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Abstract In this work we present a procedure that combines
classical statistical methods to assess the con¢dence of gene
clusters identi¢ed by hierarchical clustering of expression
data. This approach was applied to a publicly released Droso-
phila metamorphosis data set [White et al., Science 286 (1999)
2179^2184]. We have been able to produce reliable classi¢ca-
tions of gene groups and genes within the groups by applying
unsupervised (cluster analysis), dimension reduction (principal
component analysis) and supervised methods (linear discrimi-
nant analysis) in a sequential form. This procedure provides a
means to select relevant information from microarray data, re-
ducing the number of genes and clusters that require further
biological analysis. . 2002 Federation of European Biochem-
ical Societies. Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

Advances in microarray technology have enabled us to
measure the simultaneous expression of thousands of genes
under multiple experimental conditions [2^4]. A main step in
the analysis of gene expression data is the detection of gene
groups with similar expression patterns. Several approaches to
the computational analysis of gene expression data attempt
functional classi¢cation of genes using clustering algorithms
[2,4]. The visual presentation of hierarchical clustering enables
easy recognition of groups of genes (clusters) that may be
related in terms of their biological functions [2,5,6]. These
clustering algorithms, however, do not measure whether
gene correlations are higher than would be expected by
chance, and thus provide no information on the statistical
con¢dence of a particular cluster.
In the present report we propose a general procedure, that

permits evaluation of both the statistical support for gene
clusters described by a hierarchical clustering method and
the correct classi¢cation of genes within the groups. Our pro-
cedure is based on two multivariate techniques, principal com-
ponent analysis (PCA) and linear discriminant analysis

(LDA). Following a hierarchical clustering of the expression
data, groups of genes were de¢ned from the branching pattern
of the cluster tree. Using gene expression data values from
raw data as input for PCA, we recovered new matrices with
loading values, and applied LDA to determine the statistical
support of the selected clusters. This allowed us to identify
genes that remain in the clusters as correctly classi¢ed, after
LDA. This procedure provides a means to extract information
with statistical con¢dence from microarray data, reducing the
complexity of large data sets, and therefore the number of
genes and clusters requiring further biological analyses. We
applied this approach to a published gene expression data
set [1].

2. Materials and methods

2.1. Biological data
The data set used in this work was generated by White et al. [1] and

it is publicly available at http://quantgen.med.yale.edu. The data con-
tain the ratios of red/green (R/G) gene expression values for 4500 EST
clones along with control cDNAs, corresponding to ecdysone-regu-
lated genes. The data were collected at six time-points spanning two
pulses of ecdysone: the late larval ecdysone pulse that arises 6 h prior
puparium formation (PF), peaks at puparation and rapidly declines
and the prepupal pulse that peaks 10 h after PF. Time points were
examined relative to PF: v 18 h and 4 h before PF; and 3, 6, 9 and
12 h after PF. The analysis revealed that 534 genes exhibited three-
fold or more di¡erential expression during early metamorphosis.

2.2. PCA
PCA is a multivariate statistical tool that simpli¢es complex data

sets [7]. It has been previously applied to gene expression data ob-
tained from microarray experiments [8^10]. In general, PCA changes
the original variables into new independent and uncorrelated variables
called principal components that explain the observed variability. The
¢rst components explain the majority of variability and concentrate
the maximal amount of information from the experiment. For each
component, it is possible to ¢nd one eigenvalue with an associated
variance value (explained variance). The n eigenvalues and their cor-
responding eigenvectors originate from the nUn covariance matrix
obtained from the original data. In our procedure, we considered
the eigenvalue of each gene as a variable, generating a ‘principal
gene analysis’, which shows the gene expression behavior that best
explains the observed experimental response [9]. After run PCA,
new matrices with loading expression values for each transformed
gene were obtained.

2.3. LDA
This analysis uses a classi¢cation function (fi) to calculate scores of

each variable in the di¡erent groups, following the general formula:

f i ¼
X

j

wijxj þ constant; i ¼ 1; T; n; j ¼ 1; T; n

where i corresponds to groups, wij is the weight for the jth variable, in

0014-5793 / 02 / $22.00 K 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
PII: S 0 0 1 4 - 5 7 9 3 ( 0 2 ) 0 2 8 7 3 - 9

*Corresponding author. Fax: (56)-2-221 4030.
E-mail address: vcambiaz@uec.inta.uchile.cl (V. Cambiazo).

1 These authors contributed equally to this work.

FEBS 26192 21-6-02 Cyaan Magenta Geel Zwart

FEBS 26192FEBS Letters 522 (2002) 24^28



the computation of the classi¢cation score for the ith group, and xj
is the observed value for the corresponding jth variable. We used
LDA, instead of other discriminant techniques, such as classi¢cation
trees, since LDA performs better than other when log transformed
data are used [11]. This technique enables us to identify relation-
ships between qualitative variables or classes (in our case, clusters
of genes) and quantitative predictor variables (in our case, eigen-
vectors) [7]. Since we know the clusters we built a linear discriminant
function to estimate the signi¢cance of gene classi¢cation within
each one. Cross-validation and jackknife procedures were used to
produce unbiased estimates [12]. Using both procedures we obtained
practically the same number of correct classi¢cations (data not
shown).

2.4. Strategy of analysis
The original R/G values (n=534) of gene expression from White et

al. [1] were log transformed and subjected to PCA to obtain a cova-
riance matrix that is available at http://www.inta.cl/genexpression/
new/index.htm. PCA was applied to both the entire set of gene ex-
pression values and to the values corresponding to genes in groups 4
and 8. The matrix containing the eigenvalues for each gene expression
value in the ¢rst three components and the groups recovered by Clus-
terAnalysis were used as input for LDA. These input data met the
assumption underlying LDA, they had a normal multivariate distri-
bution [13], and the covariance matrices for every class were equally
distributed, since not-signi¢cant di¡erences were found after applying
the Sen and Puri test [14].

3. Results and discussion

We have analyzed the published data of White et al. [1],
containing expression ratios for 534 genes from Drosophila.
We used ClusterAnalysis software [2] to recover the tree
shown in Fig. 1A, which was identical to that previously ob-
tained [1]. We used the average-linkage method and Pearson
correlation distances to perform this clustering analysis. Soft-
ware implementation of the algorithm can be obtained from
http://rana.lbl.gov/EisenSoftware.htm. Groups were selected
by visual inspection of the dendrogram. Nine groups (1^9)
of genes were located at a similar branching level, near the
middle region. In addition, for groups 4 and 8, eight and
seven subgroups were de¢ned near the terminal region of
the dendrogram (Fig. 1A).

3.1. Identi¢cation of ¢ve clusters with high percentage of
correctly classi¢ed genes

PCA analysis of the entire gene expression data showed
that the ¢rst three components contained 91.9% of the vari-
ability (¢rst component 55.5%, second component 27.2% and
third component 9.2%), indicating that we can summarize the

Fig. 1. Hierarchical clustering was applied to expression data from a set of 534 genes measured across six time-points during early Drosophila
metamorphosis (A). Each time-point compared to PF is indicated above each column. Gene expression patterns are shown in the rows. Low or
high gene expression levels are indicated by green or red colors. Nine groups of genes recovered by the clustering method are indicated in the
dendrogram. The bars to the right indicate groups 4 and 8. Genes contained at group 4 (B) and at group 8 (C) were plotted with respect to
the ¢rst and second principal components. Ellipses represent subgroups with 100% of classi¢cation values.
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data in just three gene expression features that explain most of
the total variability observed. As has been mentioned by [8]
the use of PCA enables one to make a classi¢cation with
biologically meaningful characteristics. The advantages of
this approach to analyze the data have been previously de-
scribed by [8^10]. However, PCA is a graphical technique to
visualize the gene expression data, it does not give us infor-
mation on the existence of di¡erent groups with an associated
probability. In our approach we apply a linear discriminant
function to obtain this information and to resolve the proper
classi¢cation of each gene within the groups. Our results of a
LDA using the gene loading matrix obtained from PCA and
the groups recovered by ClusterAnalysis revealed that the nine
groups were statistically di¡erent (Wilks’ V=0.3671;
F=26.089; df = 24, 1517; P6 0.0001). The discriminant clas-
si¢cation matrix showed that only ¢ve of the nine groups
contained s 60% of genes with correct classi¢cation. Only
two had 100% correctly classi¢ed genes (Table 1A). If we
consider genes that were correctly assigned to one of the
¢ve groups with s 60% classi¢cation value, then the original
534 genes under analysis can be reduced to 202. A practical
consequence of this method is an increase in con¢dence of the
genes selected for future studies and a reduction in the num-
ber of genes to be considered.

3.2. Subgroups within cluster with low percentage of correctly
classi¢ed genes

In order to extract additional information from the data,
groups with 6 60% correct classi¢cation that contained a high
number of genes were re-examined. For this, the matrices of
eigenvalues for genes in groups 4 and 8 and the corresponding

subgroups recovered by ClusterAnalysis were used as input
for LDA. Group 4 contains the subgroup of control genes
named L71 and seven others; and group 8 contains control
genes SGS (salivary gland secretion) and six additional sub-
groups. Both L71 and SGS subgroups were reported by [1] as
containing sets of genes that cluster together and show ex-
pression patterns of ecdysone-regulated genes. In the case of
group 4, PCA analysis revealed that the ¢rst three compo-
nents explained 89.2% of the variability (¢rst component
59.0%, second component 20.6% and third component
9.6%). When we applied LDA to this data set we found
that the subgroups were statistically di¡erent (Wilks’
V=0.026; F=37.371; df = 21, 304; P6 0.0001). The discrim-
inant classi¢cation matrix showed that ¢ve of the eight sub-
groups presented s 70% correctly classi¢ed genes (n=38)
(Table 1B). Two subgroups (3 and 5) with 100% correct clas-
si¢cation were detected in addition to the L71, yet they con-
tain only one and two genes, respectively. In agreement with
the coordinated expression of the L71 genes during late larval
ecdysone pulse [15], when the variance pattern is graphically
represented, they fall into a well-de¢ned cluster (Fig. 1B).
PCA analysis of genes in group 8 showed that the ¢rst three

components explained 91.2% of the variability (¢rst compo-
nent 62.6%, second component 21.2% and third component
7.4%). LDA revealed that subgroups were statistically di¡er-
ent (Wilks’ V=0.011; F=15.344; df = 18, 71; P6 0.0001). In
this case three subgroups with s 70% correct classi¢cation
were detected (n=20 genes), among them two subgroups (1
and 6) had 100% correctly classi¢ed genes (n=15). The sub-
group containing control genes SGS showed that only 63%
correct classi¢cations (Table 1B) since gene SGS4 was not

Table 1
Discriminant classi¢cation matricesa

A
Groups 1 2 3 4 5 6 7 8 9 %b

1 68 5 0 0 1 0 0 0 0 92
2 0 4 0 0 0 0 0 0 0 100
3 0 0 4 1 0 0 0 0 1 80
4 25 1 15 69 6 0 0 0 0 59
5 0 0 0 0 3 0 0 0 0 100
6 0 0 0 0 4 3 1 0 0 38
7 0 17 0 0 1 0 123 39 0 68
8 0 10 3 0 0 0 9 12 0 35
9 0 0 30 9 25 13 4 0 29 26
B
Groups Subgroups 1 2 3 4 5 6 7 8 %b

4 1 17 0 6 0 0 0 0 0 74
4 2 0 12 0 0 0 0 0 0 100
4 3 0 0 2 0 0 0 0 0 100
4 4 0 0 1 17 11 0 0 0 59
4 5 0 0 0 0 3 0 0 0 100
4 6 0 0 0 0 1 1 1 0 33
4 7 0 17 0 0 6 11 21 1 54
4 8 0 0 0 0 0 0 1 4 80
8 1 8 0 0 0 0 0 0 100
8 2 1 5 0 0 0 0 0 83
8 3 1 0 5 0 2 0 0 63
8 4 0 0 1 0 0 0 0 0
8 5 0 0 0 0 2 1 0 67
8 6 0 0 0 0 0 7 0 100
8 7 1 0 0 0 0 0 0 0

The number of genes correctly assigned to each group or subgroup is indicated.
aGroups of genes recovered from the tree shown in Fig. 1A or subgroups contained within groups 4 and 8 (Fig. 1B,C) were used as qualitative
variables to build a linear discriminant function. The eigenvalues for each gene expression value in the ¢rst three components of PCA were
used as predictor variables.
bPercentages of correctly classi¢ed genes.
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correctly classi¢ed into this subgroup, indicating that its ex-
pression pattern di¡ers from the other SGS genes. This result
is in agreement with previous reports on a non-coordinate
expression of SGS genes. They comprise a family of genes
expressed at high levels in the salivary glands of late third
instar larvae in response to ecdysone. In contrast to the other
SGS genes, SGS4 is turned on throughout Drosophila devel-
opment and is not expressed exclusively in the larval salivary
glands [16]. These results indicate that our protocol may be
useful to detect, with statistical con¢dence, additional features
of gene expression patterns that were overlooked by a hier-
archical clustering method. A graphical representation of the
¢rst two components of PCA (Fig. 1C) shows the high degree
of dispersion of SGS genes within the multivariate space,
while genes at subgroups 1 and 6 fall into delimited clusters
(Fig. 1C).

3.3. Discriminant analysis provides a tool to identify properly
classi¢ed genes within a cluster

Discriminant analyses have been applied to various ge-
nome-wide gene expression studies in order to build statistical
models to categorize new samples based on the gene expres-
sion of few selected genes [9,11,17^18]. Here, we proposed a
di¡erent procedure to study microarray data by using tradi-
tional statistical methods in a sequential manner. This ap-
proach incorporates the gene classi¢cation identi¢ed by a
clustering method (we based our analysis on hierarchical
clustering but it can be applied to any other clustering meth-
od) with an eigenvector matrix of gene expression values to
generate a discriminant classi¢cation of the cluster groups.
This procedure provides statistical support for the selection
of genes before beginning the biological analysis of gene ex-
pression microarray data. Di¡erent methods to estimate the

Table 2
Genes contained in groups 4 and 8a

Group Sub-
group

GenBank Name Description Biological process

4 1 K00670 actin 42A structural cytoskeletal protein cytoskeleton organization
4 1 AE003608 ^ putative ankyrin membrane^cytoskeleton linker protein
4 1 AF277390 dystroglycan-like dystrophin complex component cytoskeletal anchoring protein
4 1 U19909 corkscrew tyrosine phosphatase EGF/Torso receptors signaling

pathways
4 1 M55099 ecdysone-inducible gene E2 uncharacterized secreted protein imaginal disk morphogenesis
4 1 AF137269 innexin 2 component of the gap junction cell^cell communication
4 1 AF168467 smell impaired 35A serine/threonine kinase olfaction
4 1 ^ ecdysone-induced gene 87F unknown response to ecdysone

4 7 AF106932 plexin A transmembrane receptor axon guidance
4 7 X53837 neurotactin cell adhesion, transmembrane protein axon guidance
4 7 AF040989 roundabout transmembrane receptor axon guidance, midline recognition
4 7 AF038842 midline fasciclin cell adhesion, transmembrane protein axonogenesis
4 7 AF275903 echinoid cell adhesion, transmembrane protein EGF receptor signaling pathways
4 7 AA220496 p120ctn adherens junction component intercellular adhesion, cell migration
4 7 AF197345 prominin-like putative transmembrane glycoprotein generation of membrane protrusions
4 7 Y17922 unc-13 diacylglycerol binding protein neurotransmitter release
4 7 U76378 LK6 serine/threonine kinase microtubule binding and organization
4 7 NM_079414 reaper caspase-dependent apoptosis activator induction of apoptosis
4 7 X56689 protein on ecdysone pu¡s hnRNA binding protein mRNA processing and stability
4 7 AA202479 ^ putative Na/PO4 cotransporter unknown
4 7 AI945337 ^ RNA binding protein unknown
4 7 AE003628 ^ transcriptional repressor unknown
4 7 AE003629 ^ transcription factor unknown

4 8 AF104357 Nedd2-like caspase caspase-2 apoptosis
4 8 U25686 Eip93F transcription factor apoptosis and autophagy
4 8 AF119332 brain tumor translational repressor brain/imaginal disk regulation of

growth
4 8 AF211192 sulfated N-acetylglucosamine-6-sulfatase pattern speci¢cation

8 1 AB43874 frost putative secreted protein cold resistance
8 1 AF311747 peroxiredoxin 5037 thioredoxin peroxidase antioxidant
8 1 AE003740 ^ putative glutamate-cysteine ligase glutathione synthesis
8 1 U51047 K-esterase-5 carboxylesterase unknown

8 2 AE003564 ^ putative serine-type endopeptidase unknown
8 2 M34147 vermillion tryptophan 2,3-dioxygenase tryptophan metabolism
8 2 AE003695 Cyp9f2 cytochrome P450 metabolic detoxi¢cation

8 6 AI947049 Sec61L protein transporter translocon component
8 6 AF181658 SrpRL signal recognition particle receptor
8 6 AF160923 SsRL signal sequence receptor targeting of secreted and membrane
8 6 AI945207 ^ putative translocon-associated protein Q proteins to endoplasmic reticulum
8 6 AL109630 ^ putative TRAM protein
8 6 AF160889 ^ putative signal peptidase
aSubgroups containing a signi¢cant number of genes with known or predicted functions are shown. Subgroups containing the control genes
L71 and SGS are not listed. A complete list of genes in groups 4 and 8 can be found at http://www.inta.cl/genexpression/new/index.htm.
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accuracy of the groups recovered by clustering techniques
have been proposed [19]. For instance, Bootstrap has been
used to assess statistical con¢dence of nodes in a tree, and
this approach was used to ¢nd nodes with either high or low
values of statistical support [13,20]. However, to our knowl-
edge these approaches have not been used to assess the correct
assignment of individual genes within the nodes.

3.4. Biological analysis of new subgroups identi¢ed by LDA
within a cluster

We selected groups 4 and 8 for the analysis of their gene
contents and distribution (a complete classi¢cation of the
genes can be found at http://www.inta.cl/genexpression/new/
index.htm). Following LDA, group 4 contained 69 correctly
classi¢ed genes (Table 1B), 31 of these had a known function.
Out of these 31 genes, eight correspond to ecdysone-regulated
genes (ImpE2, L711-6, Hsp23, Actin 42A, Eip 63E). The other
genes are mainly associated with tissue reorganization and
di¡erentiation, including: (1) members of the EGF receptor
signaling pathway (corkscrew, echinoid); (2) genes involved in
CNS remodeling (mub, plexin A, neurotactin, roundabout,
unc-13, midline fasciclin), several of these genes cluster togeth-
er at subgroup 7, along with unknown transcripts; (3) genes
involved in programmed cell death (reaper, Dronc, Eip 93F);
(4) genes encoding cytoskeletal regulators (stathmin, mig-2-
like, dystroglycan, LK6), some of them are found in subgroup
1, along with the gene encoding actin 42A (Table 2).
Group 8 contains 20 correctly classi¢ed genes (Table 1B);

out of the 11 genes with a known function, ¢ve are involved in
stress response, such as frost (response to cold), prx5037 (anti-
oxidant) and Cyp9f2 (detoxi¢cation). Three of them plus an
unknown transcript are clustered at subgroup 1. Three genes
are components of the SRP-dependent membrane-targeting
complex (Sec62L, SrpRL, SsRL), they cluster together at sub-
group 8, along with three uncharacterized genes with pre-
dicted functions on targeting proteins to the endoplasmic re-
ticulum. The remaining three genes encode puparial glue
proteins (SGS) (Table 2). Our exploration of groups 4 and 8
has used the features of known genes sharing expression pat-
terns with unknown genes to provide clues on their function
or common mechanism of gene regulation (Table 2). This is
particularly the case for those genes that are clearly regulated
by ecdysone and for the genes within subgroups 1 and 8 with
100% correct classi¢cation, since they can be rapidly assigned
to distinguishable cellular functions.
Most of the time, the extraction of biological information

from clusters of genes requires access to external information
for every gene in a cluster that permits to recognize functional
roles or to decipher networks of interactions. In addition,
expression patterns of genes need to be veri¢ed by indepen-
dent assays. Therefore, a great deal of e¡ort is needed to

con¢rm the information obtained from microarray data.
The protocol described here enables ¢ltering of the data by
applying statistical criteria to clusters of genes and thus to
identify those genes correctly assigned to the original groups
de¢ned by a clustering method. This procedure reduces the
complexity of large sets of data and increases the accuracy in
the selection of candidate genes susceptible to further biolog-
ical analysis.
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