyR1 tetramer that extends towards the T-t membrane.
Shown in Fig. 3B is a side view (parallel to the membrane
plane) of a VGCC-RyR1 complex.

8. Conclusions

Whether the monomeric, dimeric or higher oligomeric
forms of the skeletal or cardiac VGCC represent functional
units remains to be established. How the observation of olig-
omeric forms of both the VGCCs and RyR tetramers can be
equated to freeze-fracture studies (e.g. [13]) is not yet clear,
though it is now imperative to establish whether oligomeric
units play a functional role in vivo, and if so, to establish
whether oligomer formation is one of the determinants that
dictates a mechanical interaction mechanism or CICR mode
of E-C coupling. The obvious differences between the struc-
tures described in Fig. 2 illustrate that structural studies of
VGCCs are less well developed than for example the RyR.
However, there are also common elements, with a consensus
that the extracellular a2 polypeptide (an ~ 140 kDa glyco-
protein, with its functional role not fully resolved) is a domain
extending out from a large rod- (Murata), heart- (Serysheva),
globular (Wolf), or arch- (Wang) shaped density. For trans-
lation of structural data to physiological function a priority
will be to extend the resolution of the structures to identify
subunit boundaries with more precise labelling studies (e.g.
Fab fragments) and to also examine interchannel VGCC-
RyR crosstalk. EM coupled with SPA methods presents an
ideal approach to examine whole protein—protein interactions,
with restrictive yields, and for a RyR-VGCC complex that
may equate to a macromolecular assembly with a molecular
mass in excess of 4 MDa.
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