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Abstract A deterministic computer model of the signal trans-
duction pathway mediating bacterial chemotaxis was used to
examine the variation in both unstimulated swimming behaviour
and adaptation time to stimuli in clonal populations of cells.
Copy numbers of proteins in the pathway were computed from
a simpli¢ed model of transcription and translation that predicts
greater-than-Poissonian statistics. Simulated and experimental
individuality data could be brought into good agreement on
varying the noise strength of the protein copy number distribu-
tions. In the simulations, all the proteins in the pathway are
involved to a signi¢cant degree in the appearance of phenotypic
diversity, although there is a modest decrease in in£uence with
increasing copy number.
! 2003 Published by Elsevier B.V. on behalf of the Federation
of European Biochemical Societies.
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1. Introduction

Non-genetic individuality is de¢ned as the presence of a
diversity of phenotypes in a genetically identical population,
and has been observed in a range of prokaryotic and eukary-
otic organisms [1]. The phenomenon was ¢rst discovered to be
a feature of the chemotactic response of coliform bacteria in
the 1970s, with both unstimulated swimming behaviour (rep-
resented in one form in Fig. 1) and adaptation time to stimuli
varying from cell to cell [2]. This variation in unstimulated
swimming behaviour was con¢rmed experimentally and quan-
ti¢ed in a way that allowed a ¢rst attempt to be made at
modeling its origins [3].
Where might the source of such individuality lie? Spudich

and Koshland [2] speculated that it might arise from Poisso-
nian variation in molecules present at low numbers in the cell.
Since the variance of a Poisson distribution is equal to its
mean, the standard deviation (which is the square root of
the variance) becomes relatively smaller for larger numbers
of molecules: a relative standard deviation of 10% for a Pois-
son distribution of mean 100 falls to 1% for a distribution of
mean 10 000. Ozbudak et al. [4] investigated this question
experimentally by incorporating the green £uorescent protein
gene (gfp) under the control of an inducible promoter into the

chromosome of Bacillus subtilis. Measurement of the expres-
sion of GFP in the population using £ow cytometry deter-
mined the variation in expression from cell to cell. The phe-
notypic ‘noise strength’, de¢ned as the ratio of the variance of
the distribution of phenotypes to the mean, was used in this
study to quantify the spread of expression levels in the pop-
ulation. As Poisson distributions have variance-to-mean ratios
of unity, this parameter will reveal any deviations from Pois-
sonian behaviour. Deviations were indeed encountered exper-
imentally and, based on an analytical model of gene expres-
sion, it was concluded that noise essentially arises at the
translational, and not the transcriptional, level in the cell.
The model, on which this study was based, also predicted
that the spread of expression levels in a population should
follow a greater-than-Poissonian distribution (one whose var-
iance is greater than its mean) with a noise strength of Vb+1,
where b is the burst size or average number of protein copies
synthesised per mRNA transcript [5].

1.1. Bacterial chemotaxis
Most of the proteins involved in mediating the chemotactic

response of coliform bacteria are associated into two distinct
membrane-bound complexes: a receptor complex, typically
clustered at only one of the poles of the cell, and a £agellar
motor complex, multiple copies of which are randomly dis-
tributed over the surface of the cell. The chemotaxis signal
transduction pathway of Escherichia coli up to, but not in-
cluding, the motors consists of six cytoplasmic proteins and
¢ve homologous transmembrane receptors. The genes for all
the cytoplasmic components and two of the ¢ve receptor spe-
cies are found in adjacent operons, meche (tar tap cheRBYZ)
and mocha (motAB cheAW), on the chromosome [6].
The chemotactic receptors detect attractants and repellents

in the environment and thereby indirectly control the level of
the signaling molecule (phosphorylated CheY) that di¡uses
from the receptor complexes through the cytoplasm to the
£agellar motors, where it interacts with the switch complex
to increase the probability that any motor will change its
direction of rotation (and hence that of its attached helical
£agellum) from counterclockwise (the default) to clockwise.
The consequent change in the sequence of motor reversals
causes the random walk that the cell typically undergoes
when unstimulated to become biased towards the sources of
attractants and away from the sources of repellents. Slow
adaptation of the chemotactic response is achieved by two
other cytosolic proteins, CheR and CheB, which counteract
the e¡ects of binding attractants and repellents by respectively
methylating and demethylating a number of speci¢c sites on
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the cytoplasmic domains of the receptors. More detailed de-
scriptions of various aspects of bacterial chemotaxis may be
found in a number of recent reviews [7^11].

2. Materials and methods

For the individuality simulations, a modi¢ed version of the deter-
ministic, bacterial chemotaxis simulation program BCT (available
from http://www.zoo.cam.ac.uk/comp-cell) was used. The output of
the program follows the standard convention for characterising swim-
ming behaviour in terms of the rotational bias of the £agellar motor,
i.e. the fraction of time the motor spends rotating counterclockwise
(Fig. 1). For adaptation times, however, the de¢nition used by Alon et
al. [12] (given in terms of tumbling frequency) was modi¢ed to be the
time taken following stimulation for the bias to return halfway back
to its pre-stimulus level. The program uses a robust adaptation mech-
anism [13] to ensure that the bias always returns to its pre-stimulus
steady state (exact adaptation) over a wide range of initial protein
concentrations. Each in silico experiment comprised 10 000 individual
simulations, in each of which the copy numbers of all the proteins
were chosen randomly from a set of independent, normal distributions
of equal noise strength, as de¢ned in Section 1.

3. Results

3.1. Individuality in unstimulated swimming behaviour
The computer program was used to simulate the distribu-

tion of unstimulated swimming behaviour displayed by a pop-
ulation of wild-type E. coli cells, for which experimental data
exist [3]. The choice of noise strength was based on the genetic
organisation of the meche and mocha operons described in
Section 1. In the absence of quantitative data, and for reasons
of simplicity, the two operons were assumed to be transcribed
at the same rate, giving a burst size for each protein of its
copy number divided by the (constant) number of transcripts.
The results of a series of individuality simulations based on

340, 113 and 68 transcripts of the above operons are shown in
Fig. 2, with the value of 113 (corresponding to a range of
burst sizes from 1.5 for CheR to 150 for CheY) producing
the best match with the experimentally determined distribu-
tion. To investigate the relative contributions of the individual
proteins to the overall phenotypic variation in the population,
further simulations were performed with the copy number of
each of the proteins in turn held constant, which resulted in a
set of distributions lying between the 340- and the 113-tran-
script distributions of Fig. 2 (data not shown). Thus, in silico,
all of the proteins make a signi¢cant contribution to the gen-
eration of individuality in unstimulated swimming behaviour,
with no single protein, or small group of proteins, predom-
inating.

3.2. Individuality in adaptation time
Experimental data are not available in su⁄cient quantity

(or the appropriate format) to be used meaningfully in a
modeling study of this type of individuality. A limited amount
of data is, however, available on the closely related topic of
how adaptation times are a¡ected by changes in the concen-
tration of CheR (when expressed from an inducible plasmid in
a strain deleted for cheR) [12]. With incremental steps through
a range of CheR concentrations, the adaptation times of the
simulations could be brought into good agreement with these
experimental data (Fig. 3). A full individuality simulation, as
described in Section 3.1, but with the same parameters as
those used to generate the data in Fig. 3, is shown in Fig.
4. Although there is a spread of adaptation times for any
given CheR concentration, the shape of the overall distribu-
tion follows the deterministic curve in Fig. 3, with the magni-
tude of the spread indicating the contribution of the other
proteins to the variation in adaptation time. Note that the
in silico adaptation times are normally distributed (Fig. 5),

Fig. 1. Individuality of £agellar motor switching. Cells from a popu-
lation of the wild-type strain were shorn of their £agella and at-
tached to glass coverslips by anti-£agellin antibodies. Each cell was
videotaped through a microscope for 1 min and the times at which
the direction of rotation of the cell changed from clockwise (cw) to
counterclockwise (ccw) and vice versa were recorded. Time courses
for three cells are shown, with cell 1 displaying a high motor bias
(0.98), cell 2 a bias close to the population mean (0.85), and cell 3 a
low bias (0.43), during the observation period. Note that motor
switching occurs stochastically, with cw and ccw intervals distrib-
uted exponentially [19].

Fig. 2. Simulations of individuality in unstimulated £agellar motor
bias. The in vivo data set is replotted from ¢g. 5A of Levin et al.
[3]. For the in silico data, each individual simulation was run for
200 s of simulated time, su⁄cient to bring the bias to steady state.
The experimental and simulated distributions, plotted as histograms,
all have mean biases of V0.85. For clarity, only three in silico indi-
viduality histograms are shown. The inset redisplays the data for
biases between 0.7 and 1.0.
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in agreement with one of the ¢ndings of the original inves-
tigation into this phenomenon [2].

4. Discussion

The same model for generating variation in chemotaxis
protein copy numbers was used to simulate the individuality

in steady-state bias and adaptation time exhibited by clonal
populations of E. coli cells. The model consists of a set of
seven independent, normal distributions (one for each type
of chemotaxis protein), with variance-to-mean ratios ranging
from 2.5 for CheR to 151 for CheY. According to the theory
of stochastic gene expression described in Section 1 [5], such
noise strengths would arise from burst sizes, or average num-
ber of protein molecules per transcript, of approximately 1.5
and 150, respectively (for comparison, the burst sizes for lacA
and lacZ are 5 and 40, respectively [14] and for trp, 20 [15]).
The results of the individuality simulations described in Sec-
tion 3.1 show that all the proteins have a part to play in the
appearance of individuality in the chemotactic response. How
can this be when their noise strengths di¡er by a factor of 60?
The reason lies in the fact that the shapes of the distributions
depend on their standard deviations, and a comparison of the
spread of the distributions (by normalising the standard devi-
ation with the mean) produces a much more modest range of
values from 0.12 for CheR to 0.09 for CheY. It should be
noted, however, that this argument is based on the assump-
tion that the meche and mocha operons produce equal num-
bers of transcripts and would not hold true if the number of
transcripts of the two operons di¡ered greatly from one an-
other.
In more general terms, what are the possible costs and

bene¢ts of individuality? Gene expression is an inherently
noisy process, due to the high degree of stochasticity associ-
ated with transcriptional and translational events. Various
strategies, such as negative feedback, have been proposed
(and experimentally tested) for attenuating this source of
noise (for recent reviews, see [1,16]), although they all impose
some cost on the cell in terms of the energy requirement for
protein synthesis. From an evolutionary perspective, however,
individuality seems to provide a mechanism that would allow
a small fraction of a population that might survive exposure
to severe stress to repopulate the environment after the stress
has eased, or to migrate to and colonise new environments
[17]. An example where this might occur is provided by the

Fig. 4. Simulation of individuality in adaptation time with variation
in all chemotaxis proteins (see Fig. 3 for details). The solid curve is
an interpolation through the experimental data points.

Fig. 5. Distribution of in silico adaptation times. The mean and
standard deviation of the normal distribution are the same as those
calculated from the in silico data in Fig. 4 (744S 79 s).

Fig. 3. E¡ect of expression of CheR on adaptation time. Each simu-
lation was run to steady state, whereupon the concentration of the
attractant aspartate was increased from zero to 1 M to ensure satu-
ration of the receptors and then held at that level for the remainder
of the simulation (see Section 2). The rates of the adaptation reac-
tions (mediated by CheR and CheB) had to be reduced four-fold
from those used in the currently available version of the program to
bring the in silico adaptation times in line with the experimental
data (not shown). Note that the discovery of an inverse relationship
between expression of CheR and adaptation time corroborated a
prediction made in an earlier theoretical study of robust adaptation
[13].
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bacterium Myxococcus xanthus [18]. Because this species se-
cretes amino acids into the environment that are chemoattrac-
tants for E. coli, individual cells are innocently lured towards
the myxobacteria up the resultant attractant gradient and are
subsequently devoured when they make contact. Under these
circumstances, cells that respond weakly or not at all to this
signal have a clear survival advantage. In short, there may be
evolutionary bene¢ts for populations arising from individual-
ity, but also costs for the cell in counteracting it if it causes no
deleterious e¡ects.
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