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Human spermatid-specific thioredoxin-1 (Sptrx-1) is a two-domain
protein with oxidizing activity
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Abstract Spermatid-specific thioredoxin-1 (Sptrx-1) is the first
member of the thioredoxin family of proteins with a tissue-spe-
cific expression pattern, found exclusively in the tail of elongat-
ing spermatids and spermatozoa. We describe here further bio-
chemical characterization of human Sptrx-1 protein structure
and enzymatic activity. In gel filtration chromatography human
Sptrx-1 eluates as a 400 kDa protein consistent with either an
oligomeric form, not maintained by intermolecular disulfide
bonding, and/or a highly asymmetrical structure. Analysis of
circular dichroism spectra of fragments 1-360 and 361-469
and comparison to spectra of full-length Sptrx-1 supports a
two-domain organization with a largely unstructured N-terminal
domain and a folded thioredoxin-like C-terminal domain. Func-
tionally, Sptrx-1 behaves as an oxidant in vitro when using
selenite, but not oxidized glutathione, as electron acceptor.
This oxidizing enzymatic activity suggests that Sptrx-1 might
govern the stabilization (by disulfide cross-linking) of the differ-
ent structures in the developing tail of spermatids and sperma-
tozoa.

© 2002 Published by Elsevier Science B.V. on behalf of the
Federation of European Biochemical Societies.
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1. Introduction

In sexually reproducing species the fusion of the gametes is
a prerequisite for the generation of the offspring whose genetic
makeup is different from both parents. This mode of repro-
duction via fertilization emerged during evolution and has
been maintained in most metazoans including mammals [1].
In higher vertebrates the complexity of the fertilization pro-
cess is increased by the advent of internal fertilization and by
the functional adaptations of the oocyte vestments. To cir-
cumvent associated difficulties, the spermatozoon has ac-
quired a highly specialized morphology consisting of cytoskel-
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etal components, which appear to have no structural
counterparts in somatic cells [2]. The most evident among
these cytoskeletal structures are the perinuclear theca (PT)
of the sperm head and the outer dense fibers (ODF) and
fibrous sheath (FS) of the sperm tail [3]. The mammalian
ODF and FS are composed of numerous polypeptides of
which only a few have been cloned and characterized to
date (reviewed in [4]). ODF and FS are believed to regulate
the beat of the sperm flagella by adding stiffness, elastic recoil
and protection against shearing forces generated during sperm
transit through epididymis [5]. However, there is increasing
evidence for a more active role of ODF and FS in sperm
function than merely structural, also supported by the fact
that among their constituent proteins there are a few display-
ing either enzymatic or regulatory functions.

Thioredoxins are a class of multifunctional protein disulfide
reductants that participate in different cellular processes by
the reversible oxidation of cysteine residues in their conserved
active site Cys-Gly-Pro-Cys. Thioredoxins have both intracel-
lular and extracellular roles such as electron donor for ribo-
nucleotide reductase, regulator of cell growth and apoptosis,
embryonic implantation, modulator of the DNA binding ac-
tivity of transcription factors, co-cytokine and as protective
mechanism against oxidative stress (reviewed in [6,7]). In the
human genome, three ubiquitous forms of thioredoxins have
been identified so far: Trx-1, a cytosolic enzyme that can
translocate into the nucleus upon certain stimuli [7], Trx-2,
a mitochondrial enzyme [8] and TxI-1/Trp32, a protein with
no function described so far [9,10]. In addition, we have re-
cently identified two novel members of the thioredoxin family,
named spermatid-specific thioredoxin (Sptrx)-1 and Sptrx-2,
whose expression is restricted to the haploid phase of sperma-
togenesis [11,12]. Sptrx-1 transiently associates to the longitu-
dinal columns of the FS during sperm tail assembly but does
not remain as a permanent component of the FS in the ma-
ture sperm [4]. In turn, Sptrx-2 is a structural component of
the mature FS (R. Oko and A. Miranda-Vizuete, unpublished
results). Sptrx-1 and Sptrx-2 represent the first two members
of the family with tissue-specific distribution and interestingly,
both located in close association to the sperm FS. We present
here evidence that Sptrx-1 is organized into two independent
structural domains: a 38.7 kDa unstructured polypeptide (res-
idues 1-357) and a 12.7 kDa thioredoxin-like domain (resi-
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dues 358-469). Characterization of Sptrx-1 in vitro suggests
that the protein behaves as a non-covalent oligomer in solu-
tion and that this organization might modulate its redox
properties. The implications of an oxidizing character of
Sptrx-1 are discussed in the light of its unique expression
pattern during sperm tail formation

2. Materials and methods

2.1. Expression and purification of human Sptrx-1

The open reading frame encoding human Sptrx-1 was cloned into
the BamHI-EcoRI sites of the pGEX-4T-1 expression vector and
transformed in Escherichia coli BL21(DE3). The induction of the fu-
sion protein was performed as previously described [11]. Briefly, over-
expressing cells were disrupted by 10 min sonication and the super-
natant was cleared by centrifugation at 15000Xg for 30 min and
loaded onto a glutathione Sepharose 4B column (Amersham Pharma-
cia Biotech). Binding to the matrix was allowed to occur during 2 h at
room temperature. Thrombin (5 U per mg fusion protein) was used to
remove glutathione-S-transferase by incubation overnight at 4°C. The
resulting protein preparation was then subjected to ion exchange chro-
matography using a HiTrap Q column (Amersham Pharmacia Bio-
tech) and human Sptrx-1 was eluted using a gradient of NaCl. Protein
concentration was determined from the absorbance at 280 nm using a
theoretical molar extinction coefficient of 7690 M~! cm™!, calculated
using the Protean Program included in the DNASTAR Software
Package (DNASTAR Inc.).

2.2. Gel filtration chromatography

Gel filtration experiments were carried out on a Superdex 200
HR10/30 column (Amersham Pharmacia Biotech). The column was
pre-equilibrated with 100 mM Tris—-HCI pH 8.0, 100 mM NaCl. Hu-
man Sptrx-1 was applied to the column in a volume of 5 ml at a final
concentration of 2 mg/ml and the flow rate was 5 ml/cm?/h.

2.3. Matrix-assisted laser desorptionlionization-time of flight ( MALDI-
TOF) mass spectrometry analysis

The spectra were acquired in the linear mode using a Reflex III
mass spectrometer from Bruker Daltonik GmbH (Germany). Data
processing and evaluation were carried out with the XMASS software
(Bruker). On the target plate, a microcrystalline layer was prepared
with a saturated solution of sinapinic acid (Sigma) in ethanol. The
samples were mixed with an equal volume of a saturated solution of
sinapinic acid in 33% (v/v) acetonitrile and 0.1% (v/v) trifluoroacetic
acid, and 0.5 pl of this mixture was crystallized on the microcrystalline
sinapinic acid layer [13]. Calibration of the spectra was carried out
with the high mass protein standard from Aglient Technologies that
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Fig. 1. Gel filtration chromatography of human Sptrx-1. Elution
profile of human Sptrx-1 applied to a Superdex 200 column in a
volume of 5 ml, at a final concentration of 2 mg/ml and a flow rate
of 5 ml/cm?/h. Inset shows the calibration of the column using high
and low molecular weight markers and a sodium dodecyl sulfate
(SDS)-PAGE analysis of an aliquot of Sptrx-1 preparation applied
to the column.

contained bovine serum albumin (66430.2 Da), equine cardiac myo-
globin (16951.5 Da), and equine cardiac cytochrome ¢ (12359.2 Da).

2.4. Human Sptrx-1 crystallization

Crystallization conditions were screened with the sitting drop vapor
diffusion method. Promising conditions were further optimized to
obtain crystals suitable for X-ray analysis. The crystallization droplet
was prepared by mixing equal volumes of protein solution (protein
concentration 30 mg/ml in 10 mM Tris—-HCI pH 7.4) and reservoir
solution (25% polyethylene glycol 5000 monomethyl ether in 0.1 M
Tris buffer pH 8.0 with the addition of 0.3 M sodium acetate). The
droplet was equilibrated against 0.5 ml reservoir solution at 293 K.
X-ray diffraction data were collected at 100 K with Cu-Ko radiation
using a MAR research image plate. 20% glycerol was added to the
reservoir solution as a cryo-protectant. The data were processed with
the HKL package [14]

2.5. Circular dichroism spectroscopy

Circular dichroism spectroscopy was performed using an Aviv
202DS spectropolarimeter (Lakewood, NJ, USA). Spectra were ob-
tained using protein solutions in 100 mM potassium phosphate buffer
pH 7.0 containing 10 mM NaCl and 1 mM ethylenediamine tetra-
acetic acid (EDTA) at protein concentrations ranging from 0.5 to 0.9
mg/ml at 25°C in 0.01 cm cuvettes. Spectra were recorded for 8 s per
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Fig. 2. MALDI-TOF analysis of human Sptrx-1. The spectrum shows the single, double and triple charged ions of Sptrx-1 at m/z 51512, 25790
and 17201, respectively. The mass determination of Sptrx-1 was carried out using the single charged ion of the protein.
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nm between 260 and 184 nm. Protein concentrations were determined
by quantitative amino acid analysis [15]. Contributions from cuvette
and solvent were removed by subtracting an identically recorded spec-
trum of buffer without protein. No signal processing (e.g. smoothing)
was used.

2.6. Enzymatic activity assays

Disulfide bond formation was measured in a reduced model pep-
tide, NRCSQGSCWN (Genemed Synthesis) which was acetylated and
amidated at the N- and C-terminus, respectively by the manufacturer
essentially as described [16,17]. The peptide concentration was calcu-
lated using the molar extinction coefficient at 280 nm of 5690 (M~!
cm™!). The oxidation reaction was performed in 100 ml of buffer
consisting of 100 mM Tris-HCl pH 7.4, 200 mM KCl, 1 mM
EDTA and either 1 mM selenite (Na;SeO3) or 2 mM reduced gluta-
thione (GSH) and 0.5 mM oxidized glutathione (GSSG) which cor-
responds to a redox potential of —202 mV at pH 7.4. Protein disulfide
isomerase (PDI) or Sptrx-1 was added at a final concentration of 1-2
uM. The reaction was initiated by adding 20 uM of the reduced pep-
tide and quenched after different time points by addition of HCl to a
final concentration of 0.2 M. No attempt was made to control the
oxygen concentration in the samples. After quenching, the samples
were immediately analyzed on reverse phase high-performance liquid
chromatography (HPLC) (Pharmacia SMART System) on a Cl18 col-
umn (2.1 mm X 10 cm) using a linear gradient of 5-25% acetonitrile,
0.1% trifluoroacetic acid in 25 min at a flow rate of 100 ul/min.
Elution of the peptide was determined by absorbance at 215 nm.
The degree of peptide oxidation was calculated from the relative
peak area of the oxidized peptide and total peak area. Control experi-
ments were performed using fully oxidized and reduced peptide.

3. Results

3.1. Oligomeric structure of human Sptrx-1

In addition to the two cysteine residues in the active site of
the thioredoxin domain, human Sptrx-1 has four additional
cysteine residues located in the C-terminal thioredoxin do-
main [11]. Interestingly, when determining the thioredoxin
activity of recombinant Sptrx-1 we observed that prior reduc-
tion of the protein by dithiothreitol (DTT) diminished its
activity, in contrast to what happens to Trx-1. Previously,
we showed that Sptrx-1 migrated anomalously (~ 180 kDa)
on non-denaturing polyacrylamide gel -electrophoresis
(PAGE) thus suggesting a possible oligomeric form [11]. In
an attempt to further define the oligomeric state of Sptrx-1 in
vitro, we first performed gel filtration chromatography. As
shown in Fig. 1, recombinant human Sptrx-1 eluted at a po-
sition consistent with that of a 440 kDa globular protein.
With a monomeric molecular mass of 53 kDa, this result
indicates that native Sptrx-1 is either oligomeric or is highly
asymmetrical. We used MALDI-TOF mass spectrometry to
elucidate whether potential Sptrx-1 oligomers are maintained
by intermolecular disulfide bonds. Sptrx-1 behaves as a single
peak of 51512 Da (Fig. 2) demonstrating that intermolecular
disulfide bonding is not responsible for the anomalous behav-
ior of the native protein. The average value of the mass of
Sptrx-1 determined from 10 independent spectra was 51485
Da£0.2%, which was significantly lower than the reported
theoretical mass of human Sptrx-1 monomer (53274 Da)
[11] and indicated a difference in the primary structure. To
see whether partial N-terminal digestion could account for
this difference, we performed N-terminal sequencing of the
protein, which was in agreement with that reported previously
(data not shown). The clone overexpressing human recombi-
nant Sptrx-1 used in these experiments was sequenced and
found to lack one of the repetitive motifs in the N-terminal
domain of the protein. The expected size of this shorter var-
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Fig. 3. Crystallographic analysis of the thioredoxin domain of hu-
man Sptrx-1. A: Monoclinic crystal of the C-terminal thioredoxin
domain of Sptrx-1. The maximal dimension of the crystal is about
0.4 mm. B: A pseudo-precession photograph (0kl layer) showing the
Laue symmetry 2/m. Systematic extinctions of k=2n+1 can be
clearly observed. The diffraction data were evaluated in space group
P1. The outer edge of the photograph corresponds to 4.0 A resolu-
tion. The figure was produced with the program PATTERN [30].

iant is 51 582 Da, which is in good agreement with the MAL-
DI-TOF results. We have recently reported the mouse Sptrx-1
gene and protein [18] and found that it also lacks one of the
repetitive motifs compared to the orthologous human se-
quence. Interestingly, we have identified the two human var-
iants among several patients diagnosed of sperm tail defects
and normal controls (unpublished results).

3.2. Crystallization and preliminary X-ray analysis of human
Sptrx-1 protein
To gain more insight into Sptrx-1 three-dimensional struc-
ture we attempted the crystallization of the full-length protein.
Needle-like crystals, with a maximum dimension of about 0.4
mm, were obtained after nearly one year (Fig. 3A). The crys-
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Fig. 4. Circular dichroism spectra of Sptrx-1. Plot of decadic molar (mean residue) CD, Ag, as a function of wavelength for native Sptrx-1
(1-463), open circles; N-terminal domain (1-360), filled circles; C-terminal domain (361-463), open diamonds; combined N- and C-terminal
spectra, open triangles; and human Trx-1, filled diamonds. Spectra were recorded for 8 s/point at 1 nm intervals between 260 and 184 nm us-

ing 0.01 cm cuvettes. No signal processing (smoothing) was used.

tals diffracted beyond 3.0 A resolution and autoindexing of
the diffraction data [19] suggested that the crystals belong to
space group C2, which was further confirmed by inspecting
the systematic extinctions and the Laue symmetry of the dif-
fraction pattern (Fig. 3B). A preliminary data set was col-
lected to 2.9 A resolution. A total of 4105 observations
were merged to give 1823 unique reflections with a merging
R factor (E(I—(D)/Z(D) of 0.135. The data set is 83% com-
plete to 2.9 A resolution with 52% in the last shell of 3.0
2.9 A. The cell parameters are a=45.4, b=552, ¢=42.1,
a=y=90° and $=93.7°.

With the knowledge of unit cell and the molecular weight of
the protein molecule, the crystal volume per unit of protein
molecular weight (Vn), can be calculated. For protein crystals,
this value ranges from 1.6 to 3.5 A3/Da, vyith the most com-
monly observed values of ¥, around 2.1 A3/Da [20]. Assum-
ing one monomer of Sptrx-1 with a molecular weight of 51.5
kDa per unit cell, an unlikely V;, value of 0.49 A3/Da is
obtained, which suggests the existence of a much smaller pro-
tein molecule in the unit cell. Protein sequence analysis using
protein from dissolved crystals verified that a specific cleavage
between residues 359 and 360 had occurred during the crys-
tallization. The molecular weight of the remaining residues
360-463 is 12 kDa, a value typical for thioredoxins, that
would lead to a more realistic V,, value of 2.2 A3/Da. This
result indicates that Sptrx-1 underwent cleavage during crys-
tallization, with apparent degradation of the N-terminal do-
main. Thus, crystals consisted of the remaining C-terminal
thioredoxin domain.

3.3. Sptrx-1 structural characterization using circular
dichroism
Circular dichroism spectra of the intact human Sptrx-1

(Fig. 4) are consistent with the full-length protein (1-469)
containing a majority of disordered structure as evidenced
by the intense minimum near 200 nm. To ascertain whether
the polypeptide responsible for this disorder is confined to a
continuous segment of the protein, we recorded spectra of the
purified N- and C-terminal domains separately. The circular
dichroism (CD) spectra of the N-terminal domain (1-357)
contained an intense negative band between 195 and 200 nm
consistent with a significant content of disordered structure.
In contrast, the spectra of the C-terminal domain (358-469)
resembled that recorded of native human Trx-1. When the CD
spectra of the two domains are combined and compared to
that of full-length Sptrx-1 (Fig. 4), the close coincidence of the
two spectra is strong evidence that the two domains do not
influence each others structure significantly, supporting the
picture of a largely disordered N-terminal domain and a
folded C-terminal thioredoxin-like domain.

3.4. Redox activity of human Sptrx-1 protein

We have previously reported a weak reducing activity of
human recombinant Sptrx-1 using both DTT or NADPH
and thioredoxin reductase as electron donors [11]. We sought
to determine whether human Sptrx-1 might in fact be capable
of catalyzing disulfide bond formation, in vitro. For this pur-
pose, a model peptide whose oxidized and reduced forms can
be separated by HPLC after reaction with Sptrx-1 or PDI was
used. For a functional assay, an electron acceptor is also
needed. GSSG is a common oxidant of protein thiols. How-
ever, in the presence of a glutathione redox buffer with a
redox potential corresponding to —202 mV, no activity could
be detected by Sptrx-1 (Fig. 5A). In the presence of selenite
(which is known to oxidize the active site of Trx-1 in a non-
stoichiometric and oxygen-dependent manner [21]) Sptrx-1
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Fig. 5. Disulfide formation in a reduced model peptide in the presence of Sptrxl or PDI. A: Using 2 mM GSH and 0.5 mM GSSG and B: us-
ing 1 uM selenite as electron acceptor. The reaction was performed in 100 pl buffer consisting of 100 mM Tris-Cl pH 7.4, 200 mM KCl and
1 mM EDTA. The reaction was initiated by addition of peptide to a final concentration of 20 uM. Aliquots were removed and quenched at
different time points by addition of HCI to a final concentration of 0.2 M. The samples were analyzed immediately on reverse phase HPLC
(Pharmacia SMART system) on a C18 column (2.1 mm X 10 cm) using a linear gradient of 5-25% acetonitrile, 0.1% trifluoroacetic acid (TFA)
for 25 min at a flow rate of 100 pul/min. The fraction of oxidized peptide was calculated from the total peak area in the chromatogram. Open

squares, PDI; black triangles, Sptrx-1; open circles, background.

oxidized the peptide at a similar initial rate compared to PDI
but with a lower final yield (Fig. 5B). Similar results were
obtained using fluorometric and colorimetric assays with
GSSG and selenite (data not shown).

4. Discussion

The transformation of spermatids to spermatozoa (spermio-
genesis) involves a complex sequence of events by which a
conventional cell is converted into a highly organized motile
structure. During spermiogenesis the spermatid undergoes
striking and unique morphological and biochemical changes
that include nuclear condensation, acrosome formation and
sperm tail organization [22]. A common link for most of these

processes to occur is a progressive increase in disulfide bond-
ing, which starts at the spermatid stage and continues through
epididymal transit [23-26]. However, despite the prominent
role of disulfide bonding in spermiogenesis, the molecular
mechanisms that regulate this process are still poorly under-
stood, mostly due to the lack of in vitro models of spermio-
genesis.

Thioredoxins are a class of proteins typically considered as
key players in redox-regulated cellular mechanisms [7]. Sptrx-
1 is the first member of this family with a tissue-specific dis-
tribution, located in the sperm tail [11]. A developmental ex-
pression analysis through the spermatogenic cycle in rodents
has shown that Sptrx-1 transiently associates to the longitu-
dinal columns of the sperm FS during its elongation and
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assembly but does not remain as a structural component of
the FS in the mature sperm [4]. When analyzing Sptrx-1 thi-
oredoxin activity in the presence of NADPH and thioredoxin
reductase we found that preincubation of the protein with
DTT (to fully reduce the protein) resulted in a decrease of
the activity compared to that of oxidized Sptrx-1, in contrast
to what occurs to Trx-1 used as control [11]. These data sug-
gested an important role of the cysteine residues for the main-
tenance of Sptrx-1 in an active conformation. We decided to
further characterize Sptrx-1 in vitro by gel filtration chroma-
tography which indicated a very anomalous behavior compa-
rable to a 400 kDa globular protein. Considering 51.6 kDa as
the size of the Sptrx-1 monomer and assuming ideal globular
behavior, the results of the gel filtration experiment are con-
sistent with that of an octamer. However, MALDI-TOF anal-
ysis of Sptrx-1 showed that the solution conformation in vitro
is not maintained by intermolecular disulfide bonding. The
fact that the enzymatic activity of Sptrx-1 is affected by re-
duction of the protein suggests that intramolecular disulfide
bonding may be important.

Despite extensive efforts to crystallize the native Sptrx-1
protein, the crystals contained only the C-terminal thioredox-
in domain indicating that the N-terminal domain is prone to
spontaneous degradation. Indeed, during the Sptrx-1 purifica-
tion process, we could detect some degradation of this domain
resulting in a ‘laddering’ pattern of bands, most probably
suggesting that the spontaneous degradation occurs at specific
residues within the N-terminal domain. This spontaneous deg-
radation might be facilitated by the disordered structure of the
N-terminal domain as shown by CD spectroscopy.

FS is a spermatozoa cytoskeletal structure, with no counter-
part in somatic cells, characterized by its elastic rigidity to
provide support to the sperm tail during its beating [27].
This function is dependent on the tight association of the
proteins that integrate the FS, achieved through extensive
disulfide bonding and resulting on its high insolubility. As
we have demonstrated, Sptrx-1 is able to function as a reduc-
tant as well as an oxidant in vitro. Together with its spatial
and temporal expression in the tail of elongating spermatids,
simultaneous to the assembly of the FS, our data suggest that
Sptrx-1 could indeed participate in the regulation of this pro-
cess by favoring the formation of disulfide bonds during
sperm tail morphogenesis. In addition, its dual reducing/oxi-
dizing activity might be required to rectify non-correct disul-
fide pairing and generate the suitable ones between the differ-
ent sperm FS constituents, similarly to what occurs to the
disulfide bond reshuffling activity of PDI [28]. The relatively
mild reducing and oxidizing activities of recombinant Sptrx-1
should be viewed in a wider perspective. First, the oxidizing
activity found in vitro with the model peptide as a substrate
could be limited by the reoxidation of Sptrx-1. In the case of
PDI and the protein DsbA, this has been shown to be the
rate-limiting step in similar experiments [16,29]. Second, it is
plausible that additional factors are required in the assay,
most probably testis-specific, or post-translational modifica-
tions might be necessary to achieve a fully active protein.
Third, higher activity could be obtained upon interaction
with substrates. In this context, the N-terminal domain, which
is unstructured in solution, could acquire a more structured
conformation after binding to an interacting protein.

As noted previously, the morphogenesis and assembly of FS
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(as well as other components of sperm tail) require stabiliza-
tion by disulfide bonding between its different constituent
proteins. Therefore, failure of proper functioning of Sptrx-1
could lead to spermatozoa tail defects, thus justifying further
work on Sptrx-1 as a potential target for male factor infertility
studies.
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