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Abstract The cap-binding protein eIF4E-binding protein 3
(4E-BP3) was identi¢ed some years ago, but its properties
have not been investigated in detail. In this report, we investi-
gated the regulation and localisation of 4E-BP3. We show that
4E-BP3 is present in the nucleus as well as in the cytoplasm in
primary T cells, HEK293 cells and HeLa cells. 4E-BP3 was
associated with eIF4E in both cell compartments. Furthermore,
4E-BP3/eIF4E association in the cytoplasm was regulated by
serum or interleukin-2 starvation in the di¡erent cell types.
Rapamycin did not a¡ect the association of eIF4E with 4E-
BP3 in the cytoplasm or in the nucleus.
/ 2002 Federation of European Biochemical Societies. Pub-
lished by Elsevier Science B.V. All rights reserved.
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1. Introduction

Translation initiation is a regulatory stage in the modula-
tion of gene expression. One important regulatory step in
translation initiation is the availability of the cap-binding pro-
tein, eukaryotic initiation factor (eIF) 4E, to bind to the cap
structure (m7GpppN, where N is any nucleotide) of the
mRNA. Binding of eIF4E to the cap structure recruits the
eIF4F complex to the mRNA facilitating translation initiation
[1].
Binding of eIF4E to the cap structure can be regulated in at

least two ways, via phosphorylation of eIF4E [2] and via its
availability through association with eIF4E-binding proteins
(4E-BPs). Binding of 4E-BPs to eIF4E prevents formation of
eIF4F complexes and therefore prevents translation initiation.
Three related 4E-BPs have been reported so far, of which

4E-BP1 is the best studied. Phosphorylation of 4E-BP1 leads

to its dissociation from eIF4E, leaving eIF4E free to bind
eIF4G and form eIF4F complexes [3,4]. Phosphorylation of
4E-BP1 occurs after numerous growth-stimulating treatments
of cells and is regulated via the PI 3-K [5,6], mTOR and ERK
signalling pathways [1,7].
4E-BP2 is also a phospho-protein, but is phosphorylated on

fewer residues than 4E-BP1. Phosphorylation of 4E-BP2 is
sensitive to LY294002 and rapamycin treatment [8]. Regula-
tion of 4E-BP2/eIF4E association has not been described.
However, it has been shown that levels of 4E-BP2 protein
are upregulated during granulocyte di¡erentiation [9].
4E-BP3 was the last of the eIF4E-binding proteins to be

identi¢ed [10]. Like the other 4E-BPs, 4E-BP3 is able to asso-
ciate with eIF4E and inhibits eIF4E-dependent translation. It
has been reported that 4E-BP3 is a phospho-protein [10].
However, no data are available about its regulation.
In this report, we investigated the localisation and regula-

tion of 4E-BP3 in di¡erent cell types.

2. Materials and methods

2.1. Primary T cell isolation and cell treatment
Bu¡y coats used for the isolation of T cells were prepared from

freshly drawn blood from healthy donors and were obtained from the
Scottish National Blood Transfusion Service (Edinburgh, UK).
Mononuclear leukocytes were isolated as described [11]. T cells were
suspended in RPMI 1640 medium supplemented with 10% (v/v) heat-
inactivated foetal calf serum (FCS), 1 mM glutamine, 3 U/ml inter-
leukin-2 (IL-2, Sigma), 1 Wg/ml phytohaemagglutinin (PHA, Sigma),
100 U/ml penicillin G sodium, 100 Wg/ml streptomycin sulphate and
0.25 Wg/ml amphotericin B. The cells were kept in 75 cm2 tissue cul-
ture £asks at a density of 4U106 cells/ml at 37‡C and 5% CO2. All
tissue culture reagents were obtained from Gibco BRL unless stated
otherwise. The cells were grown for 7 days before the experiments
were performed.

2.2. Cell culture
Human embryonic kidney 293 (HEK293) and HeLa cells were

grown on plates in Dulbecco’s modi¢ed Eagle’s medium (Gibco
BRL) supplemented with 10% foetal bovine serum (Gibco BRL).

2.3. Transfection and plasmids
HEK293 cells were transiently transfected with a his/myc-tagged

4E-BP3 construct [10] (kindly provided by F. Poulin and N. Sonen-
berg, Montreal, QC, Canada) by calcium phosphate precipitation of
the DNA in HEPES-bu¡ered saline [12]. Cells were treated as de-
scribed in the ¢gure legends and harvested in a bu¡er containing 20
mM HEPES^KOH pH 7.5, 50 mM L-glycerophosphate, 0.2 mM
EDTA, 10% (v/v) glycerol, 1% (v/v) Triton X-100, 1 mM dithiothrei-
tol, 0.5 mM sodium orthovanadate, 1 mM phenylmethylsulphonyl
£uoride, 1 mM benzamidine, 1 Wg/ml leupeptin, 1 Wg/ml antipain,
and 1 Wg/ml pepstatin.

2.4. 7-Methylguanosine triphosphate (m7GTP) Sepharose pull down,
gel electrophoresis and Western blotting

The cells were treated as indicated in the ¢gure legends, and then
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harvested in EZ lysis bu¡er (Sigma) to obtain cytoplasmic and nuclear
fractions. Laemmli sample bu¡er was added to part of each fraction
and the extracts were analysed by SDS^PAGE and Western blotting.
The rest of the sample (approximately 2 mg of extract) was used for
isolation of eIF4E on m7GTP Sepharose 4B (Amersham-Biosciences)
(15 Wl of slurry diluted with 15 Wl of Sepharose CL-4B). Laemmli
sample bu¡er was added to the beads and the samples were heated
at 95‡C for 10 min. The samples were run on a 17.5% SDS^polyac-
rylamide gel, transferred to Immobilon-P (Millipore), and detected by
Western analysis. 4E-BP3 was detected with a polyclonal antibody
raised in rabbit against the peptide PPTAPLSKLEELKC, eIF4E
was detected with a monoclonal antibody raised against the whole
protein, and eIF4GI with a polyclonal antibody raised in sheep
against the peptide CKKEAVGDLLDAFKEAN. 4E-BP1 (SC-
6025), lamin B (SC-6216), and K-tubulin (SC-8035) antibodies were
obtained from Santa Cruz, myc antibody (9E10) from Sigma, and
phospho-4E-BP1 T36/45 from Cell Signaling. The mitogen-activated
protein kinase-interacting kinase 1 (Mnk1) antibody was raised in
sheep and kindly provided by the Division of Signal Transduction
Therapy (University of Dundee, Dundee, UK).

3. Results

3.1. Characterisation of the 4E-BP3 antibody
The 4E-BP3 antibody was raised in rabbit against a peptide

(PPTAPLSKLEELKC) and subsequently puri¢ed by a⁄nity
chromatography. The antibody was tested on di¡erent sources
of 4E-BP3 in the absence and presence of the BP3 peptide
(Fig. 1). Firstly, the 4E-BP3 antibody recognised his/myc4E-
BP3 expressed in HEK293 cells (Fig. 1A). Secondly, a clear
signal was obtained after m7GTP Sepharose chromatography.
4E-BP3 associated with eIF4E was detected in three di¡erent
cell types (Fig. 1B). Lastly, the antibody was also able to
detect 4E-BP3 in total cell extracts (Fig. 1C) as shown for
primary T cells and HEK293 cells. In all three cases 4E-BP3
was detected as a clear band with the expected molecular
weight (12 kDa), and in every case the signal was competed
away in the presence of the peptide.
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Fig. 1. Characterisation of the 4E-BP3 antibody. Di¡erent samples were analysed by SDS^PAGE and Western blotting to test the 4E-BP3 anti-
body. The samples were run in duplicate and Western blotting was performed using the 4E-BP3 antibody in the absence or presence of the 4E-
BP3 peptide used to make the antibody. A: HEK293 cells transfected with a vector encoding his- and myc-tagged 4E-BP3. B: m7GTP Sepha-
rose pull downs from the indicated cell types. C: Whole cell lysates of the indicated cell types. D: An m7GTP Sepharose pull down and a cell
extract from T cells were aligned to con¢rm the position of 4E-BP3 in cell extracts. New England Biolabs prestained markers were run to as-
sess the molecular weight. The antibody test was performed in duplicate.
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However, various non-speci¢c cross-reacting bands were
evident in total cell extracts, and we aligned an m7GTP Seph-
arose pull down and a cell extract from T cells and showed
that 4E-BP3 in the cell extract ran at the same position and
molecular weight as 4E-BP3 in a m7GTP Sepharose pull
down.

3.2. 4E-BP3 is present in the nucleus and the cytoplasm
Next, we examined the subcellular localisation of 4E-BP3

(Fig. 2). Interestingly, 4E-BP3 was detected both in the nu-
cleus and the cytoplasm of primary T cells, HEK293 and
HeLa cells. This di¡ers from the localisation of 4E-BP1, the
best-studied eIF4E-binding protein. 4E-BP1 was only present
in the cytoplasm, as described previously in HEK293 cells,
human malignant cell lines, human ¢broblasts, and murine
myoblasts [13]. Western blotting for tubulin indicated that
there was no cytoplasmic contamination of the nuclear frac-
tion.

3.3. 4E-BP3 is associated with eIF4E in the nucleus and the
cytoplasm

It has been reported that 4E-BP3 associates with eIF4E in
total cell lysates [10], as described for 4E-BP1 and 4E-BP2.
Therefore, the association of 4E-BP3 with nuclear or cytoplas-
mic eIF4E was investigated (Fig. 3). 4E-BP3 was detected in a
m7GTP Sepharose pull down from both cytoplasmic and nu-
clear fractions of primary T cells, HEK293 cells and HeLa
cells. Although hardly any eIF4E was detectable in the nu-
cleus of HEK293 cells, a 4E-BP3 signal was still detected in
the m7GTP Sepharose pull down. This is likely due to a di¡er-
ence in sensitivity of the eIF4E and 4E-BP3 antibodies. The
absence of tubulin in the nuclear fraction again showed that
the nuclear fraction was not contaminated with cytoplasmic
proteins.

3.4. Localisation of 4E-BP3
The e¡ects of various stimuli on the localisation of 4E-BP3

was examined in several cell types. Primary T cells were
treated with TPA and ionomycin or starved for FCS or
IL-2. HEK293 cells and HeLa cells were serum-starved or
treated with rapamycin (data not shown). However, we were
unable to detect any signi¢cant change in the localisation of
4E-BP3 under any of these conditions.
One mechanism of shuttling proteins from the nucleus to

the cytoplasm is via a CRM-1-mediated pathway, and this

mechanism can be blocked using the inhibitor leptomycin B
(LMB) [14] (Fig. 4). Primary T cells were incubated with
leptomycin B for 16 h and the localisation of 4E-BP3 was
analysed. However, the localisation of 4E-BP3 did not change
upon LMB treatment. As a positive control for LMB treat-
ment, we showed accumulation of the endogenous eIF4E ki-
nase Mnk1 in the nuclear fraction, which is in agreement with
a previous report that nuclear export of Mnk1 is sensitive to
LMB [15]. This indicated that LMB treatment was su⁄cient
to block CRM-1-mediated export in primary T cells. Appar-
ently, 4E-BP3 is not transported out of the nucleus via a
CRM-1-dependent pathway.

3.5. Regulation of the association of 4E-BP3 with eIF4E
The e¡ects of di¡erent treatments on the association of

eIF4E with 4E-BP3 and 4E-BP1 were examined in primary
T cells, HEK293 and HeLa cells.
Primary T cells were starved either for FCS or for IL-2 and

PHA. Starvation of primary T cells for FCS did not a¡ect the
association of eIF4E with 4E-BP3 in the cytoplasm. However,
starvation for IL-2 and PHA resulted in a 90% decrease in the
amount of 4E-BP3 bound to eIF4E in the cytoplasm (Fig.
5A). The association of eIF4E with 4E-BP1 was not a¡ected
by starvation.
Rapamycin or TPA/ionomycin treatment of T cells did not

a¡ect the eIF4E/4E-BP3 association in the cytoplasmic frac-
tions (Fig. 5B). Rapamycin slightly increased the binding of
4E-BP1 to eIF4E, but TPA/ionomycin treatment did not af-
fect this. The results obtained were not caused by changes in
levels of eIF4E or 4E-BP3 (Fig. 5A,B).

Fig. 2. 4E-BP3 is found in cytoplasmic and nuclear compartments.
Cytoplasmic and nuclear fractions of primary T, HEK293 and
HeLa cells were analysed by SDS^PAGE and Western blotting. 4E-
BP3, 4E-BP1, tubulin (as a cytoplasmic marker) and lamin B (as a
nuclear marker) were detected with the appropriate antibodies. Simi-
lar results were obtained in three experiments.

Fig. 3. 4E-BP3 is associated with eIF4E in the nucleus. eIF4E was
puri¢ed from cytoplasmic and nuclear fractions of primary T
(50U106 cells), HEK293 (10U106 cells) and HeLa cells (10U106

cells) using m7 GTP Sepharose and was analysed by SDS^PAGE
and Western blotting. 4E-BP3, eIF4E, and tubulin were detected
with the appropriate antibodies. Tubulin was detected in total ex-
tracts. Similar results were obtained in three experiments.

Fig. 4. Nuclear export of 4E-BP3 is not mediated by CRM-1. Pri-
mary T cells (50U106 cells) were treated with LMB (2 nM) for 16 h.
Cytoplasmic and nuclear extracts were then prepared and analysed
by SDS^PAGE and Western blotting. 4E-BP3, Mnk1, tubulin and
lamin B were detected with the appropriate antibodies, as indicated.
Similar results were obtained in four experiments.
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Fig. 5. Regulation of the association of 4E-BP3 with eIF4E in di¡erent cell types. A: Primary T cells (50U106 cells) were grown in complete
medium containing FCS, IL-2, and PHA (FCS/IL-2/PHA) or were starved for either FCS in medium containing IL-2 and PHA (IL-2/PHA) or
for IL-2 and PHA in medium containing FCS (FCS) for 20 h. B: Primary T cells (50U106 cells) were treated with rapamycin (100 nM) for
20 h or with TPA/ionomycin (1 mM/1 Wg/ml) for 1 h. C: HEK293 cells (10U106 cells) were kept in growing medium, or serum-starved for
20 h, serum-starved for 20 h followed by insulin treatment (100 nM) for 1 h, or treated with rapamycin (100 nM) for 20 h. D: HeLa cells
(10U106 cells) were kept growing in medium, were serum-starved for 20 h, were serum-starved for 20 h followed by insulin treatment (100
nM) for 1 h, or were treated with rapamycin (100 nM) for 20 h. Cytoplasmic and nuclear fractions were prepared and an m7GTP Sepharose
pull down was performed followed by SDS^PAGE and western blotting. eIF4E, 4E-BP3 and 4E-BP1 were detected with the appropriate anti-
bodies. Whole extracts were analysed by SDS^PAGE and western blotting to detect nuclear (lamin B) and cytoplasmic (tubulin) markers. Total
amounts of cytoplasmic eIF4E and associated 4E-BP3 were quantitated using ImageQuant. The amount of 4E-BP3 associated with eIF4E in
control cells was set at 100 (n=3). E: HEK293 cells were transfected with a vector encoding his/myc-tagged 4E-BP3. Total extracts were ana-
lysed by SDS^PAGE and Western blotting. Phosphorylation of 4E-BP3 was detected using phospho-4E-BP1 (Thr36/45) antibody and equal
loading was veri¢ed using an antibody against the myc epitope. Similar results were obtained in three experiments.
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We were unable to detect any signi¢cant e¡ects of the dif-
ferent treatments of T cells on the association of eIF4E with
4E-BP3 in the nucleus (Fig. 5A,B).
HEK293 cells (Fig. 5C) or HeLa cells (Fig. 5D) were either

grown in medium supplemented with FCS, serum-starved,
serum-starved and subsequently treated with insulin, or
treated with rapamycin. In the cytoplasmic fractions of both
cell types, 4E-BP3 dissociated from eIF4E upon serum star-
vation. After insulin stimulation, partial recovery of the 4E-
BP3/eIF4E association was observed. Rapamycin treatment
did not a¡ect the association of eIF4E with 4E-BP3.
In the nuclear fractions of both HEK293 and HeLa cells,

association of eIF4E with 4E-BP3 did not signi¢cantly change
upon any of the treatments studied (Fig. 5C,D).
As expected, the association of 4E-BP1 with eIF4E in-

creased after serum starvation and rapamycin treatment, while
dissociation of 4E-BP1 was detected upon insulin stimulation.
The e¡ects of these treatments on the association of 4E-BP3

with eIF4E might be secondary to e¡ects on the association of
eIF4E with 4E-BP1. However, since these e¡ects were not
always reciprocally related, it seemed possible that 4E-BP3
was subject to direct regulation. Threonine 23 in 4E-BP3 is
the phosphorylation site equivalent to threonine 36/45 (Thr37/
46 in the human sequence) in 4E-BP1 and the phosphory-
lation state of Thr23 in 4E-BP3 can be detected with the
phospho-4E-BP1 (Thr35/46) antibody [16]. HEK293 cells
were transfected with his/myc-tagged 4E-BP3 (Fig. 5E), and
subsequently left untreated or serum-starved. Upon serum
starvation of HEK293 cells, a signi¢cant reduction in the
phosphorylation of 4E-BP3 at this site was detected, suggest-
ing a direct regulation of 4E-BP3.

4. Discussion

The regulation of 4E-BP1 has been widely studied. How-
ever, the regulation of the other two eIF4E-binding proteins,
4E-BP2 and 4E-BP3, has not been described in much detail.
Until now, no information was available about the regulation
of 4E-BP3.
Most interestingly, we found that 4E-BP3 is present in the

nucleus as well as in the cytoplasm. The nuclear localisation
of 4E-BP3 distinguishes 4E-BP3 from 4E-BP1, since 4E-BP1 is
only present in the cytoplasm [13]. Furthermore, 4E-BP3 is
associated with eIF4E in both the nucleus and the cytoplasm,
and it will be important to assess the function of the nuclear
4E-BP3 and the cytoplasmic 4E-BP3 in future studies.
Subcellular localisation of 4E-BP3 was studied, however, no

signi¢cant changes were found under a variety of conditions.
Furthermore, the mechanism of nuclear export that can be
experimentally tested, the CRM-1-mediated pathway, was
not involved in the translocation of 4E-BP3 (Fig. 4). There-
fore, the mechanism involved in the export and/or transloca-
tion of 4E-BP3 remains unclear. Considering the small size of
the 4E-BP3 protein it is possible that 4E-BP3 is able to di¡use
into and out of the nucleus, via the nuclear pore, without an
active shuttling mechanism.
Regulation of the association between 4E-BP3 and eIF4E

was shown in the cytoplasm. Dissociation of 4E-BP3 was
detected upon starvation in the di¡erent cell types. In
HEK293 cells this coincided with an increased association of
4E-BP1 and eIF4E, but in primary T cells no change was

observed in the association of 4E-BP1 with eIF4E. Apparent-
ly, under some conditions, the dissociation of 4E-BP3 was not
merely a consequence of increased binding of 4E-BP1 (Fig. 5).
A decrease in the phosphorylation of 4E-BP3 at Thr23 was

seen in serum-starved HEK293 cells (Fig. 5E). Under these
conditions, this decreased phosphorylation of 4E-BP3 at
Thr23 coincided with dissociation of 4E-BP3 from eIF4E in
HEK293 cells. This is an unexpected ¢nding since dephos-
phorylation of the equivalent site (Thr36) in 4E-BP1 indirectly
leads to association of 4E-BP1 with eIF4E [17]. However, this
¢nding suggested that 4E-BP3 is itself regulated. Indeed, we
have previously shown [16] that phosphorylation of his/
myc4E-BP3 is relatively low in serum-starved HEK293 cells
and increases somewhat in response to insulin. In particular,
insulin increases the phosphorylation of Thr23 [16].
In this paper, we focused on the novel ¢nding that 4E-BP3

is a nuclear as well as a cytoplasmic protein and on the ¢nd-
ing that the association of cytoplasmic 4E-BP3 with eIF4E is
regulated in several di¡erent cell types. However, it will be
important to assess in future studies whether the association
of eIF4E/4E-BP3 is an actively regulated process, i.e. via
phosphorylation of 4E-BP3, or whether the association is
regulated passively, i.e. via competition for binding with 4E-
BP1, 4E-BP2, eIF4GI, eIF4GII, or 4E-T.
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