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Abstract Differential mRNA display revealed that a ¢cDNA
encoding the major urinary protein 2 (MUP2) that belongs to
the lipocalin superfamily was absent in livers of mice treated
with 3-methylcholanthrene (MC). The expression of MUP2 is
known to be stimulated by growth hormone (GH), through the
GH receptor (GHR), Janus kinase 2 (JAK2) and signal trans-
ducer and activator of transcription 5 (STATS5) signal trans-
duction pathway. Since MC is an aryl hydrocarbon receptor
(AhR) ligand, the effects of MC treatment on the expression
of GHR, JAK2 or STATS in the livers of wild-type or AhR-null
mice were examined. The result indicated that the expression of
GHR and JAK2 mRNA was greatly decreased by MC in wild-
type mice but not in AhR-null mice. In addition, the binding
activity of STATS bound to STATS-binding element was re-
duced after MC treatment in wild-type mice but not in AhR-
null mice. Based on these results, we conclude that the suppres-
sion of MUP2 mRNA expression by MC is caused by the AhR-
mediated disruption of the GH signaling pathway. Possible
mechanism(s) by which exposure to aromatic hydrocarbons
causes a decrease in the body weight of mice, which has been
referred to as wasting syndrome, will also be discussed.

© 2004 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Exposure to halogenated aromatic hydrocarbons such as
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related poly-
cyclic aromatic hydrocarbons (PAHs) results in a variety of
biological responses including wasting syndrome, epithelial
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hyperplasia, teratogenesis, tumor promotion and the induc-
tion of enzymes responsible for the metabolism of xenobiotics,
such as cytochrome P450 (CYP) [1-5]. It is the consensus view
that most of the biological responses to TCDD and related
PAHs are mediated by a cytosolic protein designated the aryl
hydrocarbon receptor (AhR), which exists in the cytosol as a
part of a complex that has a molecular mass of about 280
kDa [6,7]. Upon binding of TCDD with AhR, AhR dissoci-
ates from the above complex and translocates to the nucleus
where it heterodimerizes with a structurally related protein,
called the AhR nuclear translocator (Arnt) [8]. The heterodi-
meric AhR/Arnt complex binds to a 5-bp sequence, named
xenobiotic-responsive element (XRE) (5'-GCGTG-3’), located
within the 5'-flanking region of the AhR target genes,
CYPIAl, CYPIA2 and CYPIBI [9].

A phenomenon known as wasting syndrome is observed in
wild-type (WT) mice treated with TCDD but not in AhR-null
mice treated with TCDD [10]. In addition, teratogenesis such
as cleft palate and hydronephrosis is seen upon treatment of
dams with TCDD [4,10], while AhR-null mice do not exhibit
teratogenesis after treatment with this agent [10]. These find-
ings suggest that the toxicities seen with TCDD are mediated
by AhR. However, the AhR target genes involved in the wast-
ing syndrome and teratogenesis have not yet been elucidated.

To determine causal genes for the toxicity of dioxins and
PAHs, we examined molecular changes in gene expression
profiles caused by treatment of mice with 3-methylcholan-
threne (MC) by using differential mRNA display. We found
a cDNA that disappeared upon treatment of mice with MC.
This cDNA encoded major urinary protein 2 (MUP2), which
is a group of closely related proteins secreted into mouse urine
[11] and known to be a member of the lipocalin superfamily of
proteins [12]. The expression of MUP2 is thought to be medi-
ated by the growth hormone (GH) [13,14]. Signal transduc-
tion pathway binding of GH to the GH receptor (GHR) pro-
motes the association of the GHR with the Janus kinase 2
(JAK?2) and tyrosyl phosphorylation of JAK2. Then activated
JAK?2 phosphorylates the tyrosine residues of a signal trans-
ducer and activator transcription (STAT) protein. The homo-
dimer of the STAT or heterodimer of STAT protein with
other factor(s) is found in the cytoplasm. The complex then
translocates to the nucleus, and then binds to target sequen-
ces. Supporting this idea, STATS has been reported to partic-
ipate in the GH-induced expression of MUP2, cytokine-induc-
ible SH2-containing protein (CIS) or a-whey acidic protein
(WAP) [15-17].

In the present study, we found that the expression of GHR
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and JAK2 mRNAs was inhibited by MC, resulting in a de-
crease in the binding activity of STATS for the STATS-bind-
ing site. We discuss the possible mechanism(s) by which ex-
posure to PAHs leads to a decrease in body weight, which is
known as the wasting syndrome.

2. Materials and methods

2.1. Animal treatment

Male 7-week-old C57BL/6] mice (Sankyo Experimental Animals,
Tokyo, Japan) and AhR-null mice [18] were treated with MC (Sigma,
St. Louis, MO, USA) dissolved in corn oil at a dose of 80 mg/kg/day
intraperitoneally once daily for 2 days. Twenty-four hours after the
last administration, the mice were killed, and the livers were removed
and immediately used for the following experiments.

2.2. Differential mRNA display

Total RNAs were prepared from the livers of mice by the guanidi-
nium/cesium chloride method [19]. Reverse transcription polymerase
chain reaction (RT-PCR)-based differential mRNA display was per-
formed by using a fluorescence differential display kit (Takara, Kyoto,
Japan) essentially according to the manufacturer’s instructions [20]
with minor modifications. Briefly, total RNA (0.5 pg) and the two-
base-anchored 5’-fluorescein-labeled oligo(dT) primer (5'-T3-16AC-
3") were used for RT reaction. cDNA was synthesized by means of
PCR using an arbitrary primer (5'-CTGCTTGATG-3’). The PCR
products were separated on a 6% DNA sequencing gel and analyzed
by autofluorography (FLA2000, Fuji Film, Tokyo, Japan). Differen-
tially expressed cDNAs were recovered from the gel, and then ampli-
fied using the same PCR primers. Amplified cDNAs were subcloned
into the pGEM-T® Easy Vector (Promega, Madison, WI, USA) and
transformed into competent Escherichia coli cells. Plasmids which
contained inserts were subjected to sequencing. Using a Bigdye primer
cycle sequencing kit (PE Applied Biosystems, Foster City, CA, USA)
on an ABI 310 automated sequencer (PE Applied Biosystems), a se-
quence similar to the isolated cDNA was sought by using the BLAST
2.1 program.

2.3. Northern blot analysis

Total RNAs were prepared from the livers of WT mice or WT mice
treated with MC as previously reported [20]. A part of MUP2 cDNA
[11] (593-774, relative to the initiation codon) was used as a probe.
The entire coding regions of murine CIS and WAP cDNAs were
obtained by RT-PCR as described elsewhere [21,22]. Total RNA (20
ug) was electrophoresed in a 0.8% agarose gel containing 18% form-
aldehyde and was transferred to a nylon membrane (Nytran N,
Schleicher and Schuell, Dassel, Germany). The membrane was hybrid-
ized with 3?P-labeled cDNA by using DNA labeling system (Nippon
Gene, Tokyo, Japan). Hybridization was carried out by the method as
previously described [23]. The membrane was washed twice with
1 Xsaline sodium citrate containing 0.2% sodium dodecyl sulfate at
50°C for 30 min.

2.4. RT-PCR

Determining the expression levels of mRNAs for GHR, JAK2 and
STATS, RT-PCR using total RNAs prepared from the livers of mice
was carried out as follows. Briefly, total RNA (3 ng) was mixed with
50 ul of RNA-primer mixture (oligodeoxythymidylic acid primer (0.5
ug), a Moloney murine leukemia virus reverse transcriptase (20 U)
(Toyobo, Tokyo, Japan), RNase inhibitor (20 U) (Takara, Tokyo,
Japan), 0.5 mM each of four deoxynucleoside triphosphates), and
incubated at 37°C for 60 min. PCR was performed in 50 pl reaction
mixture (1.5 mM MgCl,, 0.2 mM each of four deoxynucleoside tri-
phosphates, each primer (50 pmol), AmpliTaq Gold polymerase (2.5
U) (Perkin Elmer, Norwalk, CT, USA), 10 X AmpliTaq reaction buff-
er (5 ul) (Perkin Elmer)) containing cDNA synthesized by RT (1 pl).
The reaction mixture was incubated at 94°C for 12 min. The reaction
was performed in 30-35 cycles at 94°C for 1 min, at 55°C for 1 min
10 s, and at 72°C for 1 min 30 s. The PCR products were subjected to
a 2% agarose gel, and then visualized by ethidium bromide staining.
The sequences of oligonucleotide primers were as follows. Forward
primers for murine STATS, GHR, JAK2 and p-actin were 5'-
GATCGGAATTCCCAGAAGGAT-3', 5-AATGCAGATGTTCT-
GAAGGGA-3', 5'-GACGTACAGTTATATTGTGAT-3’, and 5'-
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CAACTGGGACGACATGGAGAA-3', respectively [24]. Reverse
primers for murine STATS, GHR, JAK2 and B-actin were 5'-T-
GCTGTTGTAGTCCTCGAGG-3', 5'-ATACTTGCTGTCTCAGA-
CATCT-3', 5-AACTGTAATGCTAATGCCAGG-3', and 5'-CATC-
TCCTGCTCGAAGTCTAG-3', respectively [24].

2.5. Preparation of liver homogenates and electrophoretic mobility shift
assay (EMSA)

Livers (1 g) were homogenized with three strokes in 10 ml of ho-
mogenizing buffer (10 mM Tris-HCI (pH 7.4), | mM EDTA, 250 mM
sucrose, 1 mM sodium orthovanadate, 10 mM sodium fluoride and
100 uM phenylmethylsulfonyl fluoride) and centrifuged at 9000 X g for
15 min. The supernatant was used as liver homogenates for the fol-
lowing experiments. Protein concentration was determined using a
protein assay kit (Bio-Rad, Hercules, CA, USA) [25]. EMSA was
performed with 20 pl of a reaction mixture containing 25 mM HEPES
(pH 7.9), 4% Ficoll, 40 mM KClI, 0.5 mM dithiothreitol, 0.1 mM
EGTA, 1 mM MgCl,, poly[dI-dC] (1 pg), carrier DNA (1 pg), 5%
glycerol, liver homogenates (15 pg) and 3?P-labeled probe DNA
(5x10* cpm). The mixture was incubated at room temperature for
20 min, and then further incubated for 10 min on ice. The DNA-
binding complex was electrophoresed in a 4% polyacrylamide gel.
Oligonucleotide primers used as probes are as follows: STAT5 con-
sensus sequence (rat B-casein y-interferon-activated site (GAS) ele-
ment) [26], 5'-GATCAGATTTCTAGGAATTCAATCC-3" and 5'-
GATCGGATTGAATTCCTAGAAATCT-3'.

2.6. Antibodies

Antibodies against STATSa or STATSb proteins were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). A supershift
assay was performed using these antibodies as follows. After incuba-
tion of probe DNA with liver homogenates as described above, anti-
bodies were added to the reaction mixture and incubated at room
temperature for 10 min. The mixture was then incubated for 10 min
on ice and the products subjected to EMSA.

3. Results and discussion

To monitor molecular alterations caused by treatment of
mice with MC, differential mRNA display using total RNAs
prepared from both the livers of WT mice and WT mice
treated with MC was performed (Fig. 1). A ¢cDNA band
with the size of 1.35 kb (designated A45) was present in un-
treated mice but not in MC-treated mice. This band was re-
covered from a gel and subjected to sequence analysis. A data
base search using the BLAST 2.1 program revealed that the
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Fig. 1. Loss of a cDNA band by treatment of mice with MC as de-
tected by differential mRNA display. Male C57BL/6J mice were
treated with MC dissolved in corn oil at a dose of 80 mg/kg/day in-
traperitoneally once daily for 2 days. Twenty-four hours after the
last injection, these mice were killed, and the livers were removed to
prepare RNAs. Total RNA (0.5 ug) was converted to cDNA and
differential display was performed. Samples were run on a 6% poly-
acrylamide/8 M urea gel.
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Fig. 2. Suppression of MUP2 expression by MC. WT and AhR-null
mice were treated with MC and a portion (20 ug) of total RNA
was subjected to Northern blot analysis. The position of migration
of MUP2 mRNA is indicated by an arrow (upper panel). An identi-
cal blot was stained with ethidium bromide to verify equal RNA
loading (lower panel).

sequence of clone A45 was identical to that of the murine
MUP2 cDNA (data not shown). MUP2 is a member of the
major urinary protein (MUP) gene family [11]. MUPs are a
group of closely related pheromone carriers secreted into
mouse urine [27]. MUPs are a class of lipocalin proteins en-
coded by a family of about 35-40 genes that exhibit sequence
conservation of at least 85%, both in the transcribed and in
the flanking sequences [12,28]. In male liver, most MUPs be-
long to the group 1 MUP gene family. MUP2 is a major
isoform of group 1 MUP gene product in C57BL/6 mice
[11] and is reported to be induced by GH [14].

To further confirm that the expression of MUP2 mRNA
was suppressed by MC, we carried out Northern blot analysis
using murine MUP2 cDNA as a probe and total RNAs pre-
pared from the livers of untreated and MC-treated mice (Fig.
2). Consistent with the results shown in Fig. 1, the expression
of MUP2 mRNA was clearly decreased by MC. In addition,
to examine whether or not the decreased expression of MUP2
mRNA by MC was mediated by AhR, AhR-null mice were
also treated with MC (Fig. 2). The result showed that the
expression level of MUP2 mRNA was not reduced by treat-
ment of AhR-null mice with MC. Thus, it appeared that the
suppression of the expression of MUP2 mRNA by MC was
dependent on AhR. Since there is a possibility that the MUP2
cDNA probe can be hybridized with other group 1 MUP gene
products due to the high degree of homology, the band de-
tected using the MUP2 cDNA probe may contain other MUP
isoforms [11,12].

It is of particular interest to note that expression of the
MUP2 gene is stimulated by the GH signal transduction path-
way, through GHR, JAK2 and STATS [1,14]. GH is known
to induce the expression of CIS and WAP, which encodes a
negative regulator of signaling through cytokine receptor and
a group of milk proteins related to mammary gland develop-
ment, in addition to MUP2 [15,16,21]. If the GH signal is
affected by MC, then expression of other GH-regulated genes,
such as CIS and WAP, should be down-regulated by MC. To
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Fig. 3. Down-regulation of the expression of CIS and WAP by
treatment of mice with MC. Total RNA (20 pg) was subjected to
Northern blot analysis. The mRNAs encoding CIS or WAP are in-
dicated by arrows (upper and middle panels). An identical blot was
strained with ethidium bromide to verify the amounts of RNA
loaded (lower panel).

explore this possibility, we compared the expression levels of
CIS and WAP mRNAs in livers from untreated and MC-
treated mice (Fig. 3). As noted in the expression of MUP2
mRNA, the expression of mRNA for CIS and WAP was also
down-regulated by MC. Due to the possibility that down-reg-
ulation of expression of mRNAs encoding CIS and WAP by
MC was mediated by AhR, the same experiment was per-
formed with AhR-null mice (Fig. 3). Indeed, the expression
of CIS and WAP mRNAs was unaffected by MC in AhR-null
mice. These results suggest that GH signal transduction may
be disrupted by MC dependent on AhR.

As noted above, JAK2 and STATS, through the GHR,
mediate the stimulation of the MUP2, CIS and WAP genes
by GH. Thus, we examined the effects of MC treatment on

3
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Fig. 4. Effects of MC on the expression of mRNAs for GHR,
JAK?2 and STATS. Total RNA (3 pg) was subjected to RT-PCR.
The mRNAs encoding GHR, JAK2 and STATS5 are indicated by
arrows. RT-PCR for B-actin was used to check equal loading of
cDNA samples.
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the expression levels of mRNAs encoding GHR, JAK2 and
STATS. As shown in Fig. 4, the expression of both GHR and
JAK2 mRNAs as determined by RT-PCR was inhibited by
MC, although the expression of STATS was unaffected. These
alterations in the expression of GHR and JAK2 mRNAs were
not seen in AhR-null mice. Thus, it appeared that down-reg-
ulation of the expression of GHR and JAK2 mRNA by MC
was also mediated by AhR.

It was reported that STATS activated by JAK2 mediated
tyrosyl phosphorylation to bind to a STATS5-binding site. As
shown in Fig. 4, we found that the expression of STATS was
not altered by MC. From these lines of evidence, it was ex-
pected that the amounts of STATS bound to the STATS-bind-
ing site were reduced by MC. Thus, we performed EMSA
using the STATS consensus sequence [26] as a probe and liver
homogenates from untreated and MC-treated mice (Fig. 5). A
band appeared using the STATS consensus sequence and liver
homogenates from untreated mice. This band was super-
shifted by the presence of antibodies to STATS5a or STATSb,
indicating that the band is derived, at least in part, from the
STAT5a/STATSb heterodimer. The binding of the homo-
dimer or heterodimer of STATS5a and/or STATSb to the
STATS consensus sequence was diminished by MC. To fur-
ther confirm that the reduced binding of STATS caused by
MC was mediated by AhR, liver homogenates from AhR-null
mice or AhR-null mice treated with MC were applied to
EMSA (Fig. 5). As expected, the binding of STATS to
STATS5-binding element was not altered in AhR-null mice.
Based on these results, we confirmed that the reduction of
the expression of GHR and JAK2 mRNAs by MC attenuates
the binding activity of STATS for the STATS5-binding ele-
ment, thus resulting in down-regulation of the expression of
MUP2, CIS and WAP mRNAs.

MUP plays important roles in individual recognition, terri-
torial marking and sex behavior [29]. Since it is reported that
cognitive function and reproductive behavior are disrupted by
polychlorinated biphenyls and TCDD in humans and labora-
tory animals [30-32], the suppression of MUP expression by
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Fig. 5. Decreased binding of STATS to STATS-binding element by
treatment of mice with MC. A 3?P-labeled double-stranded STATS
consensus sequence (rat B-casein GAS element) [28] was incubated
with liver homogenates (15 pg) prepared from WT or AhR-null
mice in the presence or absence of antibodies against STATS5a
(aSTATS5a) or STATSb (aSTATSb). SS, supershifted band.
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PAHs may occur in the behavioral changes. The PAH-in-
duced repression of WAP may influence the process of mam-
mary gland development, because it is known that the devel-
opment and proliferation of terminal end buds is impaired by
exposure to AhR ligands in rodents [33,34]. CIS encodes a
negative regulator of signaling through cytokine receptor.
Thus, the down-regulation of CIS expression may lead to
disruption of cytokine signaling.

The suppression of MUP2 expression by MC was appar-
ently mediated by AhR. However, there are no apparent
XREs within the promoter region up to 869 bp of the murine
MUP?2 gene [11]. In addition, XREs were also absent in the
promoter region of the CIS [17] and WAP genes (GenBank
accession number U38816). Thus, these observations suggest
that the suppression of MUP2, CIS and WAP expression by
MC is due to the suppression of the expression of GHR and
JAK2 mRNA:s.

Searching for a possible XRE sequence(s), we found several
possible XREs in the promoter regions (L1-L4) of the murine
GHR gene [35,36]. A possible XRE sequence was also located
within a V1 promoter region necessary for the liver-specific
expression of the human GHR gene [37,38]. Thus, AhR may
affect the liver-specific transcription of the human GHR gene
through XREs. The mechanism for the repression of GHR
expression is currently under examination. Unlike GHR, the
promoter region of the JAK2 gene [39] did not contain any
obvious XREs. Thus, the expression of JAK2 may be indi-
rectly regulated by AhR on the GHR. We identified possible
XREs in the 5'-upstream region of the STATSa and STATSb
genes. However, these XREs may not function as cis-acting
elements to modulate the expression of STATS genes, since
the expression of STATS was unaffected by MC.

The amounts of binding of STATS5a/STATSb homo- or
heterodimer were reduced by MC. This context should be
noted in that STAT5a- and STATS5b-null mice showed a slow-
er growth rate than WT mice, and were smaller in size
[15,40,41]. It was reported that exposure to PAHs causes a
decrease in body weight, which is called the wasting syndrome
[4]. Thus, it is tempting to speculate that the decrease in body
weight by exposure to PAHs may be explained, at least in
part, by the AhR-mediated disruption of the GH signaling
pathway. The GH signaling pathway also plays an important
role in skeletal growth [42]. Interestingly, it was reported that
PAHs and TCDD inhibited GH-induced proliferation and
differentiation of osteoblasts via AhR [43,44]. Therefore,
AhR-mediated suppression of the GH signaling pathway
may also account for the abnormality of bone formation in-
duced by PAHs and TCDD.
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