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Abstract Abnormally high concentrations of B-amyloid peptide
(AB) and amyloid plaque formation in Alzheimer’s disease (AD)
may be caused either by increased generation or by decreased
degradation of AP. Therefore, activation of mechanisms that
lower brain AP levels is considered valuable for AD therapy.
Neuronal upregulation of neprilysin (NEP) in young transgenic
mice expressing the AD-causing amyloid precursor protein mu-
tations (SWAPP) led to reduction of brain A levels and delayed
AP plaque deposition. In contrast, a comparable increase of
brain NEP levels in aged SWAPP mice with pre-existing plaque
pathology did not result in a significant reduction of plaque
pathology. Therefore, we suggest that the potential of NEP
for AD therapy is age-dependent and most effective early in
the course of AD pathophysiology.

© 2004 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Accumulation of B-amyloid peptide (AP) in the brain is
considered the first pathological event leading to Alzheimer’s
disease (AD) [1]. High levels of fibrillary f-amyloid are depos-
ited in diseased brain, which is associated with loss of synap-
ses, impairment of neuronal functions and loss of neurons [2—
5]. An imbalance between AP production and clearance may
trigger AD [1]. Therefore, reduction of AP production or its
accelerated clearance from the brain have been proposed as
therapeutic targets for anti-Af drug development [2,6-8]. The
enzyme neprilysin (NEP) has convincingly been shown to de-
grade AP in vivo [2,9-12]. NEP expression is down-regulated
in wild-type and transgenic mice overexpressing the AD-caus-
ing Swedish mutations of human amyloid precursor protein
(APP) in neurons (SwWAPP mice) as a result of aging [13,14],
as well as in affected areas of AD brains [15]. Aged SWAPP
mice exhibit numerous compacted amyloid plaques consisting
mainly of transgenically derived human A [16]. We recently
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showed that injections of aggregated AP into brains of
young pre-symptomatic SWAPP mice led to an up-regulation
of endogenous NEP expression that resulted in a reduction of
AP levels and a delay of amyloid plaque deposition in these
brains [12]. Therefore, to evaluate the effects of aging on
NEP-related AB clearance in vivo, we performed similar in-
jections in old SWAPP mice with profound amyloid plaque
pathology to study whether a similar mechanism will be trig-
gered in aged mice as was shown in the young SWAPP mice.
We report here that, as in young mice, AB4, aggregates caused
sustained increases of NEP levels in brains of old SwAPP
mice. These increases, however, were not associated with sig-
nificant reduction of brain concentrations of AP, or with re-
moval of pre-existing brain amyloid plaques in vivo.

2. Materials and methods

2.1. Animals and tissue preparation

Synthetic ABy_4, (ABs) and ABs—1 (ABR) were both purchased
from Bachem and reconstituted in phosphate-buffered saline (PBS,
pH 7.4) by shaking at 1000 rpm for 48 h at 37°C. At the age of
1 year, SWAPP mice [12] received a unilateral injection of 1 pul 350
UM stock concentration fibrillar ABg, (n=15, AB high dose group) or
35 uM stock concentration (n=4, AP low dose group) as described
[12]. Control groups consisted of SWAPP littermates which received
injections of 1 pl 350 uM stock concentration ABR (n=6, ABR high
dose group) or did not receive any injection (n=4, un-injected).
Twenty weeks after the injections mice were deeply anesthetized,
blood was collected prior to perfusion and serum was prepared.
Mice were then perfused transcardially with ice-cold PBS. The frontal
parts of the brain containing interaural regions 6-3 were divided into
the sagittal halves and were frozen immediately. These brain parts lay
outside the injected brain area. The contralateral tissue to the injec-
tion site was homogenized for Western blotting and enzyme-linked
immunosorbent assay (ELISA). The rest of the brains were fixed for
48 h in 4% paraformaldehyde at 4°C.

2.2. Histology

For immunohistochemistry, tissue was washed several times in PBS
and embedded in paraffin. Five um thick frontal adjacent sections
were probed with antibodies exclusively recognizing AP, (Signet),
APB4o (Sigma) or both (4G8, Serotec). Sections were also stained si-
multaneously with 4G8 combined with antibodies against ionized cal-
cium binding adapter molecule 1 (Iba-1) as a microglial marker [17,18]
or glial fibrillary acidic protein (GFAP) as an astrocytic marker (Ad-
vanced Immunochemicals). The numbers of amyloid plaques stained
with 4G8 were determined in parietal cortex and hippocampi of all
mice on frontal sections 250 um apart, beginning with a random
section in interaural region 3, and the average number of plaques
per section for each mouse was calculated as described [12].

2.3. Biochemical analysis
For combined Western blotting and A ELISA, frontal brain tissue
from the sagittal half of the brains contralateral to the injection sites,
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containing interaural regions 6-3, was homogenized in a 20-fold wet
weight amount of lysis buffer containing 100 mM Tris, 150 mM NaCl,
1% Triton X-100 and 1Xcomplete proteinase inhibitor cocktail
(Roche) pH 7.8. NEP Western blotting was performed as published
[12]. After stripping [12], the blots were probed for B-actin (Abcam) as
loading controls and for normalization of densitometric readings of
NEP bands. Optical densities of immunoreactive protein bands were
corrected by background subtraction and quantified using the NIH
Image software.

For quantification of Af levels by ELISA, brain homogenates were
centrifuged at 100000 X g for 45 min at 4°C. Supernatant fluids were
removed and used for determination of soluble AP and the resulting
pellets were dissolved in 70% formic acid for quantitation of aggre-
gated AB. Consequently, the amounts of total AP and ABs were
measured in both preparations by ELISA as described [12,19]. Fur-
thermore, the A4, levels were determined in blood sera collected
before sacrificing the mice [19].

In addition, the anti-Ap antibody titers were determined in sera
collected before sacrificing the mice and compared to the correspond-
ing levels of SWAPP mice at 1 year of age, as described [12]. More-
over, the NEP enzymatic activity was measured in the brain homo-
genates according to published methods [12,20].

2.4. Statistical analysis

Data were collected by investigators blinded to the treatment of the
mice. Comparison of the groups was done by Kruskal-Wallis test and
the pairwise comparisons of the significance were done post-hoc with
non-parametric Mann-Whitney U-test. In all graphs means + S.E.M.
are given.

3. Results

3.1. Dose-dependent ABy-induced brain concentrations of NEP

To determine whether aging affects the regulation of the
endogenous brain NEP levels in vivo, as demonstrated in
the young SWAPP mice [12], aggregated AP or ABR was in-
jected into the brains of SWAPP mice. We also tested whether
the elevation of NEP levels in the brain depended on the dose
of injected fibrillar AB by injecting either a high dose that
induced the observed effect in the young SwAPP mice [12]
or a 10-fold smaller dose in the same volume. Twenty weeks
after the injections, control littermates, i.e. un-injected or
SwAPP mice injected with high dose of ABR peptide, exhib-
ited similar amounts of NEP in brain homogenates. A trend
towards higher NEP levels was observed in brains of mice
injected with low dose AP. In contrast, all SWAPP mice in-
jected with high dose AP showed a marked elevation of NEP
protein levels in the brain (Fig. 1A). B-Actin Western blotting
was performed as loading control and for normalization of
the NEP protein amounts. Quantitatively, when normalized to
corresponding B-actin levels, NEP protein levels in brains of
the un-injected group were similar to the ABR or the low dose
AP injected group, whereas NEP levels were on average 11-
fold higher in mice injected with high dose AP (Fig. 1A,B).
NEP enzymatic activities in brains of mice injected with high
dose AP were significantly higher when compared to other
groups (Fig. 1C). The elevation of NEP enzymatic activity
in brains of mice injected with low dose AP did not reach
statistical significance. Moreover, no changes of NEP levels
between control injected SWAPP mice and their un-injected
SwAPP or non-transgenic littermates were observed (unpub-
lished observations). These data show that NEP protein levels
and enzymatic activity were increased following the AP injec-
tions and that this increase depended on the dose of injected
AB. The NEP enzyme inhibitor thiorphan blocked these in-
crease to background levels (Fig. 1C), confirming the specific-
ity of the enzymatic assay.
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Fig. 1. A: Western blot analysis of all mice involved in this study.
Twenty weeks after the injections, NEP protein levels were elevated
in brains of all mice injected with high dose ABs, (AP high dose,
n=1>5), whereas in comparison to un-injected littermates (n=4), NEP
levels were not changed in mice injected with low dose ABs (AP
low dose, n=4) or with reversed AB4, at the same high concentra-
tion (ABR high dose, n=6). B: Semiquantitative densitometric
quantification of NEP immunoblots (as presented in A), normalized
against the corresponding B-actin bands. The corresponding value
of the un-injected group was set as 100%. Despite a large variability
in individual mice, brain NEP protein levels were significantly high-
er after AP injections (P=0.05) when compared with the un-in-
jected transgenic littermates. Changes in brain NEP levels of ani-
mals in other groups did not reach statistical significance. C: When
compared to un-injected littermates, only mice that received injec-
tions of high dose AP exhibited significant elevation of NEP pepti-
dase activity in brain protein extracts (P =0.001), whereas no signifi-
cant changes were observed in other groups. NEP enzymatic
activities were blocked to background level by thiorphan.

3.2. Resistance of aggregated AP to NEP-dependent
degradation

To determine whether the high brain NEP levels were asso-
ciated with reduced concentrations of transgenic AP, we mea-
sured the concentrations of total AR and A4, in brain tissue
by ELISA systems that specifically recognized intact human
AP [12,19]. Surprisingly, neither the levels of detergent-soluble
(Fig. 2A,B) nor the amounts of aggregated (i.e. formic acid-
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Fig. 2. Amyloid plaque pathology was not changed by A4, injections. Brain levels of detergent-soluble total AR (A) and AB4, (B) were mea-
sured in brain homogenates of frontal brain tissue. Additionally, levels of formic acid-extractable total AR (C) and APs, (D) were also quanti-
fied in the same brain preparations. When compared to the un-injected group, no consistent, significant change of total AB or the more amy-
loidogenic AB4, could be found in treated groups. E: AP4, levels in sera of all mice were similar and did not differ due to our treatment. F:
The elevation of NEP was insufficient to alter the average number of 4G8-positive plaques in cortical and hippocampal brain areas of the
treated mice. G—L: All mice exhibited numerous amyloid plaques at the end of the experiment that were immuno-labeled with the 4G8 anti-
body as well as antibodies that specifically recognize either AB4y or AB4,. Scale bar: 250 um.

soluble) (Fig. 2C,D) total brain AP (Fig. 2A,C) and A
(Fig. 2B,D) were significantly altered in SWAPP mice injected
with high dose AP when compared to the other groups. In
addition, the levels of serum APy, were similar for all groups
(Fig. 2E).

We then tested whether the higher brain NEP levels were
associated with reduced amyloid plaque pathology. In agree-
ment with results obtained for the brain AP levels, no signifi-
cant differences in numbers of 4G8-immunoreactive plaques
could be found in any group (Fig. 2F). SWAPP mice (19/19)
tested at the end of the experiment exhibited varying numbers
of 4G8-positive amyloid plaques. We observed mice with high
and low amyloid plaque load in all groups. Finally, to answer
the question whether the treatment specifically affected one
AP species, we stained the sections with antibodies recogniz-

ing AP4o or AB4, only. Again, plaque staining with these anti-
bodies did not seem to change with our treatment (Fig. 2G-L)
even though AB-treated mice showed a less intense staining of
the plaques.

An antibody-mediated immune response against AP after
peripheral immunization led to removal of amyloid plaques
of AD mouse models [21] and AD patients [22]. Therefore, we
examined whether endogenous antibodies were generated in
treated mice. Very low amounts of anti-Af} antibodies were
found in sera of all mice which did not change in any treated
group. In addition, no mouse-specific anti-Af antibodies were
found in any brain by immunochemical methods. These data
are in line with published data that no anti-Ap antibody was
produced by our treatment [12].

Activation of glial cells is often found as an accompanying
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Fig. 2 (Continued).

event of the brain amyloidosis in SWAPP mice and in AD
patients. Moreover, microglia and astrocytes are implicated
in the removal of AP from brains of AD mouse models
[23,24] and in human patients under therapy conditions [22].
Therefore, we analyzed the presence of activated glial cells in
response to our treatments by immunohistochemistry. The
degree of astrogliosis and microglial staining depended on
the plaque pathology in individual mice but did not correlate
with the treatment (Fig. 3).

4. Discussion

The aim of this study was to determine whether high NEP
protein levels can reduce the pre-existing plaque pathology in
brains of aged SWAPP brains. In a previous study, we showed
that injections of synthetic fibrillar AB4; into young SwAPP
mouse brains, at an age before the onset of amyloid plaque
deposition, resulted in neuronal up-regulation of NEP, cleav-
age and removal of AP and consequently led to a delay of
amyloid plaque deposition [12]. The results of the present
study show that similar treatment of aged SWAPP mice, al-
ready containing numerous amyloid plaques, also caused a
sustained increase of NEP. Unlike the young mice, however,

this treatment could not effectively reduce brain A levels or
remove the existing amyloid plaques from brains of aged
mice.

The failure to remove AP from the brain is crucial for the
development of AD [5,25]. Therefore, defining the temporal
window for removal of AP from the brain is of prime impor-
tance for designing any intervention to ameliorate AD path-
ology. NEP levels are reduced in affected AD brains and in
brains of aged mice [15,25,26]. Moreover, the heptapeptide
spinorphin, the endogenous NEP inhibitor in human brain
[2,27], as well as the endogenous mouse NEP inhibitor sialor-
phin [28] affect amyloid metabolism during aging [2,27,28]. It
is therefore conceivable that the modulation of biological
NEP activity by amyloidogenic factors with increasing age
may be responsible for the observed differences in NEP bio-
logical activity in the young vs. aged mice in vivo.

Mechanistically, stereotaxic deposition of highly insoluble
AP into brains stimulated a transcriptional activation of NEP
gene expression [12]. This finding is further strengthened by
results of the current study: the elevation of brain NEP level
was highly specific to AB-injected brains. Only mice that were
injected with high dose, but not with low dose Af or ABR in
high concentrations, exhibited an elevated NEP protein and
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Fig. 3. In all groups reactive astrocytes and microglia were distrib-
uted in the brain and were mostly found colocalized with the amy-
loid plaques. Representative double immunohistochemical staining
of B-amyloid plaques (4GS, green) in combination with a microglia
cell marker (Iba-1, red) or with an astrocytic marker (GFAP, red)
are shown. Scale bar: 200 pm.

enzymatic activity. These results emphasize that the observed
NEP elevation is AB-specific and dose-dependent.

Unlike the young SWAPP mice that received the same treat-
ment [12], and despite high NEP levels, no significant alter-
ation of AD pathology was found in aged mice already ex-
hibiting amyloid plaques at the beginning of the experiment.
We therefore conclude that elevated brain NEP levels could
not reduce the aggregated brain AP as efficiently as the reduc-
tion of the detergent-soluble AB pool observed in young
SwAPP mice. This finding can be explained by the possibility
that an increase in NEP did not suffice to digest plaque-asso-
ciated fibrillar AP, because in the aged mice the pre-existing
compacted plaques may be far less accessible to the NEP
enzyme than soluble AP of young SwAPP mice with no fi-
brillar AP pathology at the time of injection [12,29]. Another
explanation for the differences of the effects of high cerebral
levels of NEP on young vs. aged SWAPP mice may include an
age-dependent modulation of the activities of endogenous in-
hibitors such as sialorphin. The first hypothesis is supported
by the observation that 20 weeks after injection, the injected
fibrillar AP was detectable in brains of young SwAPP mice
which showed an inhibition of A plaque pathology [12], in-
dicating that the fibrillar AP was resistant to cleavage by up-
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regulated NEP. Taken together, these data suggest that high
levels of murine NEP were not able to degrade aggregated A
efficiently to affect the overt amyloid pathology of the aged
SwAPP mice and are in agreement with studies demonstrating
that NEP degrades monomeric or low oligomeric forms of A}
[2,10,20].

Our data appear in contrast to a study by Marr and col-
leagues demonstrating that the injection of a lentivirus ex-
pressing human NEP resulted in a reduction of amyloid
plaque load in a transgenic AD mouse model [11]. Whereas
in their study the efficacy of virally expressed human NEP was
tested, our study aimed at the long-term therapeutic efficacy
of high NEP levels. There are two other substantial differences
between our study and the above study. First, in our study the
murine endogenous NEP was up-regulated, whereas in that
study the human NEP was expressed. Secondly, we found the
NEP expression to be neuronal, whereas in their study neu-
rons and astrocytes must be assumed to be transduced by
lentiviral application because NEP expression was driven by
the CMV promoter. Therefore, the reasons for the above-
mentioned discrepancy may be found in the experimental
set-up. It is possible that mechanisms targeted by viral injec-
tions, i.e. massive ectopic transgenic expression of human
NEP by neurons and astrocytes, may be conceptually different
from the targeted long-term presence of elevated levels of mu-
rine NEP in neurons. It also must be stressed that human and
mouse NEP proteins are not identical. Blast analysis shows
that these two enzymes exhibit differences in many amino
acids, including some in close vicinity to the active center of
the enzyme [30]. Moreover, human A differs from murine A}
in three amino acids, one of which is a cleavage site for hu-
man NEP (Phel0— Tyr). Because human A is expressed in
the mice utilized in both studies, the different enzymatic ac-
tivity and substrate specificity of human vs. murine NEP
could cause the apparent observed discrepancy.

Further research is necessary to characterize the mecha-
nisms of NEP function in brain amyloid formation and the
role of physiological regulators, including endogenous NEP
inhibitors, related enzymes and the above-mentioned substrate
specificity. In particular, non-invasive strategies of increasing
NEP levels, or activating its functions, may prove helpful to
treat subjects at risk of AD.
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