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Abstract Besides a role in phosphate supply, ectomycorrhizas
play a crucial role in nitrogen nutrition of plants. The ectomy-
corrhizal association between Hebeloma cylindrosporum and
Pinus pinaster serves as a model system accessible to molecular
manipulation. Hebeloma mycelium is able to take up and use
amino acids as the sole nitrogen source. Suppression cloning
allowed identification of a Hebeloma transporter (HcGAP1)
mediating histidine uptake. HcGAP1 mediates secondary active
uptake of a wide spectrum of different amino acids. The sec-
ondary active transport mechanism together with the expression
in hyphae, but not in mycorrhizas, indicate a role in uptake of
organic nitrogen from the soil. © 2002 Federation of European
Biochemical Societies. Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction

Ectomycorrhizal trees dominate boreal and temperate forest
ecosystems in which nitrogen is the most important growth
limiting nutrient [1,2]. It has been proposed that selection fa-
vored symbiosis between tree roots and ectomycorrhizal fungi
in growth limiting environments due to fungal improvement
of plant access to nutrients [3]. Both the role of mycorrhiza in
phosphate nutrition and the molecular basis of phosphate
uptake of both symbiotic partners have been well established
[4,5]. In contrast, less is known about the molecular basis of
the role of ectomycorrhiza in nitrogen nutrition. Most studies
in this area have focused on the uptake and assimilation of
inorganic nitrogen sources by ectomycorrhizal roots. Impor-
tantly, however, most ectomycorrhizal root tips are located in
the superficial organic horizons of the forest soil profile [6,7],
where organic forms of nitrogen predominate [8,9]. Although
the processes of uptake, translocation and transfer of organic
nitrogen are understood in broad terms and some mechanisms
are inferred by comparison with other organisms such as
yeast, there are still considerable gaps in our knowledge of
even the simplest symbiotic systems involving the interaction
between a single fungus and a single autotrophic host. Mycor-
rhizal systems have successfully been used to determine rates
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of translocation [10], but the underlying mechanisms are still
not understood. For these reasons it is essential to establish
the mechanisms and processes whereby organic nitrogen com-
pounds are mobilized, assimilated and transported.

Net transport of nutrients from the soil solution to the
above ground part of the plant is the result of four principal
transport components: (i) at the soil-fungus interface; (ii)
translocation in hyphae; (iii) export from fungal hyphae and
(iv) uptake by the plant root membrane [11]. In order to
understand the processes involved in the contribution of my-
corrhiza to the nitrogen nutrition of plants, it is necessary to
study fungal nitrogen nutrition at the physiological and mo-
lecular level. Amino acid transporters have been characterized
in detail physiologically in animals, plants and yeasts (for re-
view see [12-15]). On the basis of physiological studies, the
existence of a large number of transporters has been postu-
lated differing in substrate spectrum, and tissue specificity,
and transport mechanism, i.e. the ions used in cotransport.
In Saccharomyces cerevisiae it is clear that amino acids are
accumulated by a set of 22 secondary active influx systems
[13,15,16]. An effective way for isolating transporters is sup-
pression cloning in yeast mutants, e.g. a wide spectrum of
plant transporters for nitrogenous compounds has been iden-
tified [17,18]. Isolation of transporter genes will allow a better
understanding of the mycorrhizal symbiosis by manipulation
of fungal metabolic and transport processes [19].

As a first step towards analysis and manipulation of mycor-
rhizal organic nitrogen transport, nutrition and uptake of
amino acids by the model fungus Hebeloma cylindrosporum,
a gene coding for an amino acid transporter was isolated by
functional complementation of a yeast amino acid uptake mu-
tant. HcGAPI encodes a general amino acid permease medi-
ating secondary active uptake of amino acids into hyphae.
The transporter gene is expressed in hyphae and down-regu-
lated in the mycorrhizal association, indicating that it plays a
role in the uptake of amino acids from the soil for fungal
nutrition.

2. Materials and methods

2.1. Strains

The H. cylindrosporum monokaryotic strain (hl) was obtained from
the in vitro fruiting dikaryon HCI [20]. Mycelia were grown on cel-
lophane-covered medium with glucose as C source and addition of
amino acids or ammonium as N source. The Escherichia coli strain
used was XLI-Blue. Classical procedures for manipulating E. coli
have been described previously [21]. The yeast strains used were the
histidine uptake deficient mutant J7/6 (Mato. hipl-614 his4-401 canl
inol ura3-52; [22]) and a mutant deficient for multiple amino acid
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uptake systems 224844 (Mato gapl-1 putd4-1 ugad-1 Acanl Aapll
Alypl Ahipl Adip5 ura3-1; [23]). Mycorrhiza formation was induced
with Pinus pinaster (Ait.) as the plant partner [24] on medium con-
taining 0.5 g/l glucose and 1 mM nitrogen in the form of ammonium
or amino acids. Control plants were grown without inoculum. Pinus
needles, Hebeloma mycelia, mycorrhizal and non-mycorrhizal short
roots were harvested, pooled, frozen in liquid nitrogen and stored at
—80°C.

2.2. Utilization of amino acids as N source by H. cylindrosporum

The ability of the H. cylindrosporum strain hl to utilize amino acids
as N source was assessed by growth experiments. Petri dishes were
inoculated with one agar plug (0.8 cm) cut from the margin of actively
growing cultures maintained on modified Melin—Norkrans (MMN)
medium, from which malt extract was omitted, with ammonium as
N source [25]. Each dish contained MMN medium supplemented with
a single amino acid (2 mM) as sole N source and covered by cello-
phane. There were five replicates for each treatment. Cultures were
incubated in the dark at 20°C for 21 days prior to harvest. Cultures
with ammonium as sole N source were used as a control. Cultures
were incubated in the dark at 20°C for 21 days prior to harvest.
Starvation was obtained by cultivating the mycelia on MMN with
ammonium for one week and then transferring it to MMN without
ammonium for 2 weeks. After harvesting the mycelium was freeze-
dried and dry weight was determined.

2.3. Yeast growth, transformation and selection

The yeast strain J716 was transformed with an expression library
derived from H. cylindrosporum mycelia. Sixty-four transformants
were selected directly on solid SC medium supplemented with 6 mM
histidine. Colonies able to grow were tested for growth in liquid me-
dium with 6mM histidine. Plasmid DNA was isolated and reintro-
duced into the mutant strain J716. The cDNA clone GAP1 was
able to restore the growth of the mutant on selective conditions.

The yeast strain 224844 was transformed with the same expression
library. Twelve transformants were selected directly on solid BA me-
dium supplemented with 1 mM proline. Colonies able to grow were
tested for growth in liquid medium with 1 mM proline. Plasmid DNA
was isolated and reintroduced into the mutant strain 22484 A. The
cDNA clone HcGAPI was also identified in this screen.

To test the substrate specificity the yeast strain 224844 was trans-
formed with the cDNA clone. Selection was carried out on nitrogen-
free medium supplemented with aspartate as the sole nitrogen source.
The empty vector pDR196 serve as a negative control.

2.4. RNA gel-blot analysis

Total RNA was isolated from Pinus needles, Hebeloma mycelia,
mycorrhizal and non-mycorrhizal short roots and 20 pg total RNA
was separated on 1.5% formaldehyde agarose gels [21]. Hybridization
was performed at 68°C in 0.25 M sodium phosphate pH 7.2, 7%
sodium dodecylsulfate (SDS), 1 mM EDTA and 1% bovine serum
albumin (BSA) for 16 h using the cDNA fragments of HcGAPI as
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a probe. Filters were washed twice with 2XSSC and 0.1% SDS at
68°C.

2.5. Transport measurements

In the H. cylindrosporum mycelia uptake experiments, discs of fun-
gal mycelium were cut from the actively growing edge of 10-day-old
colonies using a 15-mm-diameter cork borer. The discs were floated
for 5 min on a solution containing 1 ml nitrogen and glucose-free
MMN (pH 4.2) at 25°C supplemented with ['*CJ-aspartate, specific
activity 7.66 GBg/mmol (Amersham, Braunschweig, Germany). Incu-
bation time varied from 1 to 20 min. At the end of the uptake period
the discs were washed with 0.1 mM CaSO4 and solubilized with 80%
Soluene 350 (Packard) overnight. The uptake of carbon-14 was deter-
mined by liquid scintillation spectrometry.

For S. cerevisiae uptake studies, yeast cells were grown to logarith-
mic phase. Cells were harvested at an ODgg of 0.5, washed twice in
water, and resuspended in buffer A (0.6 M sorbitol, 50 mM potassium
phosphate, at the desired pH) to a final ODgy of 5. Prior to the
uptake measurements, the cells were supplemented with 100 mM glu-
cose and incubated for 5 min at 30°C. To start the reaction, 100 ul of
this cell suspension was added to 100 pl of the same buffer containing
at least 18.5 kBq ['“Cl-aspartate, specific activity 7.66 GBg/mmol
(Amersham) and unlabeled amino acid to the concentrations used
in the experiments. Sample aliquots of 45 ul were removed after 15,
60, 120, and 240 s, transferred to 4 ml of ice-cold buffer A, filtered on
glass fiber filters, and washed twice with 4 ml of buffer A. The uptake
of carbon-14 was determined by liquid scintillation spectrometry.
Competition for aspartate uptake was performed by adding a five-
fold molar excess of the respective competitors to 150 uM aspartate.

For analysis of pH dependence, incubations were performed in
100 mM potassium phosphate buffer adjusted to the different pH
values, 100 mM glucose, and 150 uM !4C-aspartate. Influence of
plasma membrane energization on the uptake rate of '*C-aspartate
was analyzed by incubating the yeast cells for 5 min in the presence of
100 mM glucose (control), without glucose, or with glucose and
0.1 mM 2,4-dinitrophenol (DNP), 0.1 mM diethylstilbestrol (DES),
0.1 mM carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), or
0.1 mM vanadate. Transport measurements were repeated indepen-
dently and represent the mean of at least three experiments.

3. Results and discussion

3.1. Utilization of amino acids as N source by
H. cylindrosporum

To study the ability of H. cylindrosporum to use organic
nitrogen it was grown on different amino acids and on am-
monium as a control (Fig. 1). On glutamine and asparagine
Hebeloma mycelia grew better than on the ammonium con-
trol. Growth measured as dry weight of hyphae was compa-
rable to that on ammonium for glutamine, aspartate, alanine
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Fig. 1. Growth of H. cylindrosporum on different amino N sources and on ammonium. Cultures were incubated in the dark at 20°C for 21 days
on 2 mM nitrogen source. Values represent the mean of five independent experiments +SD.
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Fig. 2. '4C-aspartate uptake by the ectomycorrhizal fungus H. cylin-
drosporum. Discs of fungal mycelium were cut from the actively
growing edge of 10-day-old colonies using a 15-mm-diameter cork
borer. The discs were floated for 5 min on a solution containing
1 ml nitrogen and glucose-free MMN at 25°C, supplemented with
[*Cl-aspartate. Values represent the mean of three independent ex-
periments *S.D.

and valine. Reduced growth was observed on serine, arginine,
isoleucine, tyrosine, glycine, leucine and tryptophan. On
threonine, lysine, proline, phenylalanine, cysteine, histidine
and methionine the observed growth was not better, in
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Fig. 3. Phylogenetic analyses of a multiple alignment of the deduced
protein sequence of HcGAP1 and other fungal amino acid perme-
ases (Am = Amanita muscaria; An= Aspergillus nidulans; Ca= Candi-
da albicans; Hec= Hebeloma cylindrosporum; Nc= Neurospora crassa;
Sc =Saccharomyces cerevisiae; Sp = Schyzosaccharomyces pombe;
Uf= Uromyces fabae). Maximum parsimony analyses were per-
formed using PAUP 4b10 with all DNA characters unweighted and
gaps scored as missing characters. Heuristic tree searches were exe-
cuted using 100 random sequence additions and the tree bisection-
reconnection branch-swapping algorithm with random sequence
analysis. The complete alignment was based on 657 sites; 549 were
phylogenetically informative.
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Fig. 4. Topology of the HcGAPI protein. A: Transmembrane do-
main prediction was done by using the TMHMM algorithm.
B: Schematic model of the HcGAPI protein.

some cases even lower as compared to growth on nitrogen
starvation. It is important to note that some amino acids,
such as glutamine, glutamate and alanine, which appear to
predominate in soil solution [26], are readily assimilated by
the H. cylindrosporum H1 mycelia, demonstrating the ability
of H. cylindrosporum to use organic nitrogen sources as it has
been shown for other mycorrhizal fungi [10]. The involvement
of amino acid transport and its role as primary source of N
for the ectomycorrhizal fungus H. cylindrosporum and thus
for the plant partner which it colonizes was confirmed by
the linear uptake for at least 20 min of '#C-asp by the mycelia
(Fig. 2) when using an aspartate concentration of 2 uM cor-
responding to amino acid concentrations related to concen-
trations observed in soils [27].

3.2. Cloning and sequence analysis of HcGAPI

The apparent ability of H. cylindrosporum to take up amino
acids led us to investigate the molecular basis of amino acid
transporters potentially mediating mycelial uptake and trans-
fer of amino acids. For this purpose a yeast mutant deficient
in histidine uptake was transformed with a cDNA expression
library from Hebeloma under control of a yeast promoter [15].
Sixty-four transformants were grown on selective media. The
yeast strain JT16 was retransformed with DNA extracted
from the 64 transformants to eliminate false positives. Three
clones allowed regrowth of transformed J776 on 6 mM his-
tidine. From these three clones a cDNA with strong homol-
ogy to other fungal amino acid transporter genes was identi-
fied and was named H. cylindrosporum general amino acid
permease 1 (HcGAPI). The HcGAPI cDNA (Genbank
AF521906) has a length of 1784 bp and encodes a 594-amino
acid protein with a calculated molecular mass of 65.7 kDa.
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Fig. 5. Uptake of !“C-aspartate by the yeast mutant 22A8A4A.
A: Time dependence of aspartate uptake. Mutants were transformed
with the empty vector pDR196 (white circles) or with pDR196 ex-
pressing HcGAPI (black circles). Yeast cells were assayed for '“C-
aspartate uptake at 150 uM and pH 4.5. B: HcGAPIl-mediated as-
partate uptake at different substrate concentrations. Experiments
were performed at pH 4.5. C: pH dependence. Yeast expressing
HcBAPI in pDR196 measured at different pH values and 100-uM
substrate concentration. Values represent the mean of three indepen-
dent experiments +S.D.

HcGAPI1 sequence includes the amino acid permease con-
served domain (RPS-BLAST 2.2.1 (Aug. 1 2001)). The best
homology for the deduced HcGAPI protein sequence was
obtained with an amino acid permease of Uromyces fabae
[28] with an identity of 39% and similarity of 55%. Phyloge-
netic analyses by maximum of parsimony confirmed the
strong homology between HcGAPI and Uromyces fabae and
Amanita muscaria [29] amino acid permeases (Fig. 3). The
fungal origin of the cDNA is strongly supported by the fact
that all homologies revealed by the BLAST searches are ho-
mologies to fungal genes. The cDNA also showed homology
to the APC family in yeast mediating H"-coupled amino
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acid uptake [30]. Hydropathy analyses of HCGAP1 with the
TMHMM algorithm [31] predict twelve putative transmem-
brane domains (Fig. 4). The amino-terminus is approximately
the same length as that of the yeast GAP1. The carboxy
terminus, however, is just around the half of the yeast
GAPI1. Both C and N termini are predicted to protrude into
the intracellular space.

The same gene was identified three times when using a
suppression cloning system for proline uptake deficiency
(yeast strain 22A84A4), indicating that HcGAP1 encodes a
broad specificity amino acid transporter. This is further sup-
ported by growth analysis of the multiple knockout strain
22A8A4 A expressing HCGAP1 under selective conditions using
arginine, aspartate, glutamate and proline as sole N-sources
(data not shown).

3.3. Kinetics of aspartate uptake by HcGAPI in yeast mutant
deficient in amino acid uptake systems

To determine the transport properties of HCGAP1 directly,
radiotracer uptake studies were performed using “C-labelled
aspartate, as growth of 22484 A4 expressing HCGAP1 was best
on aspartate as single nitrogen source (data not shown). Yeast
cells expressing HcGAP1 showed more than 100-fold in-
creased uptake rates of “C-aspartate as compared with cells
transformed with pFL61 vector alone (Fig. 5A). Under stan-
dard assay conditions, '“C-aspartate uptake was linear for at
least 4 min. The uptake rate was concentration dependent and
displayed saturation kinetics (Fig. 5B). The Ky, value for the
transport for aspartate of 150 uM is in the range of amino
acid concentrations found in the soil [27], making it probable
that in the soil HCGAPI is involved in amino acid uptake for
fungal nutrient acquisition. HCGAP1 activity was strictly pH-
dependent with an optimum at approx. pH 4 (Fig. 5C), con-
sistent with the pH optimum described for the uptake of glu-
tamate and glutamine by mycelia of the ectomycorrhizal fun-
gus Paxillus involutus [32]. *C-aspartate uptake depended on
the presence of glucose and was sensitive to the protono-
phores 2,4 DNP and CCCP and the plasma membrane H*-
ATPase inhibitors DES and vanadate, indicating that ener-
gization is required for transport (Fig. 6). The strong depen-
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Fig. 6. Influence of plasma membrane energization on the uptake
rate of !4C-aspartate in the yeast mutant 224844 expressing
HcGAPI. Yeast cells were preincubated for 5 min in the presence of
100 mM glucose (control), without glucose, or with glucose and
0.1 mM DNP, or 0.1 mM DES, or 0.1 mM CCCP, or 0.1 mM
vanadate. Values represent the mean of three independent experi-
ments +S.D.
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dence on the presence of glucose and a proton gradient in-
dicates that HcGAPl-mediated transport is mediated by a
secondary active transport mechanism similar to its yeast ho-
mologs [16]. The range of amino acids transported by
HcGAPI1, as well as their transport efficiency, was determined
by their competitive effect on the uptake of labeled aspartate
(Fig. 7). Most amino acids tested, except proline and isoleu-
cine, competed even more efficiently as compared to aspartate.
Thus HcGAP1 is a general amino acid permease with a high
affinity, allowing import of a wide spectrum of amino acids
from the soil solution into Hebeloma mycelia.

3.4. Expression pattern of HcGAPI

To investigate the role of HcGAPI in the H. cylindrospo-
ruml P. pinaster ectomycorrhizal association, the expression
was analyzed by RNA gel-blot analysis (Fig. 8A). Strong ex-
pression of HcGAP1 was detected in mycelia grown on a
standard medium. No mRNA was detected in Pinus roots
and needles, confirming the fungal origin of HcGAPI. No
transcripts could be detected in mycorrhiza, where the expres-
sion of HCGAPI1 to take up amino acids from plant cell would
be counterproductive. It has not, however, been shown di-
rectly that the expression is also high in extrametrical hyphae.
Further experiments are required to determine the pattern of
expression along the hyphae in a real interaction in soil. The
results may suggest that HCGAP1 plays a role in the uptake of
amino acids from the soil for the fungal nutrition and further
transfer to the plant partner, but is repressed in the mycor-
rhizal organ (Fig. 8B)

4. Conclusions

An Hebeloma gene coding for a general amino acid perme-
ase was cloned by suppression cloning in a yeast mutant de-
ficient in histidine uptake, using a yeast expression cDNA
library generated from mycelia of Hebeloma grown on an
amino acid mixture as nitrogen source. The uptake character-
istics allowed description of HcGAP1 as a high-affinity, sec-
ondary active proton coupled general amino acid permease.
The main function of HcGAPI1, as indicated by gene expres-
sion, may be the uptake of amino acid from the soil solution
for fungal nutrition.
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