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Abstract Details about the parameters of kinetic systems are
crucial for progress in both medical and industrial research,
including drug development, clinical diagnosis and biotechnology
applications. Such details must be collected by a series of kinetic
experiments and investigations. The correct design of the ex-
periment is essential to collecting data suitable for analysis,
modelling and deriving the correct information. We have devel-
oped a systematic and iterative Bayesian method and sets of
rules for the design of enzyme kinetic experiments. Our method
selects the optimum design to collect data suitable for accurate
modelling and analysis and minimises the error in the parame-
ters estimated. The rules select features of the design such as the
substrate range and the number of measurements. We show here
that this method can be directly applied to the study of other
important kinetic systems, including drug transport, receptor
binding, microbial culture and cell transport kinetics. It is pos-
sible to reduce the errors in the estimated parameters and, most
importantly, increase the e⁄ciency and cost-e¡ectiveness by re-
ducing the necessary amount of experiments and data points
measured.
& 2003 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

There are many research ¢elds and applications where in-
formation about kinetic systems and their parameters is essen-
tial for progress, including medical and pharmaceutical re-
search, clinical diagnosis and biotechnology research. Details
of the kinetics provide crucial information about how the
system or components of the system will behave or respond
in a given situation. For example, they are vital to the pre-
diction of the toxic or metabolic e¡ects of drugs in the body.
Enzyme kinetics, drug transport kinetics, cell transport ki-
netics, microbial culture kinetics and receptor binding kinetics
are a few examples of key kinetic systems about which infor-

mation is fundamental to making advancements in research
and their applications.
The correct design of an experiment is critical to collecting

kinetic data suitable for analysis, modelling and deriving the
correct information. Indeed this is the fundamental starting
point in e⁄cient research as the incorrect design can lead to
poor and/or insu⁄cient measurements, which can, in turn,
lead to misleading ¢ts and parameter estimates. An experi-
mental design must ensure that the data provides the neces-
sary information required to ¢t and discriminate between
models and obtain good parameter estimates. The kinetics
of a system are typically determined using a steady-state ap-
proximation and by measuring the initial rates at di¡erent
substrate concentrations to ¢t to the model. There are many
features of a design to be considered in its optimisation, in-
cluding the substrate range and the number of data points
required.
The importance of experimental design and its role in suc-

cessful kinetic analysis is becoming increasingly recognised in
pharmaceutical research and commercial research [1^3]. Clas-
sical approaches to design [4] are based on knowledge of ex-
perimental statistics and not the biological details of the sys-
tem under study. Such methodologies are obtained
analytically or by simple computation from the likelihood.
The main disadvantages of these approaches are that they
can provide highly variable results owing to their dependence
on the initial parameter values chosen and their unsuitability
for the study of more complex kinetic systems. In contrast, a
Bayesian approach to experimental design involves the use of
prior knowledge about the kinetic system. A Bayesian design
is based around prior distributions of the model parameter
estimates and their variance, rather than on chosen single-
point values, and each design can be tailored to the type of
kinetics in question. Chaloner and Verdinelli [5] originally
suggested Bayesian statistics could be applied to the design
of experiments and not simply in their analysis. They sug-
gested it would be possible to use a decision-theoretic ap-
proach [6] to specify a Utility function re£ecting the purpose
of the experiment (i.e. to estimate the parameters as precisely
as possible). The best design is the one optimising the Utility
value (U). Little has been reported on the use of this proposal
and Bayesian methodology is not yet well established in ex-
perimental practice but as prior information is already avail-
able in existing data, it is logical that it should be used to aid
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the design of the increasingly complex experiments required to
advance medical and biotechnology research.
In a previous publication [7], we reviewed the design meth-

odologies available to help maximise the accuracy of enzyme
kinetic experiments. Information about enzyme kinetics is im-
portant in a number of ¢elds, including areas of drug develop-
ment where it is essential for understanding the pharmacoki-
netics and interactions within the formulation, as well as for
stability testing and predictions of metabolic clearance of the
drug. We suggested that a Bayesian approach would be both
valid and helpful in evaluating kinetic parameters to a high
degree of accuracy. Initial ¢ndings, using a number of kinetic
data sets of varying degrees of complexity as examples,
showed that through careful design major gains could be
made that are quanti¢able in terms of the productivity and
accuracy of each experiment.
More recently we developed a set of rules and procedures

for Bayesian experimental design for enzyme kinetics, starting
with a very rough prior KM estimate [8]. It was shown that a
number of features of the design, including the substrate range
and individual concentrations measured at, greatly a¡ect the
success of and error in the subsequent analysis of the data. A
systematic series of Bayesian studies enabled us to identify
trends and sets of design rules for both simple and complex
kinetics. We now show that these rules are applicable to a
wide variety of biological steady-state processes.

2. Materials and methods

The initial Bayesian studies involved the development of Utility
functions from the models used to ¢t data. The Utility functions
were written using a Mathematical program (Mathematica Version
4.1, Wolfram Research) as the procedure involves complex algebra.
The prior distributions for the unknown parameters and the var-

iance vector were ¢rst written as a variance^covariance matrix. The
utility function was then developed from expressions for the variance
of the parameters in the kinetic model, incorporating the prior dis-
tribution. All of this involved di¡erentiation of the model expressions
and transposing, multiplying and inverting large matrices. Inferences
about the parameters were the main aims and thus equal weighting
was put on each of them in the utility function. The weighting was
determined according to the relative magnitudes of the prior param-
eter values. This decided how much weight must be put on minimising
each of the parameter variances.
The general form of a utility function is:

U ¼ 1=½c1fVðP1Þg þ c2fVðP2Þg þ Tþ cpfVðPpÞg	
where U is the utility value for a model equation with p parameters;
{V(Pi)} is the variance expression derived from the variance^cova-
riance matrix for the model parameter Pi ; and ci is the weight for
each parameter expression (where i=1, 2,Tp), chosen subjectively to
re£ect the relative importance of estimating that parameter.
Once the correctly weighted algebraic Utility function was em-

bedded in a workbook, the Utility value for each design could be
calculated. This was achieved by inserting the chosen set of individual
substrate concentrations measured in the theoretical experiment and
the prior parameter values. The key features of the optimum design
were identi¢ed by observing trends and changes in the U value with
design choices. That design maximising the Utility value could be
selected as the optimum.
For con¢rmation and to convert the results terms more speci¢c to

general understanding, kinetic data for each model was computation-
ally simulated and ¢tted for each designed substrate value set. Data
simulation was achieved using a program written into a Mathematica
workbook. This generates experimental data for di¡erent designs so
each set can be ¢tted and the results compared [8]. All data was ¢tted
using a Windows package called Sim¢t (version 5.40, release 4.005).
This reports the best-¢t model and the parameters with standard

errors. The errors for each parameter were expressed as percentage
standard errors, which are the errors expressed as a percentage of the
parameter value ¢tted.
Computational simulation is a simple way to generate data for a

large number of di¡erent designs so the results can be ¢tted to the
models and the results easily compared, i.e. the errors in the ¢tted
model parameters. Information about the actual reduction in error
when using the optimum design is more useful.
In the simulation program the total number of substrate concen-

trations to be measured and the values of each of those concentrations
was entered along with the prior model parameter values. The kinetic
model was entered and the expected velocity value calculated for each
substrate concentration. At this stage, the calculated sets of values
were of course the exact ones speci¢ed to ¢t the model, i.e. without
any experimental error. The program was then used to generate a list
of random error values from a normal distribution. Adding one error
term to each expected velocity provided a set of simulated data to
later plot and ¢t to the kinetic model.
For example, this is the theory behind the simulation of data for a

Michaelis^Menten enzyme:
If the number of substrate values being used is termed i and i=1,Tn,

then the model equation can be written:

vi ¼
VmaxSi
Si þ KM

þ O i

The set of substrate values (S1,TSn) in the design and the prior values
of Vmax and KM are input into the program. The set of expected
velocity values, with no error terms added, is calculated.
The error term O has a normal distribution: OiVN(0,1) with a mean

of zero and standard deviation of 1.
A list of n number error values (O1,TOn) is then generated from a

normal distribution. Each error value must be multiplied by the stan-
dard deviation known for the prior Vmax to correct from the standard
deviation of 1. These error values are added to the equation to give a
simulated set of data v1,Tvn. The end result is a set of v and s values to
¢t and analyse as if real and estimate Vmax and KM.
Our approach produces sets of step-by-step rules for designing the

optimum kinetic experiments to obtain data suitable for modelling
and accurate analysis. Table 1 summarises the rules for the design
of a simple (two-parameter model) kinetic experiment and Table 2
for the design of a complex kinetic (four-parameter model) experi-
ment. The key starting points to the design method are: the need
for a very rough prior estimate of the KM parameter (or the ratio
of KM values if more than one in the model); and, knowledge of the
number of parameters in the kinetic model equation that the data is to
be ¢tted to. The rules vary according to the number of parameters in
the model being studied. The following features of the experimental
design can be chosen: the substrate range; the total number of sub-
strate concentrations to take measurements at; the distribution of
data points across the range; and, the choice of individual important
points in that range. Importantly, each choice is based on the KM or
ratio value.
The importance of basing the design on the KM becomes more

apparent when looking at the other choices to be made about the
data points used within the chosen substrate range. Firstly, a trend
emerges relating to the percentage of total data points measured that
are below and above the KM. The Utility value rises to a peak at an
optimum choice of 60% points below (or on) the KM, and falls o¡
either side of this but more markedly when reduced to less than 60%
[8]. That is the optimum data point distribution is when 60% of the
data points fall below or on the KM substrate concentration value but
above half the KM (the starting point of the range). This has been
demonstrated for a 15-data point design of ¢ve points measured in
triplicate [8].
For complex functions, again there are de¢nite optimum lower and

upper range points and the detailed study reveals that these are re-
lated to the ratio of the two KM values (Km1/Km2) [8]. The range must
extend from 10 times below the ratio Km1/Km2 up to 100 times the
ratio. The importance of basing the design on the Km1/Km2 ratio is
reiterated when looking at the other choices to be made about the
data points used within the chosen substrate range. There is an
optimum data point distribution around the KM ratio. The Utility
value rises to a peak at an optimum choice of 50% points mea-
sured below/on the KM ratio and falls o¡ either side, most markedly
from 30% or below. This has been demonstrated for a 25-data point
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design with each point measured at a di¡erent substrate concentration
[8].
With all the examples tested, the error decreases with an increasing

number of replicates up to three; increasing the numbers of replicates
beyond three produces no improvement in the standard error of pa-
rameter estimation [8].
As the number of measurements required is based on the number of

model parameters to be ¢tted rather than the actual equation, it is
possible to design and also di¡erentiate through ¢tting between ki-
netic models with the same number of parameters. The rules also
suggest an iterative experiment if prior information about KM is
very poor (that is a series of three small experiments to obtain more
information about the parameter).
It is clear that this method of Bayesian design and the rules are

potentially applicable to other kinetic systems, particularly where it is
important to have rapid but accurate and cost-e¡ective methods in
clinical or industrial research. We show here how four kinetic experi-
ments for di¡erent systems can be markedly improved by designing
using the rules. De¢nite improvements can be made by designed

choices of features such as the concentration range, percentage distri-
bution of points and the individual selection of points.

3. Results

3.1. Cell transport kinetics: using a Bayesian experimental
design to improve the accuracy and e⁄ciency of model
parameter estimation

For the purpose of this example, we used kinetic data for
the transport of the radiolabelled amino acid 3-[123I]iodo-L-K-
methyltyrosine ([123I]IMT) in human GOS3 glioma cells [9].
The use of [123I]IMT is a promising tool for the diagnosis and
monitoring of brain tumours (both in the non-invasive grad-
ing of gliomas and the delineation of tumour extent) using
single-photon emission tomography. Critically, it has been
established that there is a speci¢c transport of [123I]IMT

Table 1
Design rules for Michaelis^Menten type (two-parameter) kinetics

Experiment design decision Bayesian rule

(1) Start with a prior estimate of KM. Use prior information for an estimate or a rough guess.
(2) Choose the substrate range for measurements. The range should extend from half the KM concentration up to 100 times it.
(3) Choose the total number of data points to measure. Measure at ¢ve di¡erent substrate concentrations in triplicate (the ¢rst

concentration is the lower point of the range and the ¢fth is the upper
point).

(4) Choose the middle (third) concentration to measure at. This measurement should be made at the KM concentration.
(5) Choose the second concentration to measure at. This concentration should be the value which is 1/4 the distance towards the

KM concentration from the ¢rst point (the lower range point).
(6) Choose the fourth concentration to measure at. This measurement should be made at the concentration which is 20% below

the upper point.
(7) Perform the experiment to obtain data. Fit the two-parameter
model to the kinetic data (plotting the mean of each of the data
points measured in triplicate) to obtain parameter estimates and
errors.

N.B. Take an iterative approach if the prior estimate of KM that the design
is based on is known to be poor. That is, carry out the experiment at ¢ve
concentrations only (i.e. no triplicates) and ¢t to obtain a better estimate of
KM. Redesign based on new KM estimate and perform a second ¢ve-point
experiment. Redesign again and for the third experiment perform the
experiment for the ¢ve points in triplicate to obtain ¢nal low variance
parameter estimates.

Table 2
Design rules for complex equation kinetics (four parameters)

Experiment design decision Bayesian rule

(1) Start with a prior estimate of the ratio of the
two KM values (if more than one).

Use prior information for an estimate or a rough guess.

(2) Choose the substrate range for measurements. The range should extend from 10 times below the KM ratio concentration up to 100
times above it.

(3) Choose the total number of data points to
measure.

Measure at 25 di¡erent substrate concentrations (no replicates) (the ¢rst concentration
is the lower point of the range and the 25th is the upper point).

(4) Choose the middle (13th) concentration to
measure at.

This measurement should be made at the KM ratio concentration.

(5) Choose the second concentration to measure at. This concentration should be the value which is 1/4 the distance towards the KM ratio
concentration from the ¢rst point (the lower range point).

(6) Choose the 12th concentration (point below
the KM ratio) to measure at.

This measurement should be made at the concentration which is 10% below the KM
ratio value.

(7) Choose the 14th concentration (point above
the KM concentration)

This measurement should be made at the concentration which is ¢ve times the KM
ratio concentration.

(8) Choose the 24th concentration (point below
the upper range point).

This measurement should be made at the concentration which is 20% below the upper
range point.

(9) Choose the intermediate points ^ points 3^11
and 15^23.

These should be as evenly spaced as possible between the pre-decided points.

(10) Perform the experiment to obtain data. Fit the
four-parameter model to the kinetic data to obtain
parameter estimates and errors.

N.B. Take an iterative approach if the prior estimate of KM that the design is based
on is known, or thought, to be poor. That is, carry out the experiment at 10
concentrations only (still selecting the individual points according to their position
within the 10 points) and ¢t to obtain a better estimate of KM. Redesign based on the
new KM estimate and perform a second 10-point experiment. Redesign again and for
the third experiment perform the experiment for the 25 points to obtain ¢nal low
variance parameter estimates.
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across the blood^brain barrier [10,11] and it is metabolically
stable and not incorporated into proteins [12]. However, in
order to optimise its medical use, more work is needed to
obtain precise kinetic details of its uptake in human glioma
cells. Such details aid in the identi¢cation of the cell systems
that mediate the transport and any di¡erences between cell
lines and types. This knowledge is essential to aid further in
vitro studies and help identify suitable model cells.
The cell transport kinetics of [123I]IMT are consistent with

Michaelis^Menten type kinetics:

v ¼ Vmax½S	
KM þ ½S	

where v is the transport velocity of [123I]IMT; [S] is the con-
centration of [123I]IMT; Vmax is the maximum transport ve-
locity; and KM is the apparent Michaelis^Menten constant.
The latter two parameters are the unknown kinetic parameters
to be estimated. The uptake of [123I]IMT (in terms of its initial
transport rate) was measured over a range of [123I]IMT con-
centrations from 2.5 to 50 WM. Eight experimental points
were performed in triplicate and each experiment was carried
out at least twice with similar results. After ¢tting the data a
KM of 20.1R 1.5 WM and a maximum transport velocity
(Vmax) of 34.8R 1.9 nmol/mg protein/10 min were calculated.
It is possible to improve this experimental design using an

iterative and systematic Bayesian approach. That is, following
our rules for designing the optimum experiment for a system
with two-parameter equation kinetics [8], it is possible to
make marked gains in terms of the e⁄ciency and the accuracy
of the parameters estimated.
In the ¢rst instance we can compare the Bayesian Utility

values calculated for the two experimental designs: that used
by Riemann et al. and our Bayesian design. The authors’
design is that as described above. The Bayesian design is
based on the prior estimate of KM and the concentration
range and individual measurements made within that are
chosen according to the rules. With a prior estimate of KM
of 20.1 WM, the concentration range speci¢ed by the rules is

from 10 to 2000 WM with measurements taken at ¢ve di¡erent
concentrations in triplicate. The two designs are very di¡erent
with the concentration range of the original one running from
eight times below the KM value to two and a half times above
it, a sharp contrast to that of the Bayesian design which runs
from two times below the KM to one hundred times above it.
The calculated Utility values are compared in Table 3. Ob-
serve that the Utility for the Bayesian design is over six times
higher than that for the original design. Recall that these
Utility functions have been designed to re£ect the purpose
of the experiment, i.e. to minimise the parameter variance,
theoretically achieved when the Utility value is maximised.
This comparison con¢rms the Bayesian design o¡ers a marked
improvement and the use of this design will result in more
e¡ective parameter estimation.
In order to verify these Utility function conclusions, a sim-

ulation program was used to simulate experimental data for
the kinetic model for the two di¡erent designs using the prior
speci¢ed parameter values. The mean of each data point was
calculated before ¢tting to the Michaelis^Menten equation to
obtain parameter estimates. Table 3 also shows a comparison
of the percentage standard errors in the ¢tted kinetic model
parameters when ¢tting the data obtained with the original
experimental design used in the authors’ work to those ob-
tained with data from our Bayesian design. The results show
that when designing by the Bayesian rules the standard errors
in the parameter estimates are considerably less than if ob-
tained via the authors’ route.
This demonstrates that following the Bayesian experimental

design rules, which use prior information about the KM value,
leads to better parameter estimates with lower errors. Indeed
the careful choice of the design and points at which measure-
ments are made can improve the experiment, and reduce the
numbers of data points required. This is assuming the prior
information on KM is good. However, prior information on
the KM value is often poor or unavailable and in this case it is
possible to use our proposed iterative and systematic Bayesian
approach [8]. This a three-step approach still using the Baye-

Table 3
A comparison of percentage standard errors in the ¢tted kinetic model parameters when ¢tting data obtained with the classical experimental
design to those obtained with data from our Bayesian design

Calculated Utility values for each experimental design and
standard errors of model kinetic parameters ¢tted to data

Classical design Bayesian design

Cell transport:
Utility value 5.505e-02 3.618e-01
% Standard error in Vmax 4.35 1.07
% Standard error in KM 8.86 4.11
Continuous culture:
Utility value 2.891e-04 1.186e-03
% Standard error in (qpE)max 3.86 0.61
% Standard error in Ks* 10.34 2.27
Drug transport:
Utility value 1.799e-2 2.798e-2
% Standard error in VM 3.81 2.21
% Standard error in nH 15.12 14.93
% Standard error in KM 7.36 4.42
Receptor binding:
Utility value 1.24e-03 2.022e-03
% Standard error in Bmax1 16.74 8.01
% Standard error in Bmax2 12.32 5.72
% Standard error in Kd1 25.49 20.60
% Standard error in Kd2 38.99 14.56

The Utility values for each design are also compared. Four di¡erent kinetic systems are compared: cell transport [3], continuous culture [7],
drug transport [8] and receptor binding [9].
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sian rules but collecting new estimates of the KM at each step
around which to redesign. Table 4 shows the results of using
the iterative three-step Bayesian rules. The initial KM value is
a guess of 1 WM, which is 20 times out from the actual prior
estimated value of 20.1 WM. In both steps 1 and 2, the experi-
ment is designed according to the Bayesian rules and using the
current KM estimate but measurements are only made at ¢ve
single concentrations. The aim of these two steps is to obtain
new and better KM estimates for redesigning the set of con-
centrations for the measurements to be made at in the next
experimental step. Step 3 of the experiment provides the ¢nal
parameter estimates with minimised standard errors. The re-
sults show that it is possible to get good ¢nal estimates with
very low variances at the end of the three steps. It should be
noted that this is also a shorter route than that used by Rie-
mann et al. and the parameters have been more successfully
estimated with lower variances. This was possible with only a
very rough guess of the KM value and after measuring a total
of 25 points over three experiments. The original design used
at least 48 points measured over two experiments and the
errors were considerably higher for each parameter. The re-
duction in the number of data points is a key feature of our
approach. The step-by-step Bayesian design means that the set
of points measured at each stage in the experiment is specif-
ically designed to the most recent data gained about the KM
value, rather than simply repeating points in triplicates and
repeat experiments as in the original design. In conclusion, the
iterative approach making use of prior information markedly
increases the e⁄ciency and cost-e¡ectiveness of the experi-
ment.

3.2. Bayesian experimental design is a generic approach:
examples of its applicability to the study of continuous
culture, drug transport and receptor binding kinetics

In addition to the study of enzyme and cell transport ki-
netics, the speci¢ed Bayesian rules and method of design are
applicable to the study of a number of other important kinetic
systems. Continuous culture, drug transport and receptor
binding kinetics are three further examples. Table 3 shows
the improvements made when redesigning three such experi-
ments for these kinetic systems. These examples are discussed
below.
The analysis of the kinetics of energy spilling-associated

product formation in substrate-su⁄cient continuous culture
can be very important in the development of the optimised
bioprocess for maximising valuable product formation. For
instance, quanti¢ed information about the model parameters

may be helpful in designing the optimal medium and reactor
operating conditions. In our chosen example, Liu et al. looked
at the e¡ect of residual methanol concentration on the speci¢c
production rate of acetic acid in a nitrogen-limiting continu-
ous culture of a Bacillus strain [13]. The authors show that the
kinetics are consistent with Michaelis^Menten type kinetics.
Table 3 compares the Bayesian Utility values calculated for
the two experimental designs: that used by Liu et al. and the
Bayesian design. The rate of product formation was deter-
mined over a range of residual substrate concentrations. The
authors measured ¢ve concentrations in triplicate over a range
from 10 to 90 mM. In contrast, the Bayesian design, based on
the prior estimate of Ks* (KM equivalent) of 23.6 mM and
chosen according to the rules, is ¢ve concentrations measured
in triplicate over a concentration range of 12 to 2360 mM.
Observe that the Utility for this design is over four times
higher than for the authors’. The table also compares the
percentage standard errors of the parameters ¢tted to simu-
lated data for the two di¡erent designs. The results con¢rm
that when designing by the Bayesian rules, the standard errors
in the parameter estimates are markedly less than if obtained
via the authors’ route.
In general, information about the kinetics of drug transport

is essential to understand the mode of action of a drug, its
e⁄cacy and toxicity. There is a great demand for accurate and
e⁄cient methods to determine such details. The widespread
use of antibiotics and drugs has also led to the emergence of
defence mechanisms that, are at present, the major drawback
to the drug-based treatment of infectious diseases and cancers.
Garnier-Suillerot et al. looked at the uptake of a number of
drugs into multi-drug resistant cells [14]. Kinetic information
about this process has implications for drug action and is
essential in the search for an inhibitor. In this example, we
compared experimental designs for the study of the kinetics of
the P-glycoprotein mediated e¥ux of the anthracycline deriv-
ative ‘WP401’. Garnier-Suillerot et al. have described the ki-
netics with a three-parameter model, including a value for the
Michaelis constant. The rate of drug e¥ux by the pump was
measured over a range of intracellular free drug concentra-
tions. The authors’ design used a concentration range from
0.1 to 2.1 WM measuring at 13 concentrations. The Bayesian
design, based on the prior KM estimate of 0.115 WM and
selected according to the rules for a three-parameter experi-
ment, is seven concentrations measured in triplicate over a
concentration range of 0.0575 to 11.5 WM. Table 3 shows
that the calculated Utility value for the Bayesian design is
over one and a half times higher than that for the authors’.

Table 4
The results of designing the cell transport [3] experiment using the iterative three-step Bayesian rules

Results Experiment design step 1
(based on prior KM =1)

Experiment design step 2
(based on prior KM =13.2)

Experiment design step 3
(based on prior KM =21.5)

Concentrations of [123I]IMT (WM) at which
uptake transport velocity measurements made

0.5, 0.625, 1, 90, 100 6.6, 8.3, 13.2, 1192, 1324 10.75, 13.4, 21.5, 1935, 2150, in
triplicate

Vmax ¢tted (pmol/mg protein/10 min) 34.11 36.21 33.54
KM ¢tted (WM) 13.24 21.51 19.71
Standard error in Vmax 1.45 0.91 0.39
Standard error in KM 4.01 2.22 0.72
% Standard error in Vmax ^ ^ 1.16
% Standard error in KM ^ ^ 3.70

The initial prior KM information is very poor and a guess of 1 WM, which is 20 times out from the actual prior estimated value of 20.1 WM.
In both steps 1 and 2, new KM estimates are obtained for redesigning the set of concentrations for the measurements to be made at in the next
experimental step. Step three of the experiment provides the ¢nal parameter estimates with minimised standard errors.
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Comparing the percentage standard errors in the parameters
¢tted to data simulated for both designs veri¢es that the esti-
mates are more accurate with fewer data points when using
the Bayesian design.
The analysis of equilibrium data for receptor^ligand bind-

ing helps to identify the mechanism and speci¢city of the
interaction of a receptor with a ligand. Such knowledge is
also essential in the search for inhibitors for medical or re-
search applications. In our ¢nal example of a kinetic system,
we used an experiment looking at the binding of the ligand
10,11-[3H]dihydroxy-N-n-propylnorapomorphine ([3H]NPA)
to the D2-dopamine receptor1. The kinetics were consistent
with second-order Michaelis^Menten type kinetics. This
means they were described by a four-parameter equation.
The total binding was measured for a range of [3H]NPA con-
centrations. The original design used in this study was to
measure binding at 12 [3H]NPA concentrations in triplicate
over a concentration range of 0.006 to 15.6 pM. The Bayesian
design, suggested by the rules for a four-parameter equation
and based on the prior Kd1/Kd2 ratio of 0.06 (the ratio of the
two equilibrium constants), was 25 concentrations measured
once over the range of 0.0058 to 5.770 pM. The individual
concentrations measured within that range were chosen ac-
cording to the rules. Table 3 shows that the utility calculated
for the Bayesian design is nearly two times higher. The per-
centage standard errors for the parameters estimated by ¢tting
the data obtained by simulating the Bayesian design are also
considerably lower than for the original. Again a higher de-
gree of accuracy is obtained using the Bayesian method of
design.

4. Discussion

We have shown that our Bayesian rules for the systematic
design of kinetic experiments can be successfully applied to a
number of di¡erent systems. The rapid evaluation of kinetics
proves critical in many processes and research and the e¡ec-
tive utilisation of this method has the potential to increase the
e⁄ciency of these experiments. The optimum data is collected
following the rules and the iterative approach provides a more

cost-e¡ective route to accurate parameter estimates, as fewer
data points are needed.
This method is timely to aid the design of the increasingly

complex kinetic experiments in rapidly advancing research
¢elds and the rules logically use existing data and information.
The concept is easily transferred to any area of study requir-
ing the analysis of steady-state kinetics.
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