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Abstract The plant glycosyltransferases, f1,2-xylosyltransfer-
ase (XylIT) and core al,3-fucosyltransferase (FucT), are respon-
sible for the transfer of B1,2-linked xylose and core al,3-linked
fucose residues to glycoprotein /N-glycans. These glycan epi-
topes are not present in humans and thus may cause immuno-
logical responses, which represent a limitation for the therapeu-
tic use of recombinant mammalian glycoproteins produced in
transgenic plants. Here we report the genetic modification of
the N-glycosylation pathway in Arabidopsis thaliana plants.
Knockout plants were generated with complete deficiency of
XyIT and FucT. These plants lack antigenic protein-bound V-
glycans and instead synthesise predominantly structures with
two terminal PN-acetylglucosamine residues (GlcNAc,;Man;-
GlcNAc,).

© 2004 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

N-Glycosylation is one of the major posttranslational mod-
ifications of proteins. Although the first steps in the N-glyco-
sylation pathway leading to the formation of oligomannosidic
structures are conserved in plants and animals, the final steps
in the formation of complex N-glycans differ [1,2]. In partic-
ular, plant N-linked glycans contain B1,2-xylose and core
o1,3-fucose, which are not present in mammals and therefore
constitute epitopes for carbohydrate reactive antibodies.
Moreover, the antigenicity of complex plant N-glycans is
well documented [3-7]. Complex plant N-glycans containing
B1,2-xylose and core o1,3-fucose are regarded as the major
class of the so-called ‘carbohydrate cross-reactive determi-
nants’ reactive with IgE antibodies in the sera of many allergic
patients [7-10].

Plants are attractive hosts for the production of recombi-
nant proteins of pharmaceutical interest as they are inexpen-
sive and versatile systems, amenable to rapid and economical
scale-up [11]. However, the inability to perform authentic N-
glycosylation is a major limitation of plants as expression
systems. Different strategies have already been applied in
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plants to reduce B1,2-xylose and core ol,3-fucose residues.
These include the overexpression of Pl,4-galactosyltransfer-
ases [12,13], which compete for the same acceptor substrate
as XylT and FucT, and the retention of glycoproteins within
the endoplasmic reticulum [14]. However, the complete elim-
ination of B1,2-xylose and core ol,3-fucose has not been
achieved. Here we report the generation of knockout plants,
which completely lack XylT and FucT activity. The plants
accumulate high amounts of humanised N-glycan structures
that do not contain any B1,2-xylose and core al,3-fucose
residues.

2. Materials and methods

2.1. Plant material

Arabidopsis thaliana wild-type plants ecotype Columbia and T-
DNA insertion lines were grown in soil at 22°C with a photocycle
of 16 h light/8 h dark. Homozygous mutants were crossed and al-
lowed to self-pollinate in the F1 generation. Double and triple mu-
tants were analysed in the F2 generation.

2.2. Identification of T-DNA mutants

The T-DNA mutant collection of the Arabidopsis Knockout Fa-
cility at the University of Wisconsin were screened as recommended
(http://'www.biotech.wisc.edu/Arabidopsis/) [15]. The facility contains
two populations (ecotype Wassilewskija) of 60480 and 72960 lines
respectively. Both populations were screened with the FucTB forward
primer 5'-TTTAAAACCTCTAGACCATCAACCCAACT-3' and re-
verse primer 5'-AACATTTATGCATCCAGCTATCAAGAACA-3'.
The reverse primer in combination with the left border T-DNA prim-
er JL202 (5'-CATTTTATAATAACGCTGCGGACATCTAC-3")
were used to amplify the insertion. For FucTA and XylT plants in-
sertion mutant information was obtained from the SIGnAL database
(http://signal.salk.edu) [16]. We thank the Salk Institute Genomic
Analysis Laboratory for providing the sequence-indexed A. thaliana
T-DNA insertion mutants. Seeds for the corresponding lines were
purchased from the Nottingham Arabidopsis Stock Centre, Notting-
ham, UK (http://nasc.nott.ac.uk/).

2.3. Polymerase chain reaction (PCR) screening of mutant plants
Genomic DNA was extracted from young A. thaliana seedlings by
macerating a young leaf with grinding balls in a mixer mill. 700 pl of
extraction buffer (200 mM Tris—HCI, pH 8.0, 250 mM NacCl, 25 mM
ethylenediamine tetraacetic acid (EDTA) and 0.5% sodium dodecyl
sulphate (SDS)) were added and the suspension was mixed thor-
oughly. The extracts were centrifuged for 1 min at 16000Xg in a
microcentrifuge and the supernatant was mixed with an equal volume
of isopropanol and immediately centrifuged for 5 min at 16000 X g.
The dried pellet was resuspended in 100 pl of autoclaved deionised
water and 1 pl was used for PCR amplification. Each reaction con-
tained 1 XPCR buffer (Promega), 0.1 mM deoxyribonucleoside tri-
phosphate (ANTP), 0.24 uM oligonucleotides and 2.5 units Taq poly-
merase (Promega). PCR products, which were to be subjected to
DNA sequencing, were amplified using Pfu polymerase (Promega).
DNA sequencing was performed in a thermocycler using the BigDye
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terminator v1.1 cycle sequencing kit and an ABI Prism 3100 genetic
analyser (Applied Biosystems).

2.4. Reverse transcription (RT)-PCR

Leaves were ground in liquid nitrogen and RNA was extracted
following the recommendations of the Trizol protocol. RT reactions
were carried out from 500 ng of total RNA using either oligo(dT)
primers or gene-specific primers and AMV reverse transcriptase
(Promega) in a final volume of 20 ul. 1 pl was used for PCR ampli-
fication. Control reactions were performed without reverse transcrip-
tase.

2.5. Immunoblot and dot blot analysis

Plant material was ground in liquid nitrogen, resuspended in 10 ul
phosphate-buffered saline buffer (137 mM NaCl, 2.7 mM KCl, 10
mM Na,HPOy4, 2 mM KH;PO4, pH 7.4) per mg of plant material
and cleared by centrifugation (two times 3 min at 16000Xg). An
aliquot of the supernatant was immediately mixed with SDS—polyac-
rylamide gel electrophoresis (PAGE) loading buffer, denatured at
95°C for 5 min and subjected to 12.5% SDS-PAGE under reducing
conditions. Separated proteins were either stained according to the
Bio-Rad silver staining protocol or blotted onto Hybond enhanced
chemiluminescence (ECL) nitrocellulose membranes (Amersham
Pharmacia Biotech). The blot was blocked in 5% (w/v) non-fat dry
milk in Tris-buffered saline (TBS, 20 mM Tris-HCI, pH 7.6, 137 mM
NaCl) for 1 h and incubated in a 1:5000 dilution of the rabbit anti-
horseradish peroxidase antibody [4] in TBS supplemented with 0.1%
(v/v) Tween 20. The detection was performed after incubation in a
1:10000 dilution of a horseradish peroxidase-conjugated goat anti-
rabbit antibody (Sigma) in TBS-Tween with Supersignal West Pico
chemiluminescent substrate (Pierce). The protein content was deter-
mined using the BCA protein assay protocol (Pierce) and bovine
serum albumin as a standard. For the dot blot analysis plant material
was resuspended in 50 pl phosphate-buffered saline per mg plant
material and 1 pl of a 1:5 dilution was directly spotted onto Hybond
ECL nitrocellulose membranes. The blot was developed as described
for the immunoblot.

2.6. Preparation of N-linked glycans and matrix-assisted laser
desorption ionisation time-of-flight ( MALDI-TOF) mass
spectrometry

500 mg of fresh leaves from 8-week-old plants were ground and

suspended in 2.5 ml of 5% (v/v) formic acid and 0.1 mg/ml pepsin.
The slurry was incubated at 37°C for 20 h with occasional stirring.
Insoluble material was then removed by centrifugation. From the
supernatant glycopeptides were enriched by cation exchange and gel
filtration as described previously [17]. Subsequently N-glycans were
released from glycopeptides with peptide N-glycosidase A (Roche)
and purified by cation exchange chromatography, gel filtration and
passage through a reversed phase matrix. MALDI-TOF mass spectra
were acquired on a DYNAMO (Thermo Bioanalysis) linear TOF
mass spectrometer capable of dynamic extraction using 2,5-dihydroxy-
benzoic acid as the matrix.
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(At5g55500)
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(At1g49710)
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Fig. 1. Schematic representation of the gene structure and the T-
DNA insertions. The size of the T-DNA insertion is not drawn to
scale. The gene locus identifier is shown in brackets. A: XyIT. B:
FucTB. C: FucTA.
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Fig. 2. MALDI-TOF mass spectra of oligosaccharides from endoge-
nous proteins. A: Wild-type A. thaliana. B: XylT knockout (xylt).
C: FucTA/FucTB double knockout (fuct). D: FucTA/FucTB/XylT
triple knockout plants (xylt/fuct). GlcNAc,Man;XylFucGlcNAc,
(GnGnXF); GlcNAc,MansFucGleNAc, (GnGnF); GlcNAc,Mans-
XylGlcNAc, (GnGnX); GlecNAc;Man3GleNAc, (GnGn). The la-
belled peaks represent (M+Na)™ ions. Other peaks are potassium
adducts of the same glycans.

3. Results and discussion

3.1. Generation of Bl,2-xylose-deficient plants

The enzyme that catalyses the transfer of xylose in B1,2-
linkage to the N-linked oligosaccharides of glycoproteins is
XyIT and has been characterised in our laboratory recently
[18,19]. In the present work we attempted to generate PB1,2-
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xylose-deficient A. thaliana lines by inactivation of XylT. Ac-
cording to information from the sequencing of the A. thaliana
genome XylT should be present as a single-copy gene. We
screened collections of insertion mutation lines for the pres-
ence of putative XylT knockouts. These collections (Arabi-
dopsis Knockout Facility, Salk Institute Genome Analysis
Laboratory (SIGnAL)) [15,16] contain stable Agrobacterium
tumefaciens transferred DNA (T-DNA) insertions randomly
distributed over the whole genome. While the 133440 Arabi-
dopsis Knockout Facility lines did not contain an insertion
within the XyIT gene, one line was identified in the SIGnAL
collection (Salk_42226) that contained a T-DNA insertion in
exon 1 (Fig. 1A). Subsequently homozygous plants were gen-
erated and analysed. The insertion resulted in the formation
of a hybrid T-DNA/XylT mRNA as confirmed by RT-PCR
and sequence analysis.

To monitor changes in the N-glycosylation pattern due to
the inactivation of the XylT gene endogenous glycoproteins
from the mutant line were subjected to total N-glycan analysis
by MALDI-TOF mass spectrometry. Absence of xylose resi-
dues in the N-glycans can be monitored by a reduction of the
mass of the respective peaks (132 mass units for xylose). The
mass spectra of wild-type A. thaliana plants contained three
major peaks. These three peaks were assigned to the complex-
type N-glycans Man;XylFucGIcNAc, (m/z 1212), GlcNAc-
Man; XylFucGIcNAc; (m/z 1415) and GlcNAc,Man;XylFuc-
GIcNAc, (m/z 1618), all of which contained B1,2-xylose and
al,3-fucose residues (Fig. 2A). The amount of all complex-
type N-glycans that lacked xylose and fucose residues was
below 2% (Table 1). Compared to the mass spectra derived
from wild-type plants the spectra of the XylIT insertion line
lacked the three major complex-type N-glycan peaks carrying
B1,2-xylose. Instead Man3zFucGIlcNAc, (m/z 1080), GlcNAc-
Man;FucGIcNAc, (m/z 1283) and GIlcNAc,ManzFucGle-
NAc; (m/z 1486) were most abundant (Fig. 2B and Table
1). This result clearly demonstrates the inactivation of XylT

Table 1
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by the T-DNA insertion and confirmed that A. thaliana con-
tains only one functional XylT gene responsible for the at-
tachment of B1,2-xylose to N-glycans.

3.2. Generation of core al,3-fucose-deficient plants

The attachment of al,3-linked fucose to the asparagine-
linked GIcNAc is catalysed by FucT, which has been charac-
terised in our laboratories [20,21]. These findings demon-
strated the presence of two genes for FucT (FucTA and
FucTB) in A. thaliana, whereby in vitro enzyme activity was
detected only for FucTA [21,22].

As described for XylT, T-DNA collections were screened
for insertions within the two FucT genes. In the Arabidopsis
Knockout Facility collection one line was identified with an
insertion in the first intron of the FucTB gene (Fig. 1B) and a
T-DNA insertion within the start codon of FucTA (Fig. 1C)
was detected in the SIGnAL collection (Salk_87481). Se-
quence and RT-PCR analysis of the subsequently generated
homozygous lines revealed T-DNA/FucT mRNA hybrids.

The two mutant FucT lines were subjected to total N-gly-
can analysis by MALDI-TOF mass spectrometry. Absence of
fucose residues on the N-glycans can be monitored by a re-
duction of the mass by 146 mass units. In contrast to the mass
spectra derived from XylT-deficient plants, the spectra of the
FucTA and FucTB T-DNA insertion lines were not signifi-
cantly different to wild-type (data not shown). Thus, both
FucTA and FucTB seem to be active in vivo. Therefore, to
generate plants deficient in FucT activity double knockouts
that lack both FucTA and FucTB were generated. The two
FucT insertion lines were crossed, double T-DNA insertion
lines were isolated and the N-glycans from endogenous pro-
teins were analysed by MALDI-TOF mass spectrometry. As
expected the three major peaks of the complex-type N-glycans
differed between wild-type and the double insertion line (Fig.
2C and Table 1). Man;XylGlcNAc, (m/z 1066), GlcNAc-
Man; XylGIcNAc, (m/z 1269) and GlcNAc,; Man; XylGlcNAc,

Relative amounts of N-glycans detected in A. thaliana wild-type and knockout lines

m/z (M+Na)* Structures wt (%) xylt (%) fuct (%) xylt/fuct (%)
truncated and complex-type structures
933.8 Man3;GIcNAc, 1.7 - 13.3
1065.9 Man; XylGlcNAc, 1.6 - 25.2 -
1080.0 ManzFucGIcNAc, 18.2 - -
1137.0 GIcNAcMan;GleNAc, 1.4 1.5 - 13.7
1212.1 Man; XylFucGlcNAc, 26.4 - - -
1228.1 Many XylGIcNAc, - 2.0 -
1269.1 GlcNAcMan; XylGleNAc, 1.5 - 23.1 -
1283.2 GlcNAcMansFucGlcNAc, 10.8 — -
1340.2 GlcNAc;Man3GleNAc, - 2.7 1.2 423
1415.5 GlcNAcMan; XylFucGIcNAc, 15.0 — — —
1431.3 GlcNAcMany XylGleNAc, - 1.3 -
1472.1 GlcNAc;Man;XylGleNAc, 1.4 - 26.8 -
1486.4 GlcNAc;ManzFucGleNAc, 25.5 - -
1618.5 GleNAc;Man; XylFucGleNAc, 26.6 - - -
total 73.9 60.4 79.6 69.3
oligomannosidic structures
1258.1 MansGIcNAc, 10.8 17.5 7.8 15.4
1420.2 MangGlcNAc, 6.1 6.4 38 5.3
1582.4 Man;GIcNAc, 2.7 5.9 3.0 35
1744.5 MangGIcNAc, 3.5 5.6 2.8 4.5
1906.7 ManyGIcNAc, 3.0 4.2 3.0 2.0
total 26.1 39.6 20.4 30.7

Percentages were calculated based on peak areas from MALDI-TOF mass spectra. wt, A. thaliana wild-type line; xylt, B1,2-xylosyltransferase
knockout line; fuct, core al,3-fucosyltransferase double knockout line; xylt/fuct, triple knockout line. The amounts of the N-glycans with two

terminal N-acetylglucosamine residues are shown in bold.
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Fig. 3. Detection of immunogenic epitopes in endogenous proteins
from different A. thaliana lines. A: SDS-PAGE and silver staining.
B: Immunoblot probed with antibodies specific for 1,2-xylose- and
a1,3-fucose-containing N-glycans. 3 pg of endogenous proteins were
loaded per lane. A. thaliana wild-type (wt); A. thaliana mutant (cgl),
which does not produce complex N-glycans [23]; FucTA/FucTB/
XylT triple knockout plants (xylt/fuct); XylT knockout (xylt) and
FucTA/FucTB double knockout (fuct).

(m/z 1472) oligosaccharides were the main structures present,
demonstrating the complete elimination of complex-type N-
glycans with core o1,3-fucose residues. Our results prove that
inactivation of both FucTA and FucTB is necessary to abol-
ish core al,3-fucosylation in 4. thaliana. Hence, the A. thali-
ana genome contains two functionally active core al,3-fuco-
syltransferases, which seem fully capable to complement each
other.

3.3. Generation of Bl,2-xylose- and core ol,3-fucose-deficient
plants

To obtain plants lacking both B1,2-xylose and core al,3-
fucose the XylT knockout line was crossed with the FucTA/
FucTB double knockout. The resulting progeny was screened
for the presence of triple knockout plants using dot blots and
anti-horseradish peroxidase antibodies, which recognise B1,2-
xylose- and core ol,3-fucose-containing epitopes [4]. Out of
381 seedlings analysed four extracts of endogenous proteins
did not show any detectable staining, which indicated the
successful generation of homozygous triple knockout plants.
The presence of all three T-DNA insertions was confirmed by
PCR. Total N-glycan profiling revealed the complete absence
of B1,2-xylose- and core al,3-fucose-containing oligosaccha-
rides (Fig. 2D). The main peak (42% of all N-glycans) was
GIcNAc;Man;GIcNAc, (m/z  1340) accompanied by
GIcNAcMan;GIecNAc, (m/z 1137) and Man3GIcNAc, (m/z
934). To confirm the complete absence of P1,2-xylose and
core ol,3-fucose on endogenous glycoproteins of the triple
knockout plants immunoblot analysis using the polyclonal
anti-horseradish peroxidase antibodies was carried out.
Wild-type, XylT and FucTA/FucTB knockout plants dis-
played an intense staining of multiple bands. In contrast, no
staining was detected in the triple insertion line clearly indi-
cating the absence of any antigenic N-glycans on endogenous
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glycoproteins (Fig. 3). Absence of staining was also observed
for the A. thaliana cgl mutant, which accumulates high-man-
nose instead of complex-type N-glycans as a consequence of
the inactivity of N-acetylglucosaminyltransferase I [23]. The
strong reactivity of endogenous proteins from XylT and Fuc-
TA/FucTB knockout plants, with the anti-horseradish peroxi-
dase antibodies, is consistent with the observation that both
B1,2-linked xylose and core al,3-linked fucose, independently
of each other constitute antigenic epitopes [7]. This result is in
agreement with previous results, where the expression of XylT
in insect cells led to the production of antigenic glycan epi-
topes on insect proteins [18]. Therefore, strategies that lead to
the deficiency of only one of the two antigenic sugar residues
as discussed by Ko et al. [14] will not be sufficient for the
production of recombinant glycoproteins devoid of immuno-
reactive N-glycans in plants.

FucTA/FucTB/XylT triple knockout lines were viable and
revealed no obvious morphological phenotype under standard
growth conditions. Hence, we have generated, for the first
time, higher plants that lack potentially allergenic and immu-
nogenic B1,2-xylose and core al,3-fucose residues without any
deleterious impact on plant growth and development. Impor-
tantly, the FucTA/FucTB/XyIT triple knockout lines display
less N-glycan heterogeneity than wild-type plants. Further-
more, the surprisingly high proportion of complex N-glycans
carrying terminal BN-acetylglucosamine residues on both the
al,3- and al,6-linked mannoses is the optimal prerequisite for
the further restoration of human-type N-glycosylation in
plants with the addition of B1,4-galactose residues [12,13]
and engineering of the sialic acid pathway [24] as the final
aims.
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