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Abstract The effects of apoptosis induction on glucose and
phospholipid metabolite levels in cancer were studied using hu-
man colon adenocarcinoma cells (HT-29). Apoptosis was in-
duced by co-incubation with 200 U/ml tumor necrosis factor
(TNF)-o for 4, 8 or 15 h, after sensitization with 500 U/ml
interferon (IFN)-y for 7 h. Perchloric acid extracts were ana-
lyzed by 'H and *'P nuclear magnetic resonance (NMR) spec-
troscopy. Significantly increased lactate and NTP (all nucleo-
side 5°-triphosphates) signals were detected 4 h after apoptosis-
inducing IFN-y/TNF-a treatment, but not in cells which were
TNF-a-treated without IFN-y preincubation. Simultaneous lac-
tate and NTP changes, if confirmed in vivo, may serve as early,
non-invasive markers of treatment response in some tumors.

© 2003 Federation of European Biochemical Societies. Pub-
lished by Elsevier Science B.V. All rights reserved.
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1. Introduction

3P and 'H nuclear magnetic resonance (NMR) spectrosco-
py has recently been used to monitor changes in glycolysis,
cellular energetics and lipid metabolism occurring in cultured
tumor cells and in solid tumors following induction of apo-
ptosis by anticancer drugs (for recent reviews see Evelhoch et
al. [1] and Hakumadki et al. [2,3]). Besides the elucidation of
the biochemical mechanisms underlying, accompanying and/
or modifying apoptotic cell death, the identification of ‘meta-
bolic markers’ associated with the induction of apoptotic cell
death has been a major goal of these studies. If sufficiently
sensitive, such surrogate markers may prove to be useful for
monitoring the progress of cancer treatment, potentially by in
vivo NMR spectroscopy. Such a method may be particularly
helpful if it allows for early prediction of successful therapy in
patients, i.e. ideally before the appearance of morphological
signs of cell death. In this perspective, we analyzed the tem-
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poral evolution of glucose and phospholipid metabolism in a
time course study of interferon (IFN)-y-sensitized [4-7] HT-29
cells following apoptosis induction by tumor necrosis factor
(TNF)-o treatment.

The human colon adenocarcinoma cell line, HT-29, is a
relevant model for human colon cancers expressing the
c-myc proto-oncogene [8,9]. Numerous studies have demon-
strated that treatment with TNF-o or TNF-related apoptosis-
inducing ligand (TRAIL) induces apoptosis in HT-29 and
other colon cancer cells through a ligand receptor-mediated
pathway [4,5,10-16]. Furthermore, c-Myc-expressing cancer
cells have been shown to exhibit high activities of lactate de-
hydrogenase (LDH) [17] and of other glycolytic enzymes [18].
Thus, we primarily focused on the possible glycolytic effects of
apoptosis-inducing IFN-y/TNF-o treatment in HT-29 cells.
The results obtained here are intended to guide future in
vivo studies of the potential of NMR-visible metabolites as
diagnostic markers of apoptotic cell death in tumors.

2. Materials and methods

2.1. Cell culture

HT-29 cells were cultured and extracted as described elsewhere [19].
Briefly, cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) (3.15 g/l glucose) supplemented with 10% fetal calf serum.
All cell samples were identically subcultured from the same stock
suspension; consequently, all cells were of the same passage number
and were subjected to the same feeding rhythm before extraction. The
treatment protocol is summarized in Fig. 1. Cells were treated with
200 U/ml TNF-o. for 4, 8, 15 or 24 h prior to extraction. The cells
treated for 4, 8 or 15 h had been pretreated for 7 h with 500 U/ml
IFN-y before TNF-a addition to the medium. IFN-y alone kills cells
only after 2 days of incubation [6]; in our experiments where IFN-y
was used for significantly shorter incubation periods, this cytokine
essentially serves as a sensitizer by stimulating the expression of
TNF-a receptors in HT-29 cells, thus enabling them to bind to the
ligand [4-7].

Generally, ca. 2-3X10® cells were extracted with perchloric acid
and prepared for NMR spectroscopy as described previously [19],
except that 10-30 mM [,2-diaminocyclohexane tetraacetic acid
(CDTA) was used instead of ethylenediamine tetraacetic acid
(EDTA). Following the 8-h and 15-h combination treatments, an
estimated 5-10% and 25% of the cells, respectively, were found float-
ing in the medium, or were only loosely attached to the bottom of the
flask. These cells were harvested separately from the attached cells,
washed twice in phosphate-free buffer and extracted. The experiments
reported here were preceded by a careful quality control study (using
10 samples of untreated HT-29 cells) which had the goal of optimizing
the cell culture and extraction protocol to obtain highest reproduc-
ibility for metabolite concentrations. Results indicated that, for exam-
ple, a reproducibility range of *4% relative to the mean value could
be obtained for phosphocholine (PC) levels based on *'P NMR spec-
tra (data not shown).
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2.2. 3P and "H NMR spectroscopy

'"H NMR spectra at 400 MHz and proton-decoupled *'P NMR
spectra at 162 MHz were obtained at 4°C on a 9.4 T AM400-WB
FT-NMR spectrometer (Bruker, Rheinstetten, Germany) using a
quattro nucleus probe (QNP) for 5-mm sample tubes; acquisition
and processing parameters were chosen as described elsewhere [19].
Relative metabolite signal intensities are reported here as percentages
of the total integral over the entire spectrum, i.e. as percentage of total
'H signal integral (%tot. H) or as percentage of total 3'P signal in-
tegral (%tot. P), whereby the residual water (HDO) region was not
included in the integration of the total '"H NMR spectrum. Percentage
values rather than more conventional measures of metabolite concen-
tration were used in view of potential in vivo applications of this
NMR method, where reliable absolute concentrations would be rather
difficult to obtain and therefore are rarely used, particularly in clinical
applications. PC and sn-glycero-(3)-phosphocholine (GPC) values
were obtained from both 'H and 3'P NMR spectra. The results
from these two methods were consistent, apart from some variation
in statistical significance (P values). The numerical PC and GPC re-
sults presented below are based on 3'P NMR spectra unless specified
otherwise.

2.3. Histological confirmation of apoptosis

Apoptosis induction in HT-29 and other colon carcinoma cells fol-
lowing TNF-o treatment is well documented [4,5,11,12,14-16]. To
confirm the occurrence of apoptotic cell death for our treatment pro-
tocol, HT-29 cells were cultured as described above, pretreated for 7 h
with 500 U/ml IFN-y and treated for 24 h with 200 U/ml TNF-o
added. Floating and loosely attached cells were separated from the
attached cells for microscopic analysis. Attached cells were trypsi-
nized, and trypsin was inactivated by adding an equal amount of
serum-containing medium to the cell suspension. Cytospin slides for
light microscopy were prepared, stained and scored as previously de-
scribed [20]. Cells in (late) apoptosis were identified on the slides using
the following characteristics: condensed chromatin, cell shrinkage,
increased cytoplasmic vacuolization, and apoptotic body formation.
At least 200 cells were scored for each sample and apoptotic frequency
reported as a percentage of total cells scored.

2.4. Statistical evaluation

The software package StatView (version 5.0.1) from the SAS Insti-
tute, Cary, NC, USA, was used for statistical data analysis (algo-
rithms described in StatView Reference book, SAS, 1999). Simple
linear regression analysis was used to characterize linear changes in
glycerol-3-phosphate (Gro-3-P) or lactate concentration as a function
of the time after the onset of TNF-o treatment. The parameters ob-
tained were (i) correlation coefficient (R?), (ii) regression coefficient b
(slope) £ S.E.M. of b, and (iii) probability level (P value for an F-test
that »=0). Relative metabolite levels for sample groups are reported
as percentage+ S.D. One-way analysis of variance (ANOVA) with
Fisher’s PLSD (protected least significant difference) post hoc test
for multiple comparisons was used to determine the significance
(P <0.05) of differences in relative metabolite concentrations between
treatment groups. In this pilot study carried out with a limited num-
ber of samples, each group consisted of two samples, except for the
control group (n=3). The histological analysis of apoptotic cell death
was performed with n=3 (triplicate samples).

3. Results and discussion

3.1. Effects of IFN-yITNF-« treatment on the levels of
glycolytic metabolites

Extracts prepared from cells that were floating in the me-
dium at the time of harvest (up to 25% of total cells) did not
give rise to substantial NMR signals. This suggests that a
major proportion of the detached cells had perforated mem-
branes so that metabolites of low molecular weight had been
released into the medium before harvest or had been taken up
by the buffer during the washing process. This is consistent
with the observation that cell shedding is a relatively early
event in apoptosis of HT-29 cells [21], and that most of the
detached colon cells in the medium are apoptotic [22].
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Fig. 1. Schematic representation of the treatment protocol for HT-
29 cells. Cells were treated with 200 U/ml TNF-o only (for 24 h);
with a combination of 500 U/ml IFN-o (for 7 h) and 200 U/ml
TNF-o (for 4, 8 or 15 h); or were left untreated (controls, 0 h).
Light gray: incubation without drugs; dark gray: pretreatment with
IFN-y; black: TNF-o treatment in presence of IFN-y. For all cells,
the last medium change before extraction took place at 1=0 of the
time axis. All cells were extracted at t=48 h.

The analysis by 3P NMR spectroscopy of phosphorylated
glycolytic intermediates from intact attached cells showed that
the relative levels of Gro-3-P (Figs. 2 and 3A increased as
a function of time after the onset of IFN-y/TNF-a treat-
ment (linear regression R?=0.650, slope »=0.056 % 0.015%/h,
P=0.0087). However, the rise in Gro-3-P was statistically
significant only after 15 h of IFN-y/TNF-o treatment, at
which point Gro-3-P was twice as high as in untreated cells
(0 h). In contrast, the relative level of fructose-1,6-diphosphate
(Fru-1,6-DP) increased significantly already at 4 h after the
beginning of IFN-y/TNF-o treatment (by a factor of ca. 2.0
vs. controls), and remained at this elevated level (Fig. 3B).
Treatment with TNF-o alone (24 h) did not result in signifi-
cant Gro-3-P or Fru-1,6-DP changes, even after 24 h of treat-
ment. The latter observation fits with the virtual absence of
detached cells after 24 h of TNF-a treatment without preced-
ing sensitization by IFN-y pretreatment.

The mechanism leading to Fru-1,6-DP accumulation fol-
lowing apoptosis induction is still under investigation. Dras-
tically increased Fru-1,6-DP levels and a significant adenosine
triphosphate (ATP) drop have been reported for several cell
lines following treatment with apoptosis-inducing drugs [1,23—
25]. In these cases, the accumulation of Fru-1,6-DP is thought
to be a consequence of the inhibition of glyceraldehyde-3-
phosphate dehydrogenase following NAD depletion. Accord-
ing to this model, NAD is consumed by the activation of the
enzyme poly(ADP-ribose) polymerase (PARP), a DNA repair
enzyme activated by DNA damage. However, this mechanism
is less likely to occur in IFN-y/TNF-o-treated HT-29 cells
since the latter show increased NTP (all nucleoside 5’-triphos-
phates) levels (see Section 3.2) and exhibit only modest in-
creases in Fru-1,6-DP levels. However, an increased produc-
tion of the glycolytic intermediates, Gro-3-P and Fru-1,6-DP,
in conjunction with increased lactate, alanine and NTP gen-
eration may be explained by increased aerobic glycolysis (see
below).

Lac and Ala (Fig. 2) are two end products of the glycolytic
pathway [26,27] whose relative concentrations were found to
be changed following IFN-y/TNF-o treatment of HT-29 cells
(Fig. 3C and D). Lac increased roughly linearly with TNF-o
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Fig. 2. A: Typical '"H NMR spectrum of a perchloric acid extract of untreated HT-29 cells (control). B: Typical 3P NMR spectrum of a
perchloric acid extract of untreated HT-29 cells (control). C: Low-field regions of representative >'P NMR spectra for untreated (0 h) HT-29
cells, and IFN-y-sensitized HT-29 cells treated for 4, 8 or 15 h with TNF-a (see protocol shown in Fig. 1).

treatment time (R>=0.879, slope »=0.221+0.031%h, P=
0.0002) and was significantly augmented vs. control values
as early as 4 h after the onset of treatment. Ala levels were
somewhat increased after 4 h of treatment when compared to
control values (P=0.052); however, for longer treatment pe-
riods alanine levels returned to near-control values (Fig. 3D).
Neither Lac nor Ala values were significantly changed for HT-
29 cells treated for 24 h with TNF-o alone when compared
with untreated controls, in conformity with the behavior of
Gro-3-P and Fru-1,6-DP described above.

3.2. Effects of IFN-yITNF-a treatment on energy metabolite
levels
The phosphocreatine signal integral ranged between 6.8 and
10.8% of total phosphate for all treatment groups; no signifi-

cant differences were detected. Levels of NTP (predominantly
ATP) were significantly increased (P =0.014) for HT-29 cells
treated with IFN-y/TNF-a (for the pooled 4-h, 8-h and 15-h
treatment groups designated ‘average (4-15 h)’ in Fig. 3E)
compared to untreated controls. Moreover, nucleoside di-
phosphate (NDP) in the pooled 4-h, 8-h and 15-h treatment
groups was significantly reduced compared to the control
group (data not shown). The NTP levels of the cells treated
with TNF-o alone were not significantly different from those
of controls (data not shown). The relative levels of inorganic
phosphate (P;) ranged between 4.8 and 10.2% of tot. P, but no
inter-group variations were observed except for a tendency
towards increased P; values for cells treated with TNF-o
only. The increase in NTP levels detected in attached HT-29
cells following the onset of IFN-y/TNF-a treatment may re-



126

Gro-3-P A
A
s
e
=)
X
"0Oh" 7h/4h 7h/8h 7h/15h 24h
treatment group
lactate % C
o
A
S
S
=]
X
"Oh" 7h/4h 7h/8h 7h/15h 24h
treatment group
o
N
S
S
=]
=X
"0h" 7h/4h 7h/8h 7h/15hav.(4-15h)
treatment group
x
k2
-
=]
X

24h

7h/4h 7h/8h 7h/15h
treatment group

"o h"

% of tot.P

% of tot.H

% of tot.P

N.W. Lutz et al.IFEBS Letters 544 (2003) 123-128

Fru-1,6-DP

*

7h/4h 7h/8h 7h/15h 24h

treatment group

"0 h"

D

alanine

2.0 4 ()

7h/4h 7h/8h 7h/15h 24h

treatment group

"o h"

7h/4h 7h/8h 7h/15h 24h

treatment group

"o p"

GPC/PC H

24h

7h/4h 7h/8h 7h/15h
treatment group

"o R

Fig. 3. Relative metabolite levels (+S.D.) for HT-29 cells treated according to the protocol shown in Fig. 1. Asterisks, *, indicate statistical sig-
nificance (P <0.05). Asterisks enclosed in parentheses, (*), indicate borderline significance (0.05 = P <0.07).

flect the increased production of high-energy metabolites to
support the ATP needs during early apoptosis. This phenom-
enon has been observed in some apoptotic cells [1,28], but not
in others [24,29]. The increase in Lac levels together with
enhanced NTP may be understood by assuming that a sub-
stantial part of the NTP required is generated through in-

creased aerobic glycolysis. This hypothesis needs to be tested
by more detailed experiments, but would be supported by the
above-mentioned parallel increase observed for other glyco-
Iytic intermediates such as Gro-3-P and Fru-1,6-DP.

In contrast to HT-29 cells, MCF7 cells which do not express
c-Myc under normal growth conditions [30], do not exhibit a
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Fig. 4. Micrographs of HT-29 cells pretreated for 7 h with 500 U/ml IFN-y, and subsequently treated for 24 h with 200 U/ml TNF-o (right),
and of untreated control cells (left). L: live cells (non-apoptotic, or in early apoptosis); A: cells in late apoptosis; Nec: cells in primary or sec-
ondary necrosis. The cells shown were detached from the flask bottom at the time of harvest.

significant NTP increase following apoptosis induction by
TNF-o treatment, and the lactate production rate appears
to remain stable (Bogin et al. [29]). Further studies will reveal
whether the observed Lac increase after apoptosis induction in
HT-29 cells is indeed related to a high LDH expression due to
c-Myc expression (see Section 1).

3.3. Effects of IFN-yITNF-a treatment on phospholipid
metabolites

PC is an important intermediate in the synthesis and deg-
radation of the most abundant membrane phospholipid,
phosphatidylcholine. The relative PC level decreased signifi-
cantly after the 4-h IFN-y/TNF-a treatment (P=0.001; Fig.
3F). Further small decreases were observed for 8- and 15-h
incubations. Treatment with TNF-o alone for 24 h also re-
duced PC, albeit to a lesser extent than the combination treat-
ment. In contrast to PC, the levels of GPC did not decrease
after 4-h IFN-y/TNF-o treatment, but did decrease slightly
with longer incubations (statistical significance was reached
only for 15-h values obtained from 'H NMR spectra, where
P=0.013). Following a 24-h treatment with TNF-a only,
GPC was reduced to the level reached by IFN-y/TNF-o-
treated HT-29 cells after 15 h. Decreased GPC levels for
both IFN-y-sensitized and non-sensitized HT-29 cells after
TNF-a co-incubation may be a (somewhat delayed) conse-
quence of decreased phosphatidylcholine turnover caused by
the initial drop in cytosolic PC levels.

A decrease in the phosphatidylcholine metabolite, PC, is a
frequently observed reaction of tissue to chemotherapeutic
agents, and has been proposed to serve as an early indicator
of successful cancer chemotherapy [31]. However, the PC de-
crease observed for IFN-y/TNF-a-treated HT-29 cells is un-
likely to be a specific marker of cell death since HT-29 cells
treated with TNF-o alone also showed somewhat reduced PC
levels compared to untreated controls. This observation sug-
gests that the modest PC decrease observed for non-sensitized
cells may be a metabolic effect of non-lethal TNF-o treat-
ment. Since the GPC/PC ratio is frequently used as an indi-
cator of changes in choline homeostasis [32-34], and often
increases in cells undergoing stress or treated with cytotoxic
drugs, we plotted GPC/PC vs. the duration of IFN-y/TNF-a
treatment (Fig. 3H). Although there was a trend towards a
transient GPC/PC increase at 4 and 8 h after the onset of
treatment, these changes did not reach statistical significance
for 3'P nor for 'H NMR values.

3.4. Histological confirmation of apoptotic death following
IFN-yITNF-o treatment

Apoptosis induction in cytokine-treated colon carcinoma
cells has been widely demonstrated [4,5,11,12,14-16]. In agree-
ment with the published literature, we found that IFN-y-sen-
sitized HT-29 cells treated for 24 h with TNF-o exhibited a
higher occurrence of apoptotic death than untreated controls
(Fig. 4). The percentage of cells in late apoptosis was
1.0+0.3% and 6.8 £ 1.5% for total control and total treated
cells, respectively. Most of the cells unambiguously identified
as apoptotic were found among floating cells. In these de-
tached cells, the percentage of cells in late apoptosis was
23.7%£6.6% for controls and 65.7+3.8% for treated cells
(P <0.05). The number of cells in late apoptosis was negli-
gible in both treated and untreated attached cells. Since the
histological method used detects apoptosis at a relatively late
stage, many of the normal appearing floating cells ( =live cells
labeled ‘L’ in Fig. 4) may be at a less advanced stage of ap-
optosis, which would be consistent with published reports
[21,22] and with the lack of significant NMR signal from
intracellular metabolites due to partially leaking cell mem-
branes. Nevertheless, the substantially increased proportion
of unambiguously apoptotic cells in the treated group clearly
demonstrates that the IFN-y/TNF-a treatment protocol used
in this work results in enhanced HT-29 cell death by apopto-
sis, in agreement with several reports based on different pro-
tocols [4,35-37]. The number of (primary and/or secondary)
necrotic cells was also enhanced in the group of treated cells
vs. controls, as was the amount of cell debris indicative of cell
lysis.

3.5. Early metabolic events and apoptosis following
IFN-YTNF-o treatment

In this work a variety of glycolytic and energetic changes
were found to take place in IFN-y/TNF-o-treated cells still
attached to the flask bottom, well before the appearance of
apoptotic morphology. Lac or NTP increases as such are not
specific of apoptosis induction, although lactate increases fol-
lowing apoptosis induction have been reported previously
[38]. However, if the simultaneous, early increases in NTP
and Lac signals observed here can be reproduced in in vivo
studies of treated c-Myc-expressing tumors, these changes
may become useful indicators of ensuing apoptotic cell death
since both metabolites can be measured by non-invasive in
vivo NMR spectroscopy. In in vivo spectra, Lac signals can
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overlap considerably with lipid signals which may also change
following drug treatment. However, a number of lactate edit-
ing techniques are available to the NMR spectroscopist which
allow him/her to separate Lac and lipid peaks unambiguously
[39-41].

In vivo and in cell spheroids, the execution phase of apo-
ptosis is completed quickly, with only a few minutes elapsing
between the onset of the process and the ingestion of apopto-
tic bodies by nearby cells [42]. Therefore, only a small pro-
portion of apoptotic cells can be visualized in tissue at any
time by way of annexin V, TUNEL and other labeling or
staining techniques [42,43], leading to small measured apopto-
tic indices (typically 3-4% [44,45], on rare occasions up to
15% for very late apoptosis [46]). Thus, metabolic changes
occurring in these advanced apoptotic cells cannot be expected
to result in signal alterations readily observable by in vivo
NMR spectroscopy. In contrast, it is important to note that
the Lac and NTP changes observed in our study occur over
an extended period of time, and long before the cells are iden-
tifiable as apoptotic by the aforementioned staining tech-
niques. Consequently, our results clearly encourage further
evaluation in vivo to determine their potential as early diag-
nostic surrogate markers of apoptosis induction in cancer, at
least for c-Myc-expressing tumors.
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