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Abstract Glucose-induced insulin secretion is pulsatile. We in-
vestigated how the triggering pathway (rise in B-cell [Ca®™];)
and amplifying pathway (greater Ca?" efficacy on exocytosis)
influence this pulsatility. Repetitive [Ca?*]; pulses were imposed
by high K™+ diazoxide in single mouse islets. Insulin secretion
(measured simultaneously) tightly followed [CaZ*]; changes.
Lengthening [Ca2*]; pulses increased the duration but not the
amplitude of insulin pulses. Increasing glucose (5-20 mmol/l)
augmented the amplitude of insulin pulses without changing
that of [Ca?*|; pulses. Larger [Ca’*|; pulses augmented the
amplitude of insulin pulses at high, but not low glucose. In
conclusion, the amplification pathway ensures amplitude modu-
lation of insulin pulses whose time modulation is achieved by the
triggering pathway.

© 2002 Federation of European Biochemical Societies. Pub-
lished by Elsevier Science B.V. All rights reserved.
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1. Introduction

Glucose precisely regulates insulin secretion by producing
triggering and amplifying signals in B-cells [1,2]. A rise in
cytoplasmic free Ca>* concentration ([Ca®*];), resulting from
membrane depolarization and Ca’>* influx is the signal that
triggers exocytosis of insulin granules [3-8]. The nature of the
amplifying signal is still disputed [7-11] but there is strong
evidence that this pathway serves to augment the efficiency
of Ca%* on exocytosis [1].

Insulin secretion is pulsatile [12-14]. In normal mouse and
human islets, [Ca®*]; regularly oscillates during glucose stim-
ulation [15-22]. These oscillations of [Ca?*];, driven by waves
of membrane potential changes, are accompanied by synchro-
nous pulses of insulin secretion [16-18]. Moreover, imposed
[Ca?t]; pulses, induced by repetitive depolarizations with high
extracellular K*, also trigger synchronous pulses of insulin
secretion, whereas sustained elevation of [Ca?*]; causes sus-
tained insulin secretion [23-25]. These observations suggest
that [Ca>"]; is the instantaneous regulator of the rate of in-
sulin secretion. However, insulin secretion also oscillates in rat
islets [26,27], although B-cells are continuously depolarized
and [Ca?t]; steadily elevated by glucose [22]. Dissociations
between [Ca>*]; and insulin secretion oscillations have also
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been reported in leptin-deficient ob/ob mouse islets [28]. It
was thus proposed that, in some species or under certain
conditions, amplifying signals cyclically produced by glucose
can override the continuous triggering action of Ca?* [29].

The amplifying pathway of glucose-induced insulin secre-
tion has been discovered and subsequently characterized by
using experimental paradigms holding B-cell [Ca®*]; stably
elevated [1]. It is not known whether the amplifying mecha-
nism remains effective when [Ca®>]; fluctuates in B-cells and
could explain the paradox that insulin secretion pulses mainly
increase in amplitude when the glucose concentration is raised
whereas the concomitant [Ca2*]; oscillations increase in dura-
tion, not in amplitude [15,18,22,30]. This was the question
addressed in the present study by using single mouse islets
in which [Ca?*]; and metabolism were experimentally con-
trolled. Thus, diazoxide was used to avoid that changes in
glucose influence [Ca?*]; by affecting the membrane potential,
and size-controlled, regular [Ca?t]; pulses were imposed by
repetitive increases and decreases of the extracellular K+ con-
centration. Insulin secretion was measured simultaneously
from the same islets [23,24].m:/Typ/

2. Materials and methods

2.1. Preparation and solutions

Islets were aseptically isolated by collagenase digestion of the pan-
creas of female NMRI mice, selected by hand-picking and cultured
for 1 day in RPMI 1640 medium containing 10 mmol/l glucose [23].
The control medium used for islet isolation contained (mmol/l) 120
NacCl, 4.8 KCl, 2.5 CaCl,, 1.2 MgCl,, 24 NaHCOs3, 10 glucose, and
1 mg/ml bovine serum albumin. It was gassed with O,/CO; (94/6) to
maintain a pH of 7.4. The same medium with 0.1 mmol/l diazoxide
was used for all experiments. When the concentration of KCl was
increased to 30 mmol/l, that of NaCl was decreased, and when the
concentration of CaCl, was decreased, that of MgCl, was increased
accordingly to maintain iso-osmolarity.

2.2. Combined measurements of [Ca’* ]; and insulin secretion

Cultured islets were loaded with fura-PE3 during 2 h of incubation
at 37°C in control medium containing 2 umol/l fura-PE3 acetoxy-
methyl ester and 5 mmol/l glucose. After loading, one single islet
was transferred into a perifusion chamber (110 pl) with a bottom
made of a glass coverslip and mounted on the stage of an inverted
microscope equipped for [Ca®*]; measurement [16]. The islet was held
in place with a micropipette and perifused at a flow rate of 1.8 ml/
min. To induce repetitive [Ca>"]; pulses in B-cells, the concentration of
K™ was alternated between 4.8 and 30 mmol/l. The medium (37°C)
was collected, in fractions of 30 s, just downstream of the islet. Insulin
was measured, in duplicate 400 pul aliquots of the effluent fractions,
using rat insulin as a standard [23]. At the end of the experiments the
islet was recovered and its content in insulin was measured (88.0 4.7
ng, n=45). Insulin secretion could thus be expressed as a percentage
of insulin content.

0014-5793/02/$22.00 © 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

PII: S0014-5793(02)03491-9


mailto:henquin@endo.ucl.ac.be

216

2.3. Presentation of results

The results are presented as mean traces (£ S.E.M.) for four to six
experiments with islets obtained from different preparations. The ef-
fects of the different types of stimulations were quantified by comput-
ing the difference (A) between average [Ca>*]; or insulin secretion rate
and baseline during the periods of interest (see legends to figures for
details). The statistical significance of differences between means was
assessed by Student’s z-test (paired or unpaired as appropriate) or by
analysis of variance followed by a Newman-Keuls test when more
than two groups were compared. Differences were considered signifi-
cant at P <0.05.

3. Results

3.1. Amplification of insulin secretion by glucose during
intermittent [Ca’* ]; elevation

Controlled [Ca?*]; pulses in B-cells were imposed by repet-
itive depolarizations induced by alternating between 4.8 and
30 mmol/l K+ every 2 min (Fig. 1A,B). The concentration of
extracellular CaCl, was kept constant at 1 or 2.5 mmol/l
throughout, but that of glucose was increased from 5 to 20
mmol/l in the middle of the experiment. This increase pro-
duced a consistent, albeit small attenuation of the [Ca®'];
pulse that was concomitantly imposed. On the average traces,
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this can be seen as a shoulder in the ascending phase of the
[Ca?t]; pulse occurring between 18 and 20 min (Fig. 1A,B).

Each [Ca’*]; pulse triggered a pulse of insulin secretion.
The increase in glucose concentration augmented the secretory
responses. The effect was most marked on the first pulse in
1 mmol/l CaCl, (Fig. 1A), but was more sustained in 2.5
mmol/l CaCl, (Fig. 1B). The quantification of the changes
in [Ca’*]; and insulin is shown in the lower panels of Fig. 1.
Mean [Ca’*]; was marginally higher during the last than the
first four pulses, but this small difference achieved statistical
significance only in islets perifused in low CaCl, (Fig. 1C). A
similar small increase in Ca>" occurs when K* pulses are
applied at constant glucose throughout or when K+ is steadily
elevated, and appears to reflect a slow drift of apparent
[Ca?*]; with time [23-25]. Contrasting with the quasi-stability
of [Ca?*]; pulses, the amplitude of the insulin pulses was in-
creased two- to three-fold by 20 mmol/l glucose, the relative
change being larger during perifusion with 2.5 than 1 mmol/l
CaCl,.

3.2. Interactions between [Ca’” ]; and glucose concentration in
the amplification of pulsatile insulin secretion
In these experiments, the concentration of glucose was kept
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Fig. 1. Amplitude modulation of insulin secretion triggered by [Ca>*]; pulses in B-cells. A,B: [Ca’>*]; and insulin secretion were measured in the
same single islets. The K* concentration was alternated between 4.8 and 30 mmol/l every 2 min as indicated, whereas that of glucose (G) was
raised from 5 to 20 mmol/l at 18 min. Two depolarizations with K* were applied before [Ca®*]; and insulin measurements were started, hence
the decreasing values between 0 and 2 min. C,D: Quantification of the changes (A) in [Ca®*]; and insulin secretion. A [Ca>*]; is the difference
between mean [Ca?*]; from 2 to 18 min or from 18 to 34 min and baseline [Ca>*]; determined as mean nadir between oscillations in GS5. A in-
sulin was calculated in a similar way. ¥*P < 0.05 or less versus G5. Values are means = S.E.M. for six islets.
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Fig. 2. Influence of glucose on insulin secretion triggered by [Ca®*];
pulses of increasing amplitude. [Ca?*]; and insulin secretion were
measured in the same single islets. The K™ concentration was alter-
nated between 4.8 and 30 mmol/l every 2 min as indicated. The glu-
cose concentration was 5 or 20 mmol/l throughout (G5 or G20),
and that of extracellular CaCl, was increased stepwise as indicated.
Values are means + S.E.M. for four islets.

constant at 5 or 20 mmol/l, but the amplitude of the forced
[Ca?t]; pulses was increased by raising extracellular CaCl,
from 1 to 1.5 and 2.5 mmol/l during repetitive depolarizations
with 30 mmol/l K" (Fig. 2). The impact on insulin secretion
was dependent on the ambient glucose concentration. The
amplitude of insulin pulses increased with that of [Ca’'];
pulses in 20 mmol/l glucose (Fig. 2B) but did not significantly
change in 5 mmol/l glucose (Fig. 2A). Similar results were
obtained in two experiments performed in reverse order, i.e.
by decreasing extracellular CaCl, from 2.5 to 1.5 and 1 mmol/l
during the pulses with high K* (not illustrated). The quanti-
fication of the combined sets of results is presented in Fig.
3A,B, and the relationships between [Ca®*]; and insulin secre-
tion are shown in Fig. 3C. For any increase in [Ca®*];, insulin
secretion was more strongly stimulated in 20 than 5 mmol/l
glucose. Whereas the secretory response increased with [Ca?*];
in high glucose, no similar dependence was found in low glu-
cose. The difference between the secretory responses at low
and high glucose increased with the amplitude of the [Ca®*];
pulse (Fig. 3C).
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3.3. Relative impact of [Ca’" ]; and glucose concentration
changes on the pulses of insulin secretion

The preceding experiments have shown that glucose aug-
ments the insulin response triggered by imposed [Ca?*]; pulses
with little or no effect on the amplitude of the latter. Under
physiological conditions, when the membrane potential of -
cells is not experimentally controlled as here, an increase in
glucose from an already stimulatory to an even higher con-
centration increases the duration of [Ca’"]; oscillations and
barely affects their amplitude [15,18,22,30]. These changes
were thus mimicked by changing the duration of the imposed
periods of depolarization (Fig. 4). When the glucose concen-
tration was kept at 5 mmol/l, doubling the duration of the
forced [Ca®t]; elevations lengthened the periods of insulin
secretion but did not influence their amplitude (Fig. 4A). In
contrast, when the glucose concentration was increased simul-
taneously with the lengthening of the forced [Ca®"]; oscilla-
tions, the amplitude of the insulin secretion pulses was clearly
increased (Fig. 4B).
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Fig. 3. Quantification of [Ca®*]; and insulin secretion changes in the
experiments of Fig. 2 and in two similar experiments in which extra-
cellular CaCl, was changed in reverse order. A [Ca>*]; and A insulin
were calculated as in Fig. 1. A,B: *P <0.05 or less between 1.5 and
1 mmol/l CaCl, and #P<0.01 between 2.5 and 1.5 mmol/l CaCl,.
C: Relationship between A insulin secretion and A [Ca®*]; in 5 or
20 mmol/l glucose (G5 or G20) and 1, 1.5 or 2.5 mmol/l CaCl, as
indicated. *P <0.05, ***P <0.001. Values are means*S.E.M. for
six islets.
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Fig. 4. Time and amplitude modulation of insulin secretion trig-
gered by [Ca’*]; pulses in B-cells. [Ca>"]; and insulin secretion were
measured in the same single islets. The K* concentration was in-
creased from 4.8 to 30 mmol/l for 2 min every 4 min, or for 4 min
every 6 min as indicated. The concentration of glucose (G) was ei-
ther kept at 5 mmol/l throughout (A) or increased from 5 to 20
mmol/l together with the lengthening of the K* pulses (B). Values
are means £ S.E.M. for six islets.

4. Discussion

The present study shows that the amplifying pathway of
glucose control of insulin secretion is operative when [Ca®*J;
is forced to change repetitively, in a way resembling the slow
[Ca?t]; oscillations occurring in glucose-stimulated mouse is-
lets. Thus, glucose markedly increased the amplitude of the
insulin secretion pulses although the size of the triggering
[Ca?*]; pulses barely changed. Previous experiments have es-
tablished that an elevation of [Ca>*]; in B-cells is necessary for
the amplifying action of glucose to manifest itself [1]. The
novel information is that this [Ca®t]; elevation does not
have to be continuous, as was the case in all previously
used paradigms. The fact that the amplifying pathway in-
creases insulin secretion when [Ca®"]; oscillates validates pre-
vious extrapolations on the role of this pathway under phys-
iological conditions, such as the second phase of glucose
stimulation in mouse and human islets. It is noteworthy

M.A. Ravier, J.-C. Henquin/FEBS Letters 530 (2002) 215-219

that the selected rhythm of imposed [Ca®*]; oscillations was
similar to the frequency of the major spontaneous slow oscil-
lations of [Ca?*]; in glucose-stimulated islets [6,17] and of the
oscillations of insulin secretion in vitro and in vivo [6,14].

Using controlled stepwise, sustained elevations of [Ca>*]; in
mouse islets, we previously showed that the amplifying action
of glucose on insulin secretion increases with [Ca?*]; [23]. A
similar phenomenon was observed here for imposed [Ca’*];
pulses. Thus, increasing the amplitude of [Ca®*]; pulses at low
glucose or increasing the glucose concentration at modestly
elevated [Ca?*]; had little impact on insulin secretion as com-
pared with the marked amplification of insulin secretion that
accompanied similar changes at higher glucose or [Ca?*];.

In mouse islets studied in vitro, when ambient glucose is
increased from a moderately stimulatory to a strongly stim-
ulatory concentration, the phases of depolarization increase in
duration, and so do the corresponding oscillations of [Ca®*];
[6,22]. Importantly, although the amplitude of these [Ca’"];
oscillations does not change, that of the accompanying insulin
pulses increases [30]. In single perifused mouse islets [26], in
batches of perifused rat islets [27] and in normal human sub-
jects [14], a rise in the glucose concentration also essentially
increases the amplitude of the slower pulses of insulin secre-
tion. There is thus an apparent discrepancy between a consis-
tent increase of pulsatile secretion and no change in the am-
plitude of [Ca®*]; oscillations in islets. Two explanations have
tentatively been proposed. First the increase in glucose might
recruit more and more B-cells into an active state [26]. How-
ever, the homogeneity of [Ca>*]; changes in different regions
of the islets [6,19,21,30] and the evidence that recruitment to
produce a Ca”* response is virtually complete at 10 mmol/l
glucose [31] do not support the hypothesis. At least, if recruit-
ment into a secretory state is involved, the implicated mech-
anism is not only the [Ca”*]; rise [31]. Second, the lengthening
of the period of [Ca>"]; elevation has been suggested to cause
not only a longer, but also a larger phase of insulin secretion
[18]. The present study refutes this interpretation. Mere
lengthening of the [Ca?t]; pulse did not influence the ampli-
tude of the insulin pulses, whereas the rise in glucose concen-
tration increased it. The amplifying pathway thus seems to
underlie this increase in amplitude.

We still do not know why the B-cell response to glucose is
oscillatory. One widely held view is that pulsatile insulin se-
cretion optimizes the peripheral action of the hormone [12—
14]. Alternatively, oscillations of different signals, including
[Ca®*];, may be important for B-cell functions other than se-
cretion itself [6,32]. The present study suggests a possible func-
tional advantage of [Ca’*]; oscillations. An intermittent larger
rise of [Ca®*]; as that occurring at the peak of each [Ca*];
oscillation may reach a concentration zone where the amplify-
ing action of glucose is effective, whereas a lesser, sustained
[Ca?*]; rise would not. Anyhow, the coexistence of a time-
dependent modulation via the triggering pathway and an am-
plitude-dependent modulation via the amplifying pathway en-
sures tight regulation of insulin secretion.
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