
Glycine 30 in iberiotoxin is a critical determinant of its speci¢city for
maxi-K versus KV channels

Nathan Schroedera, Theodore J. Mullmanna, W.A. Schmalhoferb, Ying-Duo Gaoc,
Maria L. Garciab, Kathleen M. Giangiacomoa;�

aDepartment of Biochemistry, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA
bDepartment of Membrane Biochemistry and Biophysics, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

cMolecular Systems, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

Received 18 June 2002; revised 9 August 2002; accepted 9 August 2002

First published online 22 August 2002

Edited by Gunnar von Heijne

Abstract Iberiotoxin (IbTX) is a remarkably selective KK-K
toxin peptide (KK-KTx) inhibitor of the maxi-K channel. In con-
trast, the highly homologous charybdotoxin inhibits both the
maxi-K and KV1.3 channels with similar high a⁄nity. The
present study investigates the molecular basis for this speci¢city
through mutagenesis of IbTX. The interactions of mutated pep-
tides with maxi-K and KV1.3 channels were monitored through
dose-dependent displacement of speci¢cally bound iodinated
KK-KTx peptides from membranes expressing these channels.
Results of these studies suggest that the presence of a glycine
at position 30 in IbTX is a major determinant of its speci¢city
while the presence of four unique acidic residues in IbTX is
not. + 2002 Published by Elsevier Science B.V. on behalf of
the Federation of European Biochemical Societies.
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1. Introduction

Large-conductance calcium-activated (maxi-K) potassium
channels represent a unique class of potassium channels that
are synergistically activated by depolarizing membrane poten-
tials and intracellular calcium. Thus, the maxi-K channel pro-
vides an important link between calcium- and voltage-depen-
dent signaling processes. Because of these unique properties,
maxi-K channels play critical roles in a variety of physiolog-
ical processes. In smooth muscle, maxi-K channels regulate
uterine contractions [1], and they play a critical role in regu-
lating arterial tone and blood pressure [2,3]. Maxi-K channels
also regulate electrical tuning in cochlear hair cells [4], hor-
mone release in pituitary cells [5] as well as spike broadening
and neurotransmitter release in neurons [6]. Iberiotoxin
(IbTX), a highly selective K-K peptide (K-KTx) inhibitor of
the maxi-K channel [7], has proved invaluable in elucidating
the diverse physiological roles of these channels.

The K-KTx peptides inhibit the £ow of Kþ ions through the
Kþ channel pore and are powerful tools for probing the struc-
ture and function of Kþ channels [8] as well as for under-
standing their physiological function. The di¡erent K-KTx
subfamilies, shown in Fig. 1, display an extraordinary ability
to distinguish between the large family of voltage-gated po-
tassium (KV) channels and the maxi-K channel. Peptides from
the K-KTx 2.x and 3.x subfamilies block KV channels with
high a⁄nity but not the maxi-K channel [8,9]. Conversely,
peptides from the K-KTx 1.x subfamily display high a⁄nity
interactions with the maxi-K channel. Most K-KTx 1.x pep-
tides, such as charybdotoxin (ChTX or K-KTx 1.1), also in-
hibit KV1 channels with high a⁄nity [10,11]. However, two of
these toxins, IbTX (K-KTx 1.3) and limbatus toxin (LbTX or
K-KTx 1.4) are highly selective for the maxi-K channel. De-
spite its widespread use as a selective maxi-K channel inhib-
itor, the molecular basis for IbTX speci¢city is poorly under-
stood. In this work we examine the interactions of IbTX and
noxiustoxin (NxTX or K-KTx 2.1) mutants with maxi-K and
KV1.3 channels to reveal that a single residue in IbTX, glycine
30, is a major determinant of its speci¢city for the maxi-K
channel.

2. Materials and methods

2.1. Peptide
The plasmids pG9IbTX and pG9NxTX, encoding T7 gene 9, six

histidines, a factor Xa cleavage site and either the IbTX gene [12] or
the NxTX gene [9], were used to generate toxin mutants using a two-
step polymerase chain reaction mutagenesis strategy as described [12].
The identity of all DNA constructs was veri¢ed using dideoxy se-
quencing [13]. The Escherichia coli strain BL21 (DE3), harboring
the pG9IbTX or pG9NxTX plasmids, was cultured and induced
with isopropyl 1-thio-L-galactopyranoside, and the T7 gene 9 toxin
fusion protein was puri¢ed by DEAE ion exchange chromatography
as described [12]. After folding, the fusion protein was cleaved from
the toxin with TPCK-treated trypsin and puri¢ed by FPLC ion ex-
change [9] and by reverse phase high performance liquid chromatog-
raphy (HPLC) as described [12]. The identity of each peptide was
con¢rmed by either MALDI-MS mass spectrometric analysis or by
N-terminal sequencing of the ¢rst six amino acids (Commonwealth
Biotechnologies). Cyclization of the N-terminal glutamine in IbTX
mutants, performed as described [12], was veri¢ed either by MAL-
DI-MS mass spectrometric analysis or N-terminal sequencing of the
¢rst six amino acids before and after cyclization. The predicted and
measured masses for each peptide were IbTX-S10A (4232, 4231),
IbTX-S10A-D4N-D6N (4230, 4229.2), IbTX-S10A-D24N (4231,
4229.2), IbTX-S10A-D4N-D6N-D19N-D24N (4211, 4211), IbTX-
S10A-G30N (4289, 4287), NxTX-vThr1-vAsn39 (3980.7, 3978.4),
NxTX-N31G-vThr1-vAsn39 (3923.7, 3924.8). Puri¢cation and char-
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acterization of recombinant NxTX and NxTX-S14W were as de-
scribed [9]. The peptides were s 99% pure as judged by HPLC elution
pro¢les and mass spectrometric analysis. ChTX and IbTX were from
Peninsula Laboratories.

2.2. Transfection of TsA-201 cells and membranes
Maxi-K channels were transiently transfected into a TsA201 cell

line using the human K clone huR2(+) subcloned into a pCI-neo
vector and membrane preparation were as described [14]. Membranes
from HEK-293 cells stably transfected with the KV1.3 channel were
prepared as described [15].

2.3. Binding assays
The interaction of mutant peptides with the KV1.3 channel was

monitored by dose-dependent displacement of mono-iodinated hon-
gotoxin-1-A19Y/Y37F ([125I]HgTX-1-A19Y/Y37F) speci¢cally bound
to HEK membranes expressing KV1.3 channels as described [16].
Membranes were incubated with [125I]HgTX-1-A19Y/Y37F (2200
Ci/mmol) in the absence or presence of unlabeled mutant peptide until
equilibrium was achieved [16]. Non-speci¢c binding, determined from
the amount of radioactivity remaining after incubation with excess
unlabeled with NxTX-S14W [16], represented 6 10% of total binding.
At the end of the incubation period, samples were diluted with ice-
cold bu¡er and rapidly ¢ltered through Whatman GF/C ¢lters pre-
soaked with 0.5% polyethyleneimine and washed with ice-cold me-
dium as described [17]. Assays were performed in triplicate for each
experimental condition.

The interaction of peptides with maxi-K channels was monitored
from the dose-dependent displacement of the mono-iodinated IbTX-
D19Y/Y36F ([125I]IbTX-D19Y/Y36F) speci¢cally bound to mem-
branes expressing maxi-K channel alpha subunits as described [18].
Membranes were incubated with [125I]IbTX-D19Y/Y36F (2200 Ci/
mmol) in the absence or presence of unlabeled peptide until equilib-
rium was achieved as described [18]. Non-speci¢c binding, determined
from excess unlabeled IbTX, represented 6 15% of total binding.
Assays were performed in triplicate for each experimental condition.

Data were computer-¢tted to the general dose-response equation,

and then analyzed for toxin inhibition constant (Ki) values using the
method described [19]. Measurements were made a minimum of three
times and errors are described as standard errors of the mean.

3. Results and discussion

IbTX and ChTX display a remarkable di¡erence in their
speci¢city for maxi-K versus KV1.3 channels and yet their
three-dimensional solution 1H NMR structures [20,21] reveal
nearly super imposable alpha carbon backbone structures, see
Fig. 2. Thus, IbTX speci¢city is likely de¢ned by speci¢c
amino acids. Comparison of IbTX and ChTX reveals di¡er-
ences in sequence identity are localized to ¢ve structurally
discrete domains, I through V, Figs. 1 and 2. Domains I,
III, IV and V contribute to the peptide:channel binding sur-
face [22,23] and thus are likely to in£uence speci¢city.

ChTX and IbTX exhibit a striking di¡erence in electrostatic
structure [8] that is derived in part from four extra acidic
residues in IbTX (D4, D6, D19 and D24) that reside in do-
mains I, II and III, Fig. 1. To test whether these Asp residues
prevent a high a⁄nity interaction we generated four IbTX-
S10A mutants (D4N, D4N-D6N, D24N, D4N-D6N-D19N-
D24N) and examined their interactions with KV1.3 channels,
see Fig. 3 and Table 1. The S10A mutation, in both ChTX
[23] and IbTX [24], displays a V10-fold weaker interaction
that is manifested as a faster dissociation rate constant. The
faster dissociation kinetics seen with the S10A mutation will
facilitate future mechanistic characterization of mutant toxin
block of single maxi-K channels. This S10A mutation in
ChTX also causes a 10-fold weaker interaction with the Shak-
er KV channel [22] and thus does not in£uence speci¢city.

Fig. 1. Amino acid sequences for the K-KTx. Domains I, II, III, IV and V that de¢ne sequence di¡erences between ChTX and IbTX are indi-
cated. Residues in IbTX unique from ChTX are in bold. Acidic residues are shaded. Secondary structures, position of the beta turn and strictly
conserved cysteines are annotated. (See also Refs. [7,16,28^39].)
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HgTX-1 is a highly selective, high a⁄nity blocker of KV1.3
channels [16]. Thus, competition experiments with
[125I]HgTX-1-A19Y/Y37F provide a reliable means for mon-
itoring the interaction of mutant peptides with KV1.3 chan-
nels. Fig. 3 shows that ChTX displaces bound [125I]HgTX-1-
A19Y/Y37F from membranes containing KV1.3 channels with
an IC50 value of 140 pM. In contrast, IbTX-S10A (100 nM)
and the four charge mutants (300 to 1,000 nM) had no e¡ect
on bound [125I]HgTX-1-A19Y/Y37F, Fig. 3 and Table 1. Con-
versely, ChTX, IbTX-S10A and the same IbTX-S10A charge
mutants displace [125I]IbTX-D19Y/Y36F from membranes ex-
pressing maxi-K channels with Ki values ranging from 7 to
150 pM, Fig. 4 and Table 1. The results of these binding
measurements suggest that charge alone cannot explain the
remarkable speci¢city of IbTX for the maxi-K vs. KV chan-
nels.

Among the ¢ve structural domains that distinguish IbTX
and ChTX, the single glycine in domain IV of IbTX is unique,
in that all K-KTx peptides known to block KV channels con-
tain an asparagine at this position, Fig. 1. To test the role of
this Gly in IbTX speci¢city we generated the IbTX-S10A mu-
tant, G30N, and examined its interaction with the KV1.3
channel, Fig. 3 and Table 1. Binding of [125I]HgTX-1-A19Y/
Y37F was inhibited by IbTX-S10A-G30N with a Ki value of
43 nM. Thus, the G30N mutation in IbTX promotes a high
a⁄nity interaction with the KV1.3 channel. In contrast, the
IbTX-S10A-G30N (Ki 370 pM) mutation weakens binding to
the maxi-K channel by about three-fold compared to IbTX-
S10A (Ki 130 pM), Fig. 4 and Table 1. These data taken
together strongly suggest that the nature of residue 30, in
the peptide beta turn, is a major determinant of speci¢city.

To test whether ‘Asn 30’ in the beta turn is generally im-
portant for the interaction of K-KTx peptides with KV chan-
nels we mutated this analogous ‘Asn31’ in NxTX (K-KTx 2.1).
NxTX blocks with high a⁄nity KV1.3 but not maxi-K chan-
nels [9]. Some of the NxTX speci¢city for KV1.3 results from
the increased backbone length at the N- and C-termini [9,25].
The NxTX deletion mutant, NxTX-vThr1-vAsn39, truncated

by one residue each at the N- and C-termini has the
same backbone length as IbTX and ChTX. Fig. 5 shows
that NxTX and NxTX-vThr1-vAsn39 displace bound
[125I]HgTX-1-A19Y/Y37F from membranes containing
KV1.3 channels with IC50 values of 0.6 and 8 nM, respec-
tively. In contrast, the N31G mutant of NxTX-vThr1-
vAsn39 has no e¡ect on bound [125I]HgTX-1-A19Y/Y37F at
300 nM. This ¢nding is also consistent with previous studies
where mutation of this ‘Asn 30’ in ChTX and agitoxin-2
(AgTX-2 or K-KTx 3.2) weakened binding to the Shaker
KV channel by 840- [22] and 700-fold [26], respectively, com-
pared to the wild-type peptides. Together these ¢ndings sug-
gest that ‘Asn 30’ in the K-KTx beta turn is critical for its high
a⁄nity interaction with KV channels.

Our ¢nding that replacing the smaller Gly in IbTX with the
larger Asn restores a high a⁄nity interaction with KV chan-
nels is remarkable, and it suggests that steric interactions are
not responsible for the e¡ects. The most reasonable interpre-
tation of this result is that Asn 30 forms a critical hydrogen
bond with a H-bond acceptor on the KV channel and that a
similar H-bond is not critical for interaction of K-KTx pep-
tides with the maxi-K channel. Indeed, recent models of
ChTX bound to the KV1.3 outer vestibule reveal the presence
of an important H-bond between Asn30 in ChTX and Asp

Fig. 2. Sequence di¡erences between IbTX and ChTX are de¢ned
by ¢ve structurally discrete domains. Superimposed K-carbon back-
bone structures for IbTX [21] are in green, and for ChTX [20] in
blue.

Fig. 3. E¡ects of ChTX and mutants of IbTX-S10A on [125I]HgTX-
1-A19Y/Y37F binding to KV1.3 channels. Speci¢c binding of
[125I]HgTX-1-A19Y/Y37F to HEK membranes transfected with
KV1.3 channels is plotted as a function of increasing concentrations
of ChTX (¢lled circles), IbTX-S10A (¢lled triangles), IbTX-S10A-
G30N (open squares) and IbTX-S10A-D4N-D6N-D19N-D24N
(¢lled squares). Membranes were incubated in a medium containing
0.2 pM [125I]HgTX-1-A19Y/Y37F, 100 mM NaCl, 5 mM KCl, 20
mM Tris^HCl pH 7.4, 0.1% bovine serum albumin and di¡erent
concentrations of unlabeled peptide. Incubations were performed at
room temperature for ca 20 h. Non-speci¢c binding was determined
in the presence of 100 nM NxTX-S14W.

Table 1
E¡ects of ChTX, IbTX-S10A and mutants on binding to maxi-K and KV1.3 channels

Peptide Ki (nM) maxi-K Ki (nM) KV1.3

ChTX 0.007T0.002 0.034T 0.006
IbTX-S10A 0.13T 0.02 no e¡ect 100 nM
IbTX-S10A-D4N 0.02T 0.0002 no e¡ect 1,000 nM
IbTX-S10A-D4N-D6N 0.007T0.0008 no e¡ect 300 nM
IbTX-S10A-D24N 0.15T 0.037 no e¡ect 300 nM
IbTX-S10A-D4N-D6N-D19N-D24N 0.027T0.006 no e¡ect 300 nM
IbTX-S10A-G30N 0.37T 0.1 43T 25

Ki values were determined from competition experiments with either [125I]HgTX-1-A19Y/Y37F binding to KV1.3 channels or [125I]IbTX-D19Y/
Y36F binding to maxi-K channels as described in Figs. 3 and 4, respectively.
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381 in the channel [27]. For the maxi-K channel model, the
analogous H-bond between Asn30 in the peptide and Glu276
in the channel cannot be formed [27]. Together, these results
suggest that IbTX speci¢city for the maxi-K vs. KV1.3 chan-
nel results, in part, from the absence of a critical H-bond
between Asp381 in the channel and Gly 30 in IbTX.

Our ¢ndings clearly show that Asn 30 in the K-KTx pep-
tides is critical for their interaction with KV channels. How-
ever, the interaction of IbTX-S10A-G30N with the KV1.3
channel is still V1000-fold weaker compared to ChTX. Since
the S10A mutation weakens binding to KV channels by no
more than 10-fold [22], it is likely that other residues in do-
mains I, III and V of IbTX contribute to its speci¢city. Stud-
ies with synthetic ChTX-IbTX chimera also suggest that the
major determinants for IbTX speci¢city lie in the C-terminal
half of IbTX [10]. Approaches to understand the molecular

basis for K-KTx speci¢city are likely to reveal novel features
of the maxi-K and KV1.3 outer vestibules. Moreover, the
critical role of Asn30 in de¢ning K-KTx speci¢city will be
instrumental in the rational design of speci¢c K-KTx blockers
and potassium channel inhibitors.
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