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Abstract Germ-line mutations in BRCAI are associated with
an increased lifetime risk of developing breast and/or ovarian
tumors. The BRCA1 gene product is a 220-kDa protein that
contains a tandem of two BRCA1 C-terminal (BRCT) domains
required for transcription. In an attempt to understand how
BRCAL1 exerts its function through BRCT domains, we search
for partners of the BRCT domains of BRCA1. Using the yeast
two-hybrid system, we identified the four and a half LIM-only
protein 2 (FHL2) as a novel BRCA1 interacting protein. We
demonstrate that BRCA1 and FHL2 can physically associate in
vitro, in yeast, and in human cells. BRCA1 interacted with
FHL2 through its second BRCT domain and the interaction
of FHL2 with BRCAL1 requires the last three LIM domains
of FHL2. BRCA1 enhanced FHL2-mediated transcriptional ac-
tivity in transient transfections. Tumor-derived transactivation-
deficient BRCA1 mutants showed a reduced ability to enhance
transactivation by FHL2. Lack of BRCAI1 binding sites in the
FHL?2 completely abolished the FHL?2 transactivation function.
Reverse transcription polymerase chain reaction analysis
showed that FHL2 mRNA levels may be downregulated in
many breast cancer cell lines. These results suggest that the
BRCA1-FHL2 interaction may be involved in transcriptional
regulation and play a significant role in cancer cell growth.
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1. Introduction

Mutations in breast cancer susceptibility gene 1 (BRCAI)
account for approximately 40-50% of hereditary breast can-
cers and for nearly all familial cases with a history of both
ovarian and breast cancer (for review, see [1-6]). The human
BRCAI gene encodes a 1863-amino acid (aa) protein with a
RING finger domain located in the NH;-terminus and two
BRCA1 C-terminal domains (BRCT1 and BRCT2) in tandem
[7]. Most cancer-predisposing mutations of BRCAT1 result in
the deletion of the BRCT repeats. Moreover, many of the
missense mutations of BRCA1 domains also lead to amino
acid substitutions in the BRCT domains, underscoring the
importance of the BRCT repeats for BRCA1 function in tu-
mor suppression [8-11]. Using a chromatin unfolding assay in
mammalian cells, we recently showed that BRCA1 can decon-
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dense high-order chromatin structure in the nuclei of human
cells [12]. The regions in BRCAT1 responsible for the high-
order chromatin unfolding are mapped to the BRCT repeats.

Various lines of evidence suggest that BRCA1 is involved in
multiple nuclear functions including DNA repair and tran-
scription [13-33]. For example, BRCA1-deficient cells are hy-
persensitive to ionizing radiation due to defects in the repair
of both oxidative DNA damage by transcription-coupled pro-
cesses and double-strand breaks by homologous recombina-
tion [15,18,20,21,23]. In addition, BRCAI1 functionally inter-
acts with several repair and recombination proteins such as
RADSI [15], RADSO/MRE11/NBS1 [23], and MSH2/MSH6
[29]. BRCAL also associates with and is phosphorylated by
protein kinases that are key players in the damage checkpoint
control, including ATM [26], ATR [28], CHK1 [32], and
CHK2 [25].

In addition to its potential role in DNA repair, BRCAI has
also been implicated in regulation of transcription [13,14].
When fused to a heterologous DNA binding domain
(DBD), the BRCA1 COOH-terminus (aa 1560-1863) includ-
ing the BRCT domains has the ability to stimulate transcrip-
tion. More recent work has revealed a second transactivation
domain of BRCALI that lies adjacent to the BRCT domains
(aa 1293-1559) [34]. Consistent with its potential role in tran-
scriptional regulation, BRCAL is linked to the RNA polymer-
ase II holoenzyme complex via RNA helicase A [17]. Further-
more, BRCAI1 interacts with a variety of site-specific
transcription factors or coactivators, such as p53 [19] and
CBP/p300 [33].

Although there is increasing evidence suggesting that
BRCAI is involved in transcription and DNA repair, how
BRCAI1 exerts its function through its BRCT domains re-
mains unclear. We report here that BRCAI1 interacts with
four and a half LIM-only protein 2 (FHL2) in vitro and in
vivo through its second BRCT domain. FHL2 is a LIM-only
protein with four and a half LIM domains [35,36]. FHL2 acts
as a transcriptional activation domain when fused to a heter-
ologous DNA -binding domain [37,38]. We further present
evidence that BRCAI1 enhances the transcriptional activity
of FHL2.

2. Materials and methods

2.1. Plasmids

pCR3-BRCAL1, pCR3-BRCAI1(P1749R) and pCR3-BRCAI1(Y1853-
insA) were generous gifts from Dr. Wafik S. El-Deiry [39]. pcDNA3-
FLAG-FHL2 was made by cloning the polymerase chain reaction
(PCR)-generated full-length FHL2 c¢cDNA from the original yeast
two-hybrid library clone (pACT2-FHL2) into the BamHI-Xhol sites
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of the pcDNA3 vector harboring a FLAG epitope sequence
(pcDNA3-FLAG). Deletion mutants of FHL2 were constructed by
inserting PCR-generated fragments from the corresponding cDNAs
into the pcDNA3-FLAG vector. To construct pGAL4(1-94)-HA-
BRCT! and pGAL4(1-94)-HA-BRCT2, the BRCT1 and the
BRCT?2 domains of BRCAI1 were cloned into the Xbal-BamHI sites
in the expression vector pCG-GAL4(1-94)-HA [34]. pGAL4(1-147)
was generated by PCR cloning of a GAL4 DNA binding domain
(DBD) fragment containing 147 amino acid residues of GAL4 DBD
in pGBKT?7 into the HindllI-BamHI sites of pcDNA3 (Invitrogen).
For generating pGAL4(1-147)-FHL2(1-279), pGAL4(1-147)-FHL2-
(36-279), and pGAL4(1-147)-FHL2(1-216), the corresponding frag-
ments were PCR-amplified and cloned into the BamHI-EcoRV sites of
the pGAL4(1-147) vector. The pGAL-LUC reporter containing four
GAL4 binding sites has been described previously [34]. Constructs
encoding glutathione S-transferase (GST) fusion proteins were pre-
pared by amplification of each sequence by standard PCR methods,
and the resulting fragments were cloned in frame into the BamHI-
Xhol sites of pGEX-KG (Amersham Pharmacia). Details of cloning
are available upon request.

2.2. Yeast two-hybrid screen

To identify proteins that interact with the BRCT2 domain of
BRCALI, the standard yeast two-hybrid screen was performed in the
following manner. First, the bait plasmid was generated by inserting a
PCR-amplified ¢cDNA fragment encoding the BRCT2 sequence (aa
1756-1852) into the Ndel-EcoRI restriction sites of pAS2-1 (Clon-
tech), resulting in an in-frame fusion with the GAL4 DBD. Second,
the resulting plasmid, pAS2-BRCT2, and a human ovary cDNA prey
library (Clontech) were sequentially transformed into Saccharomyces
cerevisiae strain CG1945 according to the manufacturer’s protocol
(Clontech). Transformants were plated on synthetic medium lacking
tryptophan, leucine and histidine but containing 1 mM 3-aminotria-
zole. Approximately 750000 transformants were screened. The candi-
date clones were rescued from the yeast cells and reintroduced back to
the same yeast strain to verify the interaction between the candidates
and the BRCT2 bait. The specificity of the interaction was determined
by comparing the interactions between the candidates and various
bait constructs. The bait constructs, the BRCT1 domain of BRCAI1
and BRCT domain of RAPI, have been described previously [12,40].

2.3. GST pull-down assay

GST and GST fusion proteins were expressed and purified accord-
ing to the manufacturer’s protocol (Amersham Pharmacia), with the
induction of protein expression performed at 20°C overnight [12]. The
expression vector for the FHL2 or its derivatives was used for in vitro
transcription and translation using a TNT kit (Promega). The *S-
labeled proteins were incubated with 10 pug of GST derivatives bound
to glutathione-Sepharose beads in 0.5 ml binding buffer (50 mM Tris—
HCI, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.3 mM dithiothreitol
(DTT), 0.1% NP-40 and protease inhibitor tablets from Roche). The
binding reaction was performed at 4°C overnight and the beads were
subsequently washed four times with the washing buffer (the same as
the binding buffer). The beads were eluted in 10 ul of 2XSDS-PAGE
sample buffer and protein interactions were analyzed by sodium do-
decyl sulfate—polyacrylamide gel electrophoresis (SDS-PAGE) fol-
lowed by autoradiography.

2.4. Co-immunoprecipitation

293T cells were transfected using Lipofectamine 2000 (Invitrogen).
Twenty-four hours after transfection, cells were washed twice with
phosphate-buffered saline and lysed in 0.5 ml lysis buffer (50 mM
Tris at pH 8.0, 250 mM NaCl, 0.1% NP-40, ] mM DTT, and protease
inhibitor tablets from Roche). After brief sonication, the lysate was
centrifuged at 14000 rpm for 15 min at 4°C. The supernatant was
used for subsequent co-immunoprecipitation [12]. Fifteen microliters
of 50% slurry of the anti-FLAG agarose beads (Sigma-Aldrich) were
used in each immunoprecipitation. Immunoprecipitation was per-
formed overnight at 4°C. The beads were centrifuged at 3000 rpm
for 2 min, and washed once with the lysis buffer and three times
with washing buffers, with each wash lasting at least 30 min. For
determination of specificity of interaction between FHL2 and each
of the BRCT domains of BRCAI1, the washing buffer (50 mM Tris
at pH 8.0, 500 mM NaCl, 1% NP-40, 1 mM DTT, and protease
inhibitor tablets from Roche) was used. For detection of interaction
between FHL2 and endogenous BRCAI1, the washing buffer (50 mM
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Tris at pH 8.0, 250 mM NaCl, 0.5% NP-40, | mM DTT, and protease
inhibitor tablets from Roche) was used. The precipitates were then
eluted in 2XSDS-PAGE sample buffer and loaded on SDS—polyac-
rylamide, followed by Western blotting according to the standard
procedures. Five microliters of the input crude extract were used for
detecting protein expression levels. The HA-tagged BRCT domain
proteins were detected using an anti-HA monoclonal antibody (Santa
Cruz). The endogenous BRCAI protein was detected using an anti-
BRCAL antibody (Oncogene).

2.5. Mammalian cell transfection and luciferase assay

293T cells were routinely maintained in Dulbecco’s modified Eagle’s
medium (Invitrogen) supplemented with 10% newborn calf serum at
37°C in a humidified atmosphere of 5% CO; in air. For transfection,
293T cells were plated onto 12-well plates. Twenty-four hours later,
cells were transfected with plasmid constructs using Lipofectamine
2000 as instructed by the manufacturer (Invitrogen). Transfections
were performed using 0.2 pg of GAL-LUC reporter, 50 ng of
GAL4 DBD-FHL2 or GAL4 DBD-FHL2 mutants, and 0.5 ug ex-
pression vector for BRCALI or its mutants. Empty vectors were used
to adjust the total amount of DNA. Twenty-four hours after trans-
fection, the cells were harvested, and luciferase and B-galactosidase
activities were determined as described previously [34]. B-Galactosi-
dase activity was used as an internal control for transfection efficiency.

2.6. Reverse transcription (RT)-PCR analysis

Total RNA was isolated using TRIzol Reagent according to the
manufacturer’s instructions (Invitrogen). First-strand cDNA was re-
verse transcribed from 1.0 pg total RNA with oligo(dT) primers using
AMYV reverse transcriptase as recommended by the supplier (Prome-
ga). One microliter of the synthesized cDNA was used for PCR
amplification in a total volume of 50 ul. The oligonucleotides P1
5'-ATGACTGAGCGCTTTGACTGC-3" and P2 5'-TCAGATGTC-
TTTCCCACAGTC-3" were used for amplification of the 840-bp cod-
ing sequence of FHL2. PCR amplifications were performed for
35 cycles using the following cycling parameters: 94°C for 1 min,
55°C for 1 min and 72°C for 1 min. The RT-PCR products were
purified and ligated to a T vector, and the resulting positive clones
were sequenced. The PCR for glyceraldehyde 3-phosphatase dehydro-
genase (GAPDH) was performed for 25 cycles. GAPDH was used as
an internal control.

2.7. Statistical analysis

The values are expressed as means + S.D. Statistical significance in
the luciferase activity experiments among constructs was determined
by Student’s #-test. A P value <0.05 was considered statistically sig-
nificant.

3. Results

3.1. Identification of a BRCAI-interacting protein

Since BRCAL is a tumor suppressor gene that is mutated in
a significant fraction of cases of inherited breast and ovarian
cancer, a prey library of human ovary cDNA was used in a
yeast two-hybrid screen to identify proteins that interact with
the BRCT2 domain of BRCAI1, with the BRCT?2 as bait. Out
of 46 His- and LacZ-positive clones, 13 contained cDNAs
with an entire open reading frame encoding the 279 amino
acid residues of FHL2. The specificity of this interaction was
determined by comparing the interactions between the FHL2
and various bait constructs (Fig. 1A). FHL2 failed to bind to
other known BRCT domains, including the BRCT1 domain
of BRCA1 and the BRCT domain of transcription factor
Rapl (Fig. 1A). Notably, all three bait constructs expressed
the BRCT1 and BRCT2 of BRCALI, and BRCT of Rapl, at a
comparable level in yeast cells (Fig. 1B).

3.2. Interaction between FHL2 and BRCAI in vitro and in vivo
To confirm the interaction between BRCA1 and FHL2,
GST pull-down experiments were performed in which in vitro
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Fig. 1. Specificity of FHL2 interactions in yeast. A: Summary of
the results from the yeast two-hybrid experiments. CG1945 was co-
transformed with the FHL2 prey plasmid and each of the bait plas-
mids as indicated. Positive interaction is indicative of His- and
LacZ-positive colonies. Also presented is a schematic diagram of the
BRCAL1 protein, illustrating the locations of BRCT domains.
B: Western blotting showing the GAL4 DBD fusion protein levels
in CG1945. All GAL4 DBD fusion proteins were determined by im-
munoblotting with an anti-GAL4 DBD antibody (Upstate).

translated [*S]methionine-labeled FHL2 was incubated with
GST-BRCT2, GST-BRCT1 or GST alone. Consistent with
the two-hybrid results (Fig. 2A), FHL2 specifically bound to
GST-BRCT2, but not GST-BRCT1 and GST.

To further assess the binding specificity of FHL2 to the
BRCT?2 region of BRCALI in vivo, 293T cells were cotrans-

=
Fig. 2. FHL2 binds to BRCAI in vitro and in vivo. A: Interaction
of full-length FHL2 with the BRCT2 domain of BRCALI in vitro.
GST pull-down assay was performed as described in Section 2. In
vitro translated FHL2 was incubated with GST, GST-BRCT1, or
GST-BRCT2. The bound proteins were subjected to SDS-PAGE
followed by autoradiography. B: Interaction of full-length FHL2
with the BRCT2 domain of BRCAI in vivo. 293T cells were co-
transfected with the expression vectors for FLAG-tagged FHL2 and
either HA-tagged BRCT1 or HA-tagged BRCT2 of BRCAL as indi-
cated. Lysates from the transfected cells were immunoprecipitated
(IP) using anti-FLAG antibody (Sigma-Aldrich), and the immuno-
precipitates were probed with an anti-HA antibody (Santa Cruz).
C: Interaction of full-length FHL2 with endogenous BRCA1. 293T
cells were cotransfected with the expression vector for FLAG-tagged
FHL2 or empty vector as indicated. Lysates from the transfected
cells were immunoprecipitated (IP) using anti-FLAG antibody (Sig-
ma-Aldrich), and the immunoprecipitates were probed with an anti-
BRCAL1 antibody (Abl; Oncogene). D: The reciprocal co-immuno-
precipitation for BRCA1 and FHL2. 293T cells were transfected as
in C. Lysates from the transfected cells were immunoprecipitated us-
ing either anti-BRCA1 antibodies (Abl and Ab3; Oncogene) or
anti-HA antibody (unrelated antibody), and the immunoprecipitates
were probed with an anti-FLAG antibody.
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fected with FLAG-FHL2 and HA-tagged BRCT1 or BRCT2
of BRCAI. The cell lysates were then immunoprecipitated
with the anti-FLAG antibody and subsequently immunoblot-
ted with an anti-HA antibody. Consistent with the GST pull-
down results (Fig. 2B), FHL2 specifically interacted with HA-
BRCT2, but not HA-BRCT]1.

To determine whether FHL2 interacts with endogenous
BRCAI1, 293T cells were transfected with FLAG-tagged
FHL2 or empty vector. FLAG-FHL2 was immunoprecipi-
tated from cell lysates by an anti-FLAG antibody and ana-
lyzed for BRCA1 binding by Western blotting analysis. The
results showed that the endogenous BRCA1 could be co-im-
munoprecipitated in the presence, but not in the absence, of
FLAG-FHL2 (Fig. 2C). A reciprocal co-immunoprecipitation
experiment using anti-BRCA1 antibodies also shows the phys-
ical interaction between BRCA1 and FHL2 (Fig. 2D).
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Fig. 3. Mapping of interaction regions of BRCAIl in FHL2.
A: Schematic representation of the constructs used in this study.
B: Mapping of the FHL2 interaction domain. GST pull-down as-
says were performed using 3°S-labeled FHL2 or FHL2 mutants and
GST-BRCT?2 fusion protein. GST protein was used as a control.

3.3. Mapping of the BRCAI binding domain of FHL2

To determine which region of FHL2 protein was responsi-
ble for mediating the interaction with BRCAI, a series of
FHL2 deletion mutants was constructed and tested for their
ability to interact with BRCT2 of BRCALI in a GST pull-
down assay (Fig. 3). The full-length or deletion mutants of
FHL2 protein were generated by in vitro translation and la-
beled with [*Smethionine. The glutathione-Sepharose beads
loaded with similar amounts of GST or GST-BRCT2 protein
were incubated with the in vitro translation products. As
shown in Fig. 3B, the full-length FHL2(1-279), FHL2AN1
and FHL2AN2, but not FHL2AC1, FHL2AC2 and
FHL2AN3, were pulled down by GST-BRCT2. However,
FHL2AN1 and FHL2AN2 interacted with BRCT2 more
weakly than the full-length FHL2. As negative controls, the
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full-length and deletion mutants of FHL2 did not associate
with GST alone. These results indicated that the interaction of
FHL2 with BRCA1 requires the last three LIM domains of
FHL2.

3.4. Potentiation of the FHL?2 transactivation by BRCAI

Since both BRCA1 and FHL2 have transactivation activity
and BRCALI is linked to RNA polymerase II, we sought to
determine whether BRCA1 could have an effect on the acti-
vation function of FHL2. We cotransfected GAL4-LUC,
GAL4 DBD-FHL2, and increasing amounts of BRCAIL. As
expected, FHL2 induced the transcriptional activity of the
reporter 3.3-fold (Fig. 4A). BRCAI (1.5 pg) further increased
the FHL2-mediated transcriptional activity 2.4-fold. The po-
tentiation of the FHL2 transactivation activity is dose-depen-
dent.

To investigate whether BRCA1 transactivation function is
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Fig. 4. BRCAL1 increases FHL2 transcriptional activity. A: Effects
of BRCAI on FHL2-mediated transactivation. 293T cells were co-
transfected with 0.2 pg of GAL4-LUC, 50 ng of the expression
plasmid for GAL4 DBD-FHL2, and increasing amounts of the ex-
pression vector for BRCA1 as indicated. The LUC activity obtained
on transfection of GAL4-LUC in the presence of GAL4 DBD alone
was set as 1. Data shown are the means*S.D. of three separate ex-
periments. ***P <0.001 compared to GAL4 DBD; #P<0.05 and
# P <0.01 compared to GAL4 DBD-FHL2. B: Effects of transacti-
vation-deficient BRCA1 mutants on FHL2 transcriptional activity.
Cells were cotransfected with 0.2 ug of GAL4-LUC, 50 ng of the
expression plasmid for GAL4 DBD-FHL2, and 1.5 pg of the ex-
pression vectors for either BRCAI or its mutant derivatives as indi-
cated. The relative luciferase activity in the presence of GAL4 DBD
alone was set as 1. Results are expressed as means*S.D. of three
independent experiments. **P <0.01 compared to 293T cells co-
transfected with GAL4 DBD-FHL2 and pCR3-BRCALI.
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Fig. 5. Lack of BRCALI binding sites in the FHL2 abolishes FHL2
transcriptional activity. A: Effects of mutations in FHL2 with or
without BRCA1 on FHL2 transcriptional activity. 293T cells were
cotransfected with 0.2 ug of GAL4-LUC, 50 ng of the expression
plasmids for either GAL4 DBD-FHL2 or GAL4 DBD-FHL2 dele-
tion mutants, with or without 1.5 pug of the expression vector for
BRCALI as indicated. The LUC activity obtained on transfection of
GAL4-LUC in the presence of GAL4 DBD alone was set as 1.
Data are the meanstS.D. of three independent experiments.
*#%P < (0,001 compared to GAL4 DBD-FHL2; ###P <0.001 com-
pared to 293T cells cotransfected with GAL4 DBD-FHL2 and
pCR3-BRCAI. B: Western blotting showing expression of the
GAL4 derivatives. Cells were transfected as in A. Whole-cell ex-
tracts were prepared, and equivalent amounts of each extract were
probed with anti-GAL4 DBD antibody (Upstate).

required for regulation of FHL2 transactivation activity, we
tested two previously described tumor-derived transactivation-
deficient BRCA1 mutants, P1749R and Y1853insA [39], in the
transient transfection experiments. As shown in Fig. 4B, the
two mutants could reduce the enhancement of FHL2 trans-
activation, suggesting that transactivation by BRCA1 may
contribute to the maximal FHL2 transactivation function.

3.5. Lack of BRCAI binding sites in the FHL2 abolishes FHL2
transactivation function

To test the possibility that BRCA1-FHL2 interaction is
required for the FHL2 transactivation, two FHL2 deletion
mutants, GAL4 DBD-FHL2AN and GAL4 DBD-FHL2ACI,
were made. In the former deletion mutant, the N-terminal half
LIM domain (aa 1-35) was deleted, and in the latter deletion
mutant, the C-terminal last LIM domain (aa 217-219) was
deleted. 293T cells were cotransfected with the GAL4-LUC
reporter, expression vectors for either GAL4 DBD-FHL2,
GAL4 DBD-FHL2AN, or GAL4 DBD-FHL2ACI1. As shown
in Fig. 5, the GAL4 DBD-FHL2AN containing the BRCA1
binding sites still retained the FHL2 transcriptional activity,

187

whereas the GAL4 DBD-FHL2AC1 mutant lacking the
BRCAI1 binding sites completely abolished the FHL2 tran-
scriptional activity. This is not attributable to decreased ex-
pression of the GAL4 DBD-FHL2ACI mutant. In contrast,
the GAL4 DBD-FHL2AC1 mutant was expressed at higher
levels than wild-type GAL4 DBD-FHL2 and the GAL4
DBD-FHL2AN. In addition, BRCA1 did not rescue the tran-
scriptional defect of the GAL4 DBD-FHL2AC1 mutant. Tak-
en together, these findings suggest that the BRCAI-FHL2
interaction contributes to the transactivation function of
FHL2.

3.6. Expression of FHL2 mRNA in breast cancer cell lines

Human FHL2 was originally identified by subtractive clon-
ing as a LIM-only protein downregulated in rhabdomyosar-
coma [36]. FHL2 mRNA was shown to be detectable in many
tissues [36,41]. FHL2 appeared to be highly expressed in heart
and ovary; moderate levels could be detected in placenta,
uterus, mammary gland, and adrenal gland; and low levels
seemed to exist in skeletal muscle, colon, bladder, prostate,
stomach, trachea, testis, small intestine, thyroid gland, and
kidney. FHL2 mRNA was also found to be expressed in var-
ious cancer cell lines, such as breast cancer, leukemia, cervical
cancer, colon cancer, and lung cancer cell lines. Since only a
limited number of breast cancer cell lines (T47D, MCF7,
HBL100 and MDA-MB-231) were tested for FHL2 mRNA
expression, we asked whether FHL2 mRNA is widely ex-
pressed in breast cancer cell lines. We prepared mRNA
from eight breast cancer cell lines and an immortalized nor-
mal breast epithelial cell line, MCF-10A, and performed RT-
PCR using primers for amplification of full-length FHL2 (Fig.
6). As previously reported [42], FHL2 mRNA was expressed
in T47D cells. The identity of FHL2 detected was further
confirmed by DNA sequencing. Although our assay was
only semi-quantitative, comparison to the GAPDH signal al-
lowed some estimations about the relative FHL2 expression in
different cell lines. Compared with the normal breast epithelial
cell line MCF-10A, all breast cancer cell lines tested except
T47D expressed FHL2 mRNA at lower levels, suggesting that
FHL2 may play an important role in breast cancer develop-
ment.

4. Discussion

Here we present evidence of physical and functional inter-
actions between BRCA1 and FHL2. The physical interaction
has been validated by a number of in vitro and in vivo assays,
including yeast two-hybrid, in vitro GST pull-down, and in

Fig. 6. FHL2 mRNA expression in breast cancer cell lines. RT-
PCR from the selected cell lines was performed as described in Sec-
tion 2. GAPDH was used as an internal control. The pcDNA3-
FLAG-FHL2 plasmid (0.5 pg) served as a positive control.
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vivo co-immunoprecipitation. Importantly, we can demon-
strate that BRCAL1 functionally enhances FHL2 transactiva-
tion, suggesting that FHL2 is a downstream target of BRCAL.

The BRCT domain, first identified in the BRCA1 C-termi-
nal region, is an approximately 95-aa region defined by dis-
tinct hydrophobic clusters of amino acids [43]. This domain is
considered to be a protein—protein interaction module, which
can either bind different BRCT domains specifically or inter-
act with other unknown protein folds. We have previously
shown that BRCAI interacts with a novel COBRA1 protein
through its first BRCT domain [12]. The observation that the
LIM-only protein FHL2 specifically interacted with the
BRCT2 domain of BRCAI, but not other BRCT domains,
suggests that the BRCT motif may only provide the architec-
tural basis for binding to FHL2. Additional amino acid res-
idues in the BRCT region that are unique to the BRCT2 of
BRCA1 may serve as the actual contact points for the LIM
domains of FHL2.

The transcription of protein-encoding genes in eukaryotic
cells requires RNA polymerase II and a set of general tran-
scription factors that include the TATA binding protein,
TFIIB, TFIIE, TFIIF and TFIIH [44]. These factors assemble
at the core promoter and are sufficient for accurate transcrip-
tion initiation in vitro. BRCA1 and FHL2 were found to
carry an intrinsic activation function [13,14,37]. Immunopre-
cipitation of BRCA1 complexes specifically purifies transcrip-
tionally active RNA polymerase II holoenzyme and transcrip-
tion factors TFIIE, TFIIF and TFIIH [16]. The fact that
BRCAI1 enhanced the transcriptional activity of FHL2 sug-
gests that the interaction between BRCA1 and FHL2 may
facilitate the recruitment of RNA polymerase II holoenzyme
and other general transcription factors to promoter regions.
The findings that lack of BRCA1 binding sites in the FHL2
abolished the FHL?2 transactivation function and that tumor-
derived transactivation-deficient BRCA1 mutants impaired
FHL2 transcriptional enhancement indicate that the transcrip-
tional activity of BRCA1 contributes to the transcriptional
activity of FHL2. It will be interesting to investigate how
the BRCA1-FHL2 interaction affects transcriptional regula-
tion.

In this study, we used a GAL4-responsive reporter to assess
the effect of BRCA1 on FHL?2 transcriptional activity. Use of
this reporter instead of a BRCAIl- or FHL2-responsive re-
porter circumvents some of the issues regarding BRCAI1- or
FHL2-specific responsive sequences. BRCA1 has been re-
ported to interact with the activator protein 1 (AP-1) tran-
scription factor JunB using a yeast two-hybrid screen [45].
JunB enhances the transcriptional activity of BRCA1 fused
to the GAL4 DBD from a GAL4 responsive reporter. Using
a yeast two-hybrid screen, the tumor suppressor menin was
found to interact with the AP-1 transcription factor JunD
[46]. Menin represses the transactivation by JunD fused to
the GAL4 DBD from a GAL4-responsive reporter. Here we
show that BRCA1 enhances FHL2-mediated transcriptional
activity using a GAL4-responsive reporter. Both BRCA1 and
FHL2 have been shown to bind and activate the transcrip-
tional activity of androgen receptor (AR) in an androgen-de-
pendent manner [37]. However, we failed to demonstrate that
BRCA1 and FHL2 synergistically enhanced AR-dependent
transactivation activity using an androgen response element-
containing luciferase reporter (data not shown), suggesting
that BRCAI1, FHL2 and AR may not exist in the same com-
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plex or that the synergistic effects of BRCA1 and FHL2 may
be promoter- or cell type-specific. Although BRCA1 was
found to activate the cyclin-dependent kinase inhibitor p21-
promoter luciferase reporter [39], the BRCA1-FHL2 interac-
tion does not have any effect on the p2l-promoter reporter
gene expression (data not shown). Further studies are required
to determine downstream target gene expression regulated by
the BRCA1-FHL?2 interaction.

FHL2 expression was originally shown to be heart-specific.
However, many recent studies indicate that FHL2 is not re-
stricted because it can be expressed in ovary, placenta, uterus,
mammary gland, and adrenal gland. We report here that
FHL2 mRNA expression may be downregulated in many
breast cancer cell lines. Since both BRCA1 and FHL2 are
capable of efficiently inducing apoptosis [41,47-49], it is pos-
sible that the BRCA1-FHL?2 interaction may be involved in
regulation of cancer cell growth.
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