FEBS Letters 536 (2003) 30-34

FEBS 26934

Smad mediates BMP-2-induced upregulation of FGF-evoked
PC12 cell differentiation
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Abstract We previously reported that bone morphogenetic pro-
tein (BMP)-2 augments fibroblast growth factor (FGF)-induced
neuronal differentiation of PC12 cells by selectively upregulat-
ing FGF receptor (FGFR)-1 expression. Here we describe the
underlying mechanism. BMP-2 activated Smad proteins in
PC12 cells. Overexpression of Smad7 or Smadl, inhibitory
and receptor-regulated isoforms, respectively, suppressed or en-
hanced BMP-2-induced upregulation of FGFR-1 expression.
Smad 7 also inhibited the FGF-induced PC12 differentiation.
Our findings indicate that activation of a Smad signaling path-
way is required for upregulation of FGFR-1 expression by
BMP-2 and for the synergistic induction of PC12 differentiation
by BMP-2 and FGF.

© 2003 Published by Elsevier Science B.V. on behalf of the
Federation of European Biochemical Societies.
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1. Introduction

All of the more than twenty known fibroblast growth factor
isoforms (FGFs) are considered to transmit their signal by
activating specific cell surface tyrosine kinase receptors
[FGF receptors (FGFRs)] [1-3]. In each case, FGFR signaling
follows dimerization of the receptor molecules brought about
by ligand binding in cooperation with heparan sulfate proteo-
glycans [4-6]. Thus far, genes encoding four FGFRs (FGFR-
1-4) expressed in respective subsets of neurons in both the
peripheral and central nervous systems have been identified.
Their expression patterns, along with those of agonist FGFs,
suggest that FGFs exert specific effects on distinct neuronal
cell types during the course of development [7-13].

Bone morphogenetic proteins (BMPs) are a subclass of the
transforming growth factor (TGF)-B superfamily active in
both the developing and adult nervous systems [14,15].
BMPs bind to and activate two different serine/threonine ki-
nase receptors (BMPR-I and BMPR-II). Upon activation,
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BMP receptors recruit and phosphorylate several receptor-
regulated Smad transcription factors (Smadl, Smad5 or
Smad8), which in turn translocate into the nucleus to regulate
gene expression [16,17]. In addition, a separate pathway in-
volving the TGF-B-activated kinase 1 (TAK1) and p38 mito-
gen-activated protein kinase (MAPK) is reportedly activated
by BMPs in some cells [18,19].

Cellular responsiveness to a particular growth factor is de-
termined by a host of factors, including expression of its re-
ceptor, and is the key determinant of cell fate during develop-
ment, differentiation and many other physiological and
pathological processes. In that regard, polypeptide growth
factors, including FGF and TGF-fB, often act in concert to
regulate biological events, and several growth factors have
been shown to upregulate FGFR-1 expression. For example,
an intracellularly localized, high-molecular-weight form of
FGF-2 upregulates FGFR-1 expression in a pancreatic cell
line, thereby potentiating signals evoked by endogenous
FGF [20]; TGF-B1 upregulates FGFR-1 expression in lung
fibroblasts and enhances their mitogenic response to FGF
[21]; insulin-like growth factor (IGF)-1 upregulates FGFR-1
in rabbit vascular smooth muscle cells and increases FGF-2-
induced mitogenesis [22]; and PDGF (platelet-derived growth
factor)-bb upregulates FGFR-1 in murine brain endothelial
cells and augments FGF-2-induced plasminogen activator ac-
tivity [23]. In the presence of certain neurotrophic factors,
PCI12 cells, which originate from the rat adrenal medulla
and thus neural crest, differentiate into sympathoadrenal neu-
rons. One of those neurotrophic factors is FGF, and BMP-2
also reportedly exerts a neurotrophic effect on PCI12 cells
[24,25], though in our hands its activity was much weaker
than previously reported. Instead, we found that when present
in combination, BMP-2 and FGF act synergistically to induce
PCI12 cell differentiation, i.e. BMP-2 upregulated expression
of FGFR-1, which in turn enhanced the effect of FGF on
PC12 differentiation [26]. To better understand the mechanism
by which BMP-2 upregulates FGFR-1 expression, in the
present study we examined the signaling pathway by which
BMP-2 acts.

2. Materials and methods

2.1. Materials

PCI12 cells were obtained from the Riken Cell Bank (Tsukuba,
Japan). Recombinant human BMP-2 was kindly provided by Yama-
nouchi Pharmaceutical Co., Ltd. (Tsukuba, Japan). Heparin was from
Sigma (St. Louis, MO, USA). Anti-Smadl antibody was from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Anti-phospho-Smadl
antibody was from Upstate Biotechnology (Lake Placid, NY, USA).
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Anti-p38 and anti-phospho-p38 antibodies were from Cell Signaling
Technology (Beverly, MA, USA) and Santa Cruz Biotechnology, re-
spectively. The pGL3ti(SBE)4-luciferase reporter plasmid was a gen-
erous gift from Dr. W. Kruijer (Groningen Biomolecular Sciences and
Biotechnology Institute, The Netherlands) [27]. Smad7 [28] and
Smadl [29] expression vectors were generous gifts from Dr. C.-H.
Heldin (Ludwig Institute for Cancer Research, Sweden) and Dr.
J.L. Wrana (University of Toronto, Canada), respectively.

2.2. Cell culture and induction of differentiation

PC12 cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 5% fetal calf serum and 10% horse se-
rum. To assess their differentiation, the cells were first plated to a
density of 5X 10°cells/well on collagen type IV-coated, 24-well culture
plates (Becton Dickinson) for 24 h and then starved for 12 h in serum-
free medium (DMEM containing 2 mg/ml bovine serum albumin, 1 pg/
ml insulin, 2 pg/ml transferrin, 30 nM Na,SeO3, 20 nM progesterone,
and 10 mM HEPES, pH 7.4). Thereafter, the cells were cultured in the
serum-free medium with or without BMP-2. On day 2, the medium
was replaced with fresh serum-free medium, and the culture was con-
tinued an additional day. On day 3, FGF was added to the medium,
with or without BMP-2, and the culture was continued for the indi-
cated times (0-6 days). Cell differentiation was evaluated by examin-
ing the cells under a phase-contrast microscope. Randomly selected
fields containing approximately 100 cells each were photographed,
and the numbers of undifferentiated and differentiated cells counted.
The experimental criterion for distinguishing differentiated from un-
differentiated cells was neurite outgrowth: cells having neurites greater
in length than two cell body diameters were considered differentiated.

2.3. Transfection

We used the pGL3Ti(SBE)4-luciferase reporter plasmid, which con-
tains four Smad-binding elements (SBE) from the JunB promoter [27],
to monitor the inhibitory effect of Smad7. For transient transfection
of pGL3ti(SBE)4-luciferase and B-galactosidase expression plasmid,
cells were first plated to a subconfluent density on 24-well culture
plates. The next day, they were transiently transfected with the plas-
mids using Lipofectamine 2000 (Gibco BRL) according to the manu-
facturer’s instruction, after which they were stimulated with 50 ng/ml
BMP-2 for 48 h, lysed, and the luciferase activity in the lysate was
measured using a Luciferase Assay System (Promega). As an internal
control, luciferase activity was normalized to B-galactosidase activity
measured using a Beta-Galactosidase Enzyme Assay System (Prome-
ga). Data are expressed as the means*S.D. of three independent
determinations.

2.4. Quantitation of mRNA expression by reverse transcription-
polymerase chain reaction (RT-PCR)[Southern blot analysis

Semi-quantitative RT-PCR was carried out essentially as described
previously (13, 27). Briefly, total RNA was isolated using Isogen
(Nippon Gene), after which a 1-ug sample was reverse transcribed
using Superscript II according to manufacturer’s instructions. The
specific primers used for amplification were 5'-ttc tgg get gtg ctg gt
ac-3’ (sense) and 5'-gcg aac ctt gta gec tcc aa-3’ (antisense) for
FGFR-1, and 5'-ttc att gac ctc aac tac atg-3’ (sense) and 5'-gtg gca
gtg atg gea tgg ac-3' (antisense) for glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH). In a preliminary experiment, the expression
levels of the targeted mRNAs in PC12 cells were assessed, and con-
ditions limiting amplification to within the linear exponential range
were determined (31 cycles of 1 min at 94°C, 2 min at 65°C and 1 min
at 72°C for FGFR-1, and 18 cycles of 1 min at 94°C, 2 min at 65°C
and 1 min at 72°C for GAPDH). Following PCR, aliquots of the
product were run on 1.0% agarose gels, after which the resultant
DNAs were denatured with 0.5 N NaOH and transferred onto Hy-
bond-N+membranes. The filters were then hybridized with the corre-
sponding DNA probe labeled with digoxygenin-conjugated dUTP us-
ing the random priming method. The intensity of each band on the
image was measured, and the data were processed using NIH Image
version 1.61 image processing software.

2.5. Immunoblotting

Growth factor-stimulated PC12 cells were collected; washed twice
with 1 ml of ice-cold phosphate-buffered saline; lysed for 10 min on
ice in 100 pl of lysis buffer (20 mM Tris—=HCI (pH7.5), 150 mM NaCl,
1 mM Na,EDTA, ImM EGTA, 1% Triton, 2.5 mM sodium pyro-
phosphate, 1 mM B-glycerophosphate, | mM Na3;VOy, and 1 pg/ml
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leupeptin); and then centrifuged to remove the cell debris. The protein
concentration in the supernatant was determined using a Bio-Rad
protein assay, after which equal amounts of protein (40 ug for phos-
pho-Smadl and phospho-p38, 10 pg for Smadl and p38) were sepa-
rated by sodium dodecylsulfate—polyacrylamide gel electrophoresis
(SDS-PAGE), electrophoretically transferred to PVDF transfer mem-
branes (Immobilon-P; Millipore), and probed with the appropriate
antibody. Immunoreactive bands were visualized by enhanced chemi-
luminescence (ECL; Amersham Biosciences).

3. Results

3.1. Effects of BMP-2 on neuronal differentiation and
FGFR-1 expression in PCI12 cells

We found that BMP-2 (50 ng/ml) did not induce significant
differentiation of PC12 cells during the 6 days (144 h) of cul-
ture (Fig. 1A), which confirmed our earlier finding that, by
itself, BMP-2 has only a very weak neurotrophic effect on
PCI12 cells [26]. In the same earlier study, we also found
that BMP-2 significantly upregulated expression of FGFR-1
mRNA in PC12 cells [26]. Here we examined the time course
of that effect more precisely (Fig. 1B). PC12 cells were treated
with BMP-2 for the indicated period, and expression of
FGFR-1 mRNA was evaluated using semi-quantitative RT-
PCR/Southern blot analysis as previously described [13,30].
As shown, the level of FGFR-1 mRNA began to increase
after 18 h of incubation with BMP-2, rising sharply for the
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Fig. 1. BMP-2 upregulates FGFR-1 expression in PC12 cells but
does not induce differentiation. A: Phase contrast micrographs
showing untreated PCI12 cells (control) and cells cultured for 48 h
or 144 h with BMP-2 (50 ng/ml). B: Upregulation of FGFR-1
mRNA expression by BMP-2. PC12 cells were treated with BMP-2
(50 ng/ml) for the indicated times, after which expression of FGFR-
1 mRNA was analyzed by semi-quantitative RT-PCR/Southern blot
analysis. The signal intensities were quantified and normalized to
the respective GAPDH signals. The initial expression (0 time) was
assigned a value of 100%.
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Fig. 2. BMP-2 activates Smadl but not p38/MAPK in PCI2 cells.
A Activation of Smadl by BMP-2. Serum-starved PC12 cells were
treated with BMP-2 (50 ng/ml) for the indicated times (left panels)
or with the indicated concentrations for 30 min (right panels). The
cell proteins were resolved by SDS-PAGE, transferred to a mem-
brane, and probed with an anti-phospho-Smadl (upper panels) or
anti-Smadl (lower panels) antibody. B: Absence of p38/MAPK acti-
vation in BMP-2-treated cells. Proteins isolated from BMP-2-treated
cells were processed as in A and probed with anti-phospho-p38/
MAPK (upper panels) or anti-p38/MAPK (lower panels) antibody.
As a positive control for p38 activation, a separate culture was os-
motically stressed for 15 min in 200 mM NaCl.

first 6 h and then more slowly for an additional 24 h there-
after. Stimulation of the PCI12 cells with BMP-2 for periods
shorter than 18 h did not affect FGFR-1 expression (data not
shown).

3.2. BMP-2 activates Smad signaling

There are two pathways along which BMP-2 signaling is
transduced, one via receptor-regulated Smads [16,17] and
the other via p38/MAPK [31,32]. The first is a well-character-
ized signal transduction pathway for TGF-B family proteins;
in fact, we previously showed that BMP-2 induced phosphor-
ylation of Smadl in PCI12 cells [26]. On the other hand, Ya-
nagisawa et al. [33] showed that introduction of a kinase-neg-
ative form of TAKI1, an upstream kinase that may
phosphorylate p38/MAPK, inhibited differentiation of PC12
cells stimulated with BMP-2. Both of these signaling pathways
can be activated by the binding of BMP-2 to its cell surface
receptors and their subsequent translocation to the nucleus.
We therefore investigated whether one or both were respon-
sible for the upregulation of FGFR-1 expression by BMP-2.
PC12 cells were treated with selected concentrations of BMP-2
for the indicated periods of time, and the phosphorylated
forms of Smadl and p38/MAPK were analyzed by immuno-
blotting using specific antibodies (Fig. 2). BMP-2 evoked con-
centration-dependent phosphorylation of Smad1 that reached
a maximum within 30 min and then persisted throughout the
120-min period of BMP-2 stimulation (Fig. 2A). By contrast,
BMP-2 had no effect on p38/MAPK phosphorylation at any
time or at any concentration (Fig. 2B), although phosphory-
lation was clearly induced by osmotic stress (Fig. 2B, NaCl),
as was reported previously [34].

3.3. Smad signaling mediates BMP-2-induced upregulation of
FGFR-1 expression

By inhibiting phosphorylation of receptor-regulated Smads,

Smad7 selectively inhibits signaling by several TGF- family

polypeptides, including BMP-2 [26]. We therefore overex-

pressed Smad7 in PC12 cells to test whether Smad signaling
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is necessary for BMP-2-induced upregulation of FGFR-I ex-
pression. To monitor the inhibitory effect of Smad7, we used
the pGL3Ti(SBE)4-luciferase reporter plasmid, which con-
tains four SBE from the JunB promoter [27]. The cells were
transfected with pGL3Ti(SBE)4-luciferase plasmid, with or
without the Smad7 expression vector, then incubated with
or without BMP-2 for 2 days, after which they were solubi-
lized, and the luciferase activity was detected. As shown in
Fig. 3A, treating cells with BMP-2 clearly enhanced SBE ac-
tivity, and the effect was completely blocked by overexpres-
sion of Smad7. Moreover, transfecting cells with Smad?7 also
completely blocked the BMP-2-induced upregulation of
FGFR-1 expression (Fig. 3B).

To directly determine whether augmentation of Smad sig-
naling results in the augmentation of BMP-2-induced upreg-
ulation of FGFR-1, we transfected PC12 cells with an expres-
sion vector encoding Smadl, a receptor-regulated isoform of
Smad that transduces BMP-2 signaling in PC12 cells (Fig.
2A). After confirming the overexpression of Smadl protein
by immunoblotting (data not shown), the transfectants were
stimulated with various concentrations of BMP-2, and the
level of FGFR-1 mRNA expression was evaluated with
semi-quantitative RT-RCR/Southern blot analysis [13,30].
As shown in Fig. 3C, BMP-2 induced upregulation of
FGFR-1 expression more strongly in cells overexpressing
Smadl than in the mock transfectants, most notably at 20
ng/ml. Thus, the effects of overexpressing an inhibitory and
a receptor-regulated Smad both confirmed that Smad signal-
ing mediates BMP-2-induced upregulation of FGFR-1 expres-
sion.

3.4. Inhibition of Smad signaling suppresses the

BMP-2-mediated enhancement of FGF-induced PCI2

cell differentiation

Finally, to confirm that BMP-2 augments FGF-induced

PC12 cell differentiation through upregulation of FGFR-I
expression, we examined the effect of Smad7 overexpression
on the synergistic relation between FGF and BMP-2. PC12
cells transfected with Smad7 expression vector were exposed
to BMP-2 (50 ng/ml) for 3 days and then to FGF-1 (5 ng/ml)
for an additional 3 days (Fig. 4). While > 30% of mock trans-
fectants differentiated within the 6 days, significantly fewer
Smad7 transfectants exhibited FGF-induced differentiation
(Fig. 4A,B). Apparently, BMP-2-induced Smad signaling is
responsible for the augmentation of FGF-evoked PCI12 cell
differentiation.

4. Discussion

To better understand the molecular mechanism by which
BMP-2 augments expression of FGFR-1 and promotes FGF-
dependent neuronal differentiation of PC12 cells, we examined
two possible signaling pathways for BMP-2 activity, one
Smad-dependent and the other p38/MAPK-dependent. We
found that Smad signaling was clearly activated by BMP-2
and that overexpression of Smad7, an inhibitory Smad iso-
form that blocks phosphorylation of receptor-regulated
Smads, abolished BMP-2's ability to upregulate FGFR-1 ex-
pression and augment FGF-dependent neuronal differentia-
tion. Furthermore, overexpression of Smadl, a receptor-regu-
lated Smad that transduces BMP-2 signaling, enhanced BMP-
2-induced upregulation of FGFR-1 expression. Thus, BMP-2-
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induced upregulation of FGFR-1 expression is apparently
mediated via a Smad signaling pathway.

By contrast, activation of p38/MAPK by BMP-2 was not
detected. Our finding that BMP-2 does not significantly acti-
vate p38/MAPK or induce neurite outgrowth from PC12 cells
differs from earlier studies that suggest activation of a p38/
MAPK pathway by BMP-2 is sufficient for neuronal differ-
entiation of PC12 cells [18,19]. This is despite the fact that we
examined separate PC12 cell stocks obtained independently
from four depositories and laboratories. Moreover, our in
vitro kinase assays using ATF-2 as a substrate for p38/
MAPK confirmed that treating PCI12 cells with BMP-2 (50
ng/ml) did not activate p38/MAPK, even though it was clearly

33

Fig. 3. Smad signaling mediates BMP-2-induced upregulation of
FGFR-1 expression. A: Inhibition of Smad signaling by Smad7.
Smad signaling was measured as a function of SBE activity. PC12
cells cotransfected with pGLti(SBE)4 reporter plasmid, B-galactosi-
dase expression plasmid, and Smad7 expression plasmid or a control
plasmid (pcDNA3) were treated with BMP-2 or left untreated. Lu-
ciferase activity normalized to B-galactosidase activity is shown. The
data are represented as means* S.D. (n=3) and were analyzed by
2-way analysis of variance (ANOVA) using DA Stats software;
*P<0.05. B: Inhibition of BMP-2-induced FGFR-1 upregulation
by Smad7. PC12 cells transfected with Smad7 or control plasmid
were cultured for 2 days in the presence or absence of BMP-2 (50
ng/ml). Expression of FGFR-1 mRNA was analyzed as in Fig. 1.
The expression level in control transfectants without BMP-2 was as-
signed a value of 100%. C: Promotion of BMP-2-induced FGFR-1
upregulation by Smadl. PC12 cells transfected with Smadl or con-
trol plasmid were cultured for 2 days with BMP-2 at the indicated
concentrations. The data were processed as in B. Three independent

experiments yielded essentially the same results.
b
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Fig. 4. Smad7 inhibits synergistic effect of BMP-2 on FGF-induced
differentiation of PCI12 cells. A: Phase contrast micrographs of
PC12 cells transfected with a Smad7 expression plasmid (Smad7/
PC12) or a control plasmid (PC12). Cells were cultured for 12 h, re-
plated, and then cultured for the indicated time in the presence or
absence of 50 ng/ml BMP-2. The cultures received FGF-1 (5 ng/ml)
plus heparin (5 pg/ml) on day 3 and continued until day 6. The mi-
crographs were obtained on day 5, and the state of their differentia-
tion was determined. Bar, 50 um. B: Cultures were conducted as in
A, and neuronal differentiation was evaluated on the indicated
days; more than 650 cells from four separate cultures were observed
for each condition. The data were analyzed by 2-way ANOVA us-
ing DA Stats software; *P<0.01 vs. Smad7/PC12+BMP+FGF
(open squares).
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activated by osmotic stress (Hayashi, unpublished observa-
tion). We reasoned, therefore, that the observed lack of p38/
MAPK activation by BMP-2 in our experiment might be due
to lower expression of TAKI, a putative upstream kinase for
p38/MAPK. To address this question, we established PC12
transfectants overexpressing TAK1 and analyzed their differ-
entiation. However, even in these cells, phosphorylation of
p38/MAPK was not detected after BMP-2 treatment (Haya-
shi, unpublished observation). It appears that, by itself, TAK1
overexpression is not sufficient to activate p38/MAPK in
BMP-2-stimulated PC12 cells, and that upregulation of
FGFR-1 expression by BMP-2 is independent of the p38/
MAPK pathway. Still, the reason for the lack of p38/
MAPK activation in our experiment remains unclear; perhaps
an upstream regulator of p38/MAPK other than TAKI is
involved; or the level of p38/MAPK phosphorylation is too
low to be detected.

The transcriptional regulators and regulatory elements that
directly affect expression of FGFR-1 are presently unknown;
however, the finding that upregulation of FGFR-1 mRNA
expression only occurs when cells are exposed to BMP-2 for
longer than 18 h (Fig. 1A) suggests the effect is indirect. With
respect to the regulatory elements, previous studies of the
regulation of FGFR-1 expression concluded that the fact
that the gene lacks TATA or CCAAT elements in its pro-
moter region, and that the 5’-flanking region from position
—62 to —42 lacks any consensus sequence plays a pivotal role
in its expression [35]. On the other hand, two Spl-binding
elements located well upstream of the transcription start site
were determined to regulate FGFR-1 expression in myoblasts
[36]. Characterization of the regulatory elements governing
FGFR-1 expression induced by BMP-2 awaits further study.
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