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Most of the structural elements of the globular domain of murine prion
protein form fibrils with predominant -sheet structure
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Abstract The conversion of the cellular prion protein into the
B-sheet-rich scrapie prion protein is thought to be the key step
in the pathogenesis of prion diseases. To gain insight into
this structural conversion, we analyzed the intrinsic structural
propensity of the amino acid sequence of the murine prion
C-terminal domain. For that purpose, this globular domain
was dissected into its secondary structural elements and the
structural propensity of the protein fragments was determined.
Our results show that all these fragments, excepted that strictly
encompassing helix 1, have a very high propensity to form struc-
tured aggregates with a dominant content of B-sheet structures.
© 2002 Published by Elsevier Science B.V. on behalf of the
Federation of European Biochemical Societies.
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1. Introduction

Prion protein (PrP) plays a key role in the pathogenesis of
the transmissible spongiform encephalopathies or prion dis-
eases [1,2]. These diseases are a group of rare, fatal and trans-
missible neurodegenerative disorders that are characterized by
accumulation of an abnormal form of the prion protein
(PrPS€). Normal PrP (PrP€) and PrPSC have identical cova-
lent structure and differ exclusively in their tertiary structure
and association states. In contrast to PrPC which is soluble
and contains only 3% of B-sheet structure, PrPSC is insoluble,
forms amorphous aggregates or fibril-like structures and is
rich in B-sheets [3-5].

The recombinant mouse, hamster, cattle and human PrP€
have a common architecture consisting of a disordered
N-terminal region (residues 23-124) and a folded C-terminal
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Abbreviations: PrPC, cellular isoform of prion protein; PrPSC, scrapie
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domain (residues 125-228) composed of two sub-domains
(Fig. 1) [6]. The long hairpin sub-domain (residues 121-167)
is located in the outer shell of the globular domain, and is
composed of helix 1 and of the two flanking segments includ-
ing the B-strands. The purely helical sub-domain is made of
helix 2 and helix 3 (residues 174-220) held together by the Cys
179—Cys 214 disulfide bridge.

Most of the amino acid substitutions associated with genet-
ic forms of the diseases are located in the globular domain
[7,8]. Hence, it was suggested that the globular domain plays a
critical role in the initiation of the conversion and/or aggre-
gation and propagation of fibrils.

Secondary structure predictions [9,10] indicate that the ami-
no acid sequence corresponding to helix 2 has a strong B-sheet
propensity (Fig. 1). Moreover, only two narrow regions of
helical propensity corresponding to a portion of helices 1
and 3 are found by the AGADIRI1-s-2 algorithm which is
specifically dedicated to predict helical propensity [11] (data
not shown). Only half of the segment corresponding to helix 1
(residues 148-152) had a helical propensity larger than 10%
and the sequence corresponding to helix 3 had only a margin-
al helical propensity.

The discrepancy between the predicted and observed sec-
ondary structure led us to analyze experimentally the local
structural propensity of the globular domain. As a matter of
fact, non-native intermediates, resulting from particular in-
trinsic propensity, may arise in the folding pathway and
strongly influence the protein oligomerization and the forma-
tion of amyloid aggregates [12].

To determine the local structural propensity of the globular
domain, we dissected the two sub-domains into their second-
ary structure elements, and performed a structural analysis of
the different protein fragments using nuclear magnetic reso-
nance (NMR), Fourier transform infrared (FTIR) and elec-
tron microscopy. Although a disulfide bond is preserved in
PrPSC, it cannot be excluded that its reduction (occurring
transiently in vivo) plays a role in the conversion of PrP® to
PrPSC¢ [13,14]. Hence, to analyze the helical sub-domain struc-
tural propensity in the absence of the disulfide bridge, the
cysteine residues were replaced by serine residues.

Previous structural work with synthetic peptides covered
only part of the secondary structural elements of the folded
domain, except for helix 1 [15-18]. Here, we present a com-
prehensive analysis of the intrinsic structural propensity of the
whole globular domain of murine prion protein.
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2. Materials and methods

2.1. Peptide synthesis, purification and preparations

Peptides were synthesized using continuous-flow Fmoc/tBu chemis-
try [19]. All purified peptides (purity > 95% verified by reverse phase
high performance liquid chromatography) were quantified by amino
acid analysis and finally characterized using positive ion electrospray
ionization mass spectrometry.

For all the spectroscopic analysis, the peptides were dissolved in
H,O0 and the pH adjusted by addition of aliquot amounts of HCI or
by diffusion of NHj.

2.2. Attenuated total reflectance (ATR)-FTIR spectroscopy

ATR-FTIR measurements were performed using a Bruker Vector
22 spectrometer. 10 pl of a peptide solution was deposited on a dia-
mond crystal. Typically, three to five ATR-FTIR spectra of the pep-
tide solution were collected in the 600-4000 cm™' range (256 scans,
4 cm™! resolution) followed by Fourier transformation of the sample
spectra using a clean crystal spectrum as a background. The solvent
spectrum was subtracted from the sample spectrum. Second derivative
was used to identify the peak positions of the major components of
the amide I band between 1600 and 1700 cm™! [20]. Concentration of
the samples was 0.8-1 mM.

2.3. Fibril preparations and electron microscopy

Fibrils were prepared from 2 mM peptide solutions. Aliquots of
8-10 pl diluted peptide solutions (dilution up to 500) were applied
to glow-discharged formvar-coated grids and negatively stained with
5% uranyl acetate or 2% phosphotungstic acid (pH 6.5). The stained
grids were examined in a Philips CM12 electron microscope operated
at 80 kV.

2.4. NMR spectroscopy

NMR experiments were performed on a 2 mM murine (m) PrP
(140-159) sample dissolved in 90:10 H,O:D,0. The pH value was
adjusted to 4.5. All NMR spectra were recorded at 293 K and
280 K on a Bruker DRX-500 spectrometer equipped with a z-gradient
IH-BC-BN triple resonance probe. Standard homonuclear TOCSY
and NOESY [21] experiments were performed with mixing times of
80 ms, and 100 and 250 ms respectively.
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3. Results

The amino acid sequence of the peptides used in this study
is displayed in Fig. 1.

3.1. The helical sub-domain and its fragments form short fibrils
of different morphology with a high content of B-sheet
structure

F2 (mPrP 171-197) had a remarkably high propensity to
form stable amyloid-like fibers. In acidic aqueous solution
(pH above 2), it readily oligomerized into rather short and
thin fibrils of about 2 nm thickness and 50-800 nm in length
which assembled to form ribbons heterogeneous in length
(Fig. 2). These fibrillar structures were stable at high pH up
to 10, or in the presence of high concentrations of detergent
(0.15% SDS) or in 6 M guanidinium hydrochloride.

F3 (mPrP 196-223) assembled into tangled fibrils forming a
cotton ball-like structure upon extensive incubation at 4°C,
pH ~5, for 5 months (Fig. 2). No fibrils were detected on
freshly dissolved sample of F3 at pH 4-6.

Immediately after dissolution (pH 4), the entire helical sub-
domain (F23) formed short fibrils of rather homogeneous size,
but the fibrils had very different morphology from those
formed by all the other fragments (Fig. 2). No evolution of
these fibrils was observed after 1 month of incubation of a
concentrated solution.

The analysis of the infrared spectrum of freshly dissolved
samples of F2, F3 and F23 in acidic solution (pH 3-5) showed
that all the fragments had a high B-sheet content (Fig. 3). The
second derivative of the infrared spectra revealed a predom-
inant band at 1620 cm™!, characteristic of a B-sheet structure
[22]. The comparison of the infrared spectra indicated that F2
had the largest B-sheet content while F3 had the greatest
content of structures other than B-sheet.
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Fig. 1. Amino acid sequence of murine PrP (121-231) and of the peptides used in this study. The a-helices and B-strands as deduced from
NMR [30] are marked by bold, and bold underlined letters, respectively. The h and b symbols denote, respectively, the o-helical and B-sheet
consensus secondary structures as predicted using the Network Protein Sequence Analysis (NPS@) WWW server at http://pbil.ibcp.fr/NPSA/
npsa_server.html [9]. The peptides FIS, FIM, F1L, F2, F3 and F23 are identified by the position of the first and last amino acid residues
which are numbered according to human PrP. A Molscript [31] 3D ribbon representation of the three-dimensional mPrP structure (lag2 PDB
accession number [30]) is shown. The long hairpin sub-domain is indicated in black and the helical domain in white.
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Fig. 2. Negative-stained electron micrographs of fibrils generated by
peptide F2, soon after dilution, pH ~35 (bar: 400 nm); peptide F3,
after 5 months of incubation at pH ~5 (bar: 50 nm); peptide F23,
immediately after dissolution of the peptide at pH 4 (bar: 370 nm);
peptide F1M, incubated for 2 months at 4°C and pH ~5 (bar: 50
nm); peptide F1L, soon after dissolution at pH ~5 (bar: 50 nm).

3.2. The long hairpin domain and some of its fragments also
form fibers

The peptide encompassing the helix 1 (F1S) was soluble
over a broad range of pH. The chemical shift index profile
of F1S (Fig. 4), calculated from NMR data [23,24], was very
similar to the published profile of the same segment in the full
length Syrian hamster protein (Fig. 4) except, of course, at
both ends. This indicates that the structured population of
F1S in solution is mostly helical and rather structurally sim-
ilar to that found in the full protein [15]. Residue 155 of mu-
rine and hamster protein is respectively a Tyr and an Asn.
This is the only amino acid difference in the segment 140-159
and was shown to have no structural effect [25]. The fact that
the A6H, were smaller for F1S than for the recombinant
Syrian hamster protein indicated the presence of a large pop-
ulation of unstructured fragments in agreement with the cir-
cular dichroism data (10-20% o-helical content at pH 4.5,
data not shown). Interestingly, the two longer peptides F1M
and F1L encompassing helix 1 (Fig. 1) formed fibrils at pH
~5. After 1 day in solution at pH ~5, FIM formed long
filaments, a few of them being twisted. Upon prolonged in-
cubation (a week or more) at 4°C, the filaments assembled to
form either twisted ribbons or cables composed of two or
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Fig. 3. Amide I region (1580-1750 cm™!) of the infrared spectra of
F2, F3, F23, FIM, FIL just after dissolution in HO (F2: pH <3;
F3, F23, FIM, FIL: pH 4.5; 293 K). The spectra are normalized
taking into account the number of peptide bonds in each fragment.

more fibers (Fig. 2). These non-branching fibrils were approx-
imately 10 nm in width and up to tens of um in length. The
kinetics of fibril formation for the longest peptide F1L was
very fast. Long twisted filaments were formed readily after
dissolution in acidic solution (pH 4-5). Fibers, probably nar-
row twisted ribbons, were 8-10 nm in diameter, i.e. in the
range of the fragment length, and from 70 nm to 1-2 um in
length with a twist periodicity of about 50-70 nm (Fig. 2).
As expected, the comparison of the infrared spectra of F1M
and FIL obtained just after dissolution at pH 4.0 (Fig. 3)
revealed a higher B-sheet content for the longer peptide (major
band at 1622 cm™!). The minor bands at 1658 cm™! and 1676
cm™! reflected the presence of other, including helical, struc-
tures [22]. This residual infrared helix signal most probably
arose from the population of soluble or poorly oligomerized
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Fig. 4. Chemical shift indices (A6H,) of peptide F1S (black bars)
and of the full length Syrian hamster prion protein (gray bars) ver-
sus the amino acid sequence. These indices were calculated for resi-
dues 140-159 of F1S (major isomer with the Tyr 157-Pro 158 pep-
tide bond in the frans form) in aqueous solution (pH=4.5, 293 K)
and of the full Syrian hamster prion protein [25-27]. An asterisk in-
dicates that the chemical shift could not be determined due to over-
lap with the solvent line. The 'H,, chemical shifts for Syrian ham-
ster prion protein were obtained from BioMagnResBank at
www.bmrb.wisc.edu, accession number 4307.
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peptide. In contrast, the infrared spectrum of F1M recorded
just after dissolution showed a smaller absorption band at
1622 cm™!, indicating only a minor contribution from B-sheet
structure, and a more intense amide [ absorption band around
1658 cm™! which indicated a higher content in other second-
ary structures including helix and coil (Fig. 3).

4. Discussion

The aim of our work was to determine the structural pro-
pensity of the globular domain of the murine prion protein.
We found that all the peptide fragments encompassing the
secondary structure elements formed fibrils with a high
B-sheet content except the fragment encompassing only helix 1.

Our experimental work is in agreement with the secondary
structure predictions and therefore provides a new striking
example that secondary structure prediction gives the intrinsic
structural propensity rather than the effective secondary struc-
ture of the folded protein [28]. The helix 2 sequence is rather
unusual as firstly, about 60% of the residues, including all the
hydrophobic residues, are B-branched residues which are
known to disfavor helix structure and secondly, combines
the i, i+2 B-sheet and the i, i+4 helical periodicity for the
hydrophobic residues. Thus, the helix 2 sequence could be
helical at the contact of helix 3, and pure B-strand when not
in contact with helix 3 in the intermediate states. For pH
values lower than 5, the protonation of Asp and Glu residues
in helices 2 and 3 may contribute to the stability of the
B-structures. The F2 and F3 fragments, respectively encom-
passing helix 2 and helix 3, were shown to assemble in straight
fibrils of very varying length. Because of the particular distri-
bution of the hydrophobic residues, the B-sheet structure of
the F2 fragment should be amphipathic, with one side being
fully hydrophobic. This property might induce pairing of the
B-sheet in the fibers.

Contrasting with these observations, the F23 fragments en-
compassing both helices 2 and 3 formed short non-conven-
tional wavy fibrils of rather homogeneous size. Size limitation
may result from end to end interactions in non-linear aggre-
gates. This effect could limit fiber elongation. Such morpho-
logical differences probably result from h3-h2 interactions.

Our results also clearly demonstrate that the long hairpin
sub-domain also possesses a high B-sheet propensity. This
observation raises the question of how the helix 1 segment
is embedded in the B-sheet structure. It is difficult to conclude
whether the helix component of the infrared spectrum (Fig. 3)
arises from the filamentous fraction or from the soluble or
poorly aggregated fraction. Because the fibers appeared well
defined and devoid of any decoration, we suggest that the
segment spanning helix 1 is fully incorporated in the B-struc-
ture. Most probably, the helical propensity of this segment is
not high enough to prevent its incorporation into the nascent
B-structure. This global strong B-sheet propensity also over-
comes the influence of the two proline residues (P137 and
P158) that locally destabilize B-sheet structures. In addition,
the different kinetics of fibril formation of FIM and FIL
underline the important role of the two B-strands in the ki-
netics of fibril formation.

The structural propensity of the PrP globular domain is of
high importance when considering the unfolding — or refold-
ing — intermediates. For the helical domain, this propensity
may become critically important if, under certain circumstan-
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ces, the disulfide bridge is reduced [29]. In these circumstances,
the resulting weakening of the tertiary interactions could lead
to the initiation of the conversion in the h2 segment and,
subsequently, to fibril propagation.

The B-sheet propensity is perhaps even more critical for the
long hairpin domain as this domain can switch into a B-struc-
ture independently of the presence or the absence of a disul-
fide bridge in the helical domain. It is noteworthy that the
long hairpin domain is the most exposed domain and that the
palindromic segment which sequentially precedes this domain
also possesses a high B-sheet propensity [16]. Thus, the PrP¢
protein conversion could be initiated in the ‘long hairpin-plus-
palindrome’ domain, even if the disulfide bridge is preserved.
More interestingly, it could be induced in the ‘long hairpin-
plus-palindrome’ domain if the protein, in its native state,
encounters an amyloid fiber end and pairs with the exposed
long hairpin domain already transformed.
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