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Abstract Migration of vascular smooth muscle cells (VSMC) is
a crucial event in the formation of vascular stenotic lesions.
Tumor necrosis factor-KK (TNF-KK) is elaborated by VSMC in
atherosclerosis and following angioplasty. We investigated the
role of nuclear factor-UUB (NF-UUB) in human VSMC migration
induced by TNF-KK. Adenoviral expression of a mutant form of
the inhibitor of NF-UUB, IUUB-KKM, suppressed TNF-KK-triggered
degradation of cellular IUUB-KK, inhibited activation of NF-UUB, and
attenuated TNF-KK-induced migration. Further, IUUB-KKM sup-
pressed TNF-KK-stimulated release of interleukin-6 and -8 (IL-6
and IL-8). Neutralization of IL-6 and IL-8 with appropriate
antibodies reduced TNF-KK-induced VSMC migration. Addition
of recombinant IL-6 and IL-8 stimulated migration. Collectively,
our data provide initial evidence that TNF-KK-mediated VSMC
migration requires NF-UUB activation and is associated with
induction of IL-6 and IL-8 which act in an autocrine
manner. ß 2001 Federation of European Biochemical Soci-
eties. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Migration and proliferation of vascular smooth muscle cells
(VSMC) contribute to pathology of vascular stenotic diseases
such as atherosclerosis and restenosis. Migration is accompa-
nied by activation of multiple intracellular signaling pathways
such as mitogen-activated protein kinases (MAPKs), phos-
phatidylinositol 3P-kinase (PI3K) and focal adhesion kinase
(FAK), modulation of the cytoskeleton, and alteration of
the interaction of cell and extracellular matrix [1]. This com-
plex response may be triggered by growth factors and chemo-
tactic cytokines.

The nuclear factor-UB (NF-UB) plays a pivotal role in reg-
ulating expression of genes that in£uence cell di¡erentiation,
growth, and in£ammation [2,3]. In most cell types under basal
conditions, NF-UB is sequestered in the cytoplasm by one of a
family of inhibitory proteins, such as IUB-K, and is inactive.
NF-UB activation normally occurs after signal-initiated phos-
phorylation of IUB-K at serines 32 and 36 targets the inhibitor
for rapid proteolysis [3]. Activated NF-UB translocates to the

nucleus, binds to consensus sequences in promoter regions
and initiates transactivation of responding genes [2,3]. The
nuclear factor can be activated by a wide array of atherogenic
stimuli such as growth factors and cytokines [3^5]. Activated
NF-UB is present in atherosclerotic lesions but is undetected
in normal arteries and is activated in VSMC after arterial
balloon injury [5,6]. NF-UB activity was reported to be essen-
tial for cell proliferation and important in the formation of
hyperplastic neointima [7^9]. Considerable attention has been
focused on the regulation of VSMC mitogenesis by NF-UB
but, to our knowledge, a role of NF-UB in VSMC migration
has not been investigated.

Tumor necrosis factor-K (TNF-K), is expressed in athero-
sclerotic lesions and in the intima of arteries following injury
or grafting but not in normal vessels [10,11]. In vivo experi-
ments demonstrated a signi¢cant role of TNF-K in neointimal
formation of vascular stenosis [12,13]. Migration and prolif-
eration of VSMC are two crucial events in intimal hyperpla-
sia. Reports on the ability of TNF-K to stimulate proliferation
in cultured VSMC are con£icting and there are limited data
de¢ning the migration-stimulating activity of the cytokine
[9,14^17]. TNF-K induces expression of numerous gene prod-
ucts including interleukins (IL-1L, IL-6 and IL-8), interferon-
inducible protein 10, and extracellular matrix-degrading met-
alloproteinases (MMPs) [2,3,18,19]. Most of these products
are involved in regulation of VSMC migration and prolifer-
ation [1,20^23]. TNF-K, like other chemoattractants such as
platelet-derived growth factor and angiotensin [1], stimulates
VSMC migration through the MAPK pathway [17]. The pro-
tein kinases may regulate multiple transcriptional activities of
nuclear transcription factors such as activated protein-1 (AP-
1), Ets and NF-UB [24^26]. However, unlike protein kinase
pathways such as MAPK and PI3K, the role of transcription
factors in VSMC migration is currently undetermined. NF-UB
is a regulator of cytokines and potentially controls MMP-2
and MMP-9 [2,3,27,28]. Therefore, we investigated whether
TNF-K-induced VSMC migration occurred though NF-UB
activation.

In this study, we constructed a recombinant adenovirus
vector expressing a mutated, stable form of IUB-K (IUB-
KM). IUB-KM contains serine-to-alanine mutations at residues
32 and 36 which inhibit signal-induced phosphorylation and
subsequent degradation of IUB-K [3,4]. The present work dem-
onstrated for the ¢rst time that suppression of NF-UB activity
led to a signi¢cant inhibition of TNF-K-directed human
VSMC migration. Further, TNF-K-induced release of IL-6
and IL-8 and both modulated the migratory activity of
TNF-K through an autocrine mechanism.
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2. Materials and methods

2.1. Cell culture
With IRB approval, VSMC were isolated from segments of internal

mammary artery unused after coronary artery bypass, cultured, and
identi¢ed by K-actin staining as previously described [29].

2.2. Cell migration assay
Migration was analyzed in transwell culture chambers with cells

cultured on the upper surface of polycarbonate membranes coated
with Matrigel0 (Collaborative Research) as described [30]. Experi-
ments were performed in culture medium plus 0.25% bovine serum
albumin with recombinant human TNF-K, IL-6 (Genzyme) or IL-8
(Biosource) placed in the lower chamber for 12 h. Cells that migrated
to the lower face of the membrane were quantitated with cresyl violet
staining [31]. Cells without treatment served as control. In other ex-
periments, anti-human IL-6 or IL-8 monoclonal antibody (Genzyme,
Biosource) was also added to the upper and lower chambers. Normal
mouse IgG (Sigma) was used an irrelevant control. Migration is ex-
pressed as fold increase over control.

2.3. Cell growth assay
Cell growth was assessed by methyltetrazolium (MTT) assay as

described [32].

2.4. Construction of recombinant adenovirus vectors and infection of
cells

Adenovirus vectors Adnull and AdL-gal were constructed as previ-
ously described [33]. AdIUB-KM was constructed in a manner as de-
scribed [34]. Adnull has no insert gene to be expressed and was used
as control for e¡ects of viral infection. AdL-gal expressing the Esche-
richia coli. L-Galactosidase was used to estimate adenoviral gene
transfer e¤ciency by X-gal staining of infected cells [35]. In prelimi-
nary experiments to establish optimal infection conditions, exposure
of the VSMC to recombinant adenovirus at a multiplicity of infection
of 200 for 40 min led to more than 90% gene transduction at 48 h.
These conditions were used in the experiments with viral infection
reported here.

2.5. Western blot analysis
IUB-K in whole cell lysates was detected by Western blot analysis.

2.6. Electrophoretic mobility shift assay (EMSA)
EMSA was performed with a Promega gel shift system as previ-

ously described except for use of nuclear extracts instead of whole cell
lysates [36]. Nuclear extracts were prepared as described [35].

2.7. Enzyme-linked immunosorbent assay (ELISA)
ELISA was used to measure IL-6 and IL-8 in cell culture media.

2.8. Statistical analysis
Data are expressed as mean þ S.D. Statistical analysis was per-

formed by ANOVA with P6 0.05 considered to be signi¢cant.

3. Results and discussion

TNF-K-induced human VSMC migration in a concentra-
tion-dependent manner form 0.1^10 ng/ml with maximal ac-
tivity at 10 ng/ml (Fig. 1). A 30 min preincubation with an
anti-human TNF-K antibody (1.6 Wg/ml) blocked the chemo-
tactic activity of TNF-K (10 ng/ml). Therefore, 10 ng/ml TNF-
K was used in all the following experiments unless otherwise
speci¢ed. Similar to a previous report [9], our results from
MTT assay or cell counting with trypan blue exclusion
showed that treatment with TNF-K for 12 h at the concen-
trations used had no e¡ect on cell proliferation (data not
shown). Therefore, the possibility that proliferation a¡ected
migration was ruled out.

In order to evaluate the role of NF-UB in the regulation of
TNF-K-mediated e¡ects, we used a recombinant adenovirus
vector expressing the NF-UB super-repressor, IUB-KM, to in-
hibit TNF-K-induced cellular IUB-K degradation and subse-
quent NF-UB activation. Initially, we determined the time-
course of degradation of endogenous IUB-K induced by
TNF-K. Treatment with TNF-K for 20 or 40 min led to deg-
radation of IUB-K in uninfected cells (Fig. 2A). Resynthesis of
IUB-K was detected by 60 min. Because of these results, all
following measurements of IUB-K degradation and subsequent
NF-UB activation were conducted at 40 min. We next deter-
mined the e¡ects of IUB-KM expression on the cytokine-in-
duced changes of IUB-K and NF-UB. TNF-K caused signi¢-

Fig. 1. Dose^e¡ect of TNF-K on VSMC migration. After VSMC
were exposed to TNF-K (0.1, 1, 10, or 100 ng/ml) for 12 h, migra-
tion was determined as described in Section 2. Migration is ex-
pressed as the fold increase relative to control. To determine the ef-
fect of an anti-TNF-K antibody on the ligand-induced VSMC
migration, TNF-K (10 ng/ml) was preincubated with antibody for
30 min, and then the mixture was added to the lower chamber of
the transwell. *P6 0.05 vs. control. �P6 0.05 vs. TNF-K (10 ng/ml)
alone. Values are mean þ S.D. for three experiments

Fig. 2. Transient degradation of endogenous IUB-K by TNF-K and
its prevention by expression of IUB-KM. A: Uninfected VSMC were
treated with TNF-K (10 ng/ml) for the indicated periods of time.
Whole cell lysates were prepared and analyzed by SDS^PAGE and
immunoblotted with an anti-IUB-K antibody. B,C: Two days after
infection with control virus, Adnull (B), or with AdIUB-KM (C),
VSMC were treated with TNF-K (10 ng/ml). Whole cell lysates were
analyzed by Western blot for cellular IUB-K. Shown is a representa-
tive of three individual experiments.

FEBS 25498 20-11-01

Z. Wang et al./FEBS Letters 508 (2001) 360^364 361



cant reduction of IUB-K from constitutive levels in cells in-
fected with Adnull (Fig. 2B). In contrast, IUB-K in cells in-
fected with AdIUB-KM was largely resistant to the signal-
stimulated degradation (Fig. 2C). In our experiments,
EMSA analysis showed multiple sequence-speci¢c bands rep-
resenting NF-UB activity in both unstimulated cells and in
cells stimulated by TNF-K. Basal activity of NF-UB in
VSMC as well as multiple speci¢c binding activity in EMSA
seen here are consistent with several reports [7,37]. TNF-K
augmented NF-UB DNA binding activity in cells infected
with Adnull but not in VSMC infected with AdIUB-KM
(Fig. 3).

Inhibition of NF-UB activation suppressed TNF-directed
VSMC migration. TNF-K (10 ng/ml) increased migration
greater than nine-fold in control cells and in cells infected
with Adnull. In contrast, TNF-K-induced cell migration was
only 2.7-fold in VSMC infected with AdIUB-KM (Fig. 4). The
incomplete inhibition by expression of IUB-KM might imply
that other signal pathways are involved in regulation of TNF-
K-induced VSMC migration. Treatment with RNA synthesis
inhibitor, actinomycin D (ActD, 1 Wg/ml) or the protein syn-
thesis inhibitor cycloheximide (CHX, 1 Wg/ml) completely
blocked TNF-K-induced cell migration. To ensure that the
e¡ects of viral infection or treatment with ActD or CHX on
VSMC migration were not due to toxicity, VSMC were pre-
pared and treated under the same experimental conditions as
above. Cell viability was determined by trypan blue exclusion.
There were no di¡erences in cell viability among the experi-
mental groups (data not shown). These results indicate that
TNF-K chemotatic activity was dependent on a transcription

mechanism in which transcription of NF-UB-responding genes
played a dominant role.

In a variety of cell types, TNF-K may induce expression of
NF-UB-responding gene products such as IL-6 and IL-8 that
are mitogenic and/or chemotactic to VSMC [20,21]. We ¢rst
detected the e¡ect of TNF-K on IL-6 and IL-8 mRNA with
Northern blot analysis. TNF-K increased transcription of
genes encoding IL-6 and IL-8 within 1 h (data not shown).
After treatment with TNF-K for 12 h, the time point that the

Fig. 4. Inhibition of NF-UB suppressed TNF-K-directed cell migra-
tion. Uninfected VSMC or VSMC infected with Adnull or AdIUB-
KM were assayed for migration as in Fig. 1 after 12 h treatment
with 10 ng/ml of TNF-K. In additional experiments, ActD (1 Wg/ml)
or CHX (1 Wg/ml) was added 30 min prior to TNF-K. *P6 0.05 vs.
TNF-K alone or TNF-K+Adnull. Values are mean þ S.D. for three
experiments.

Fig. 3. Inhibition of TNF-K-elicited NF-UB activation by expression
of IUB-KM. VSMC were infected with Adnull or AdIUB-KM and
then stimulated with TNF (10 ng/ml) for 40 min. Nuclear extracts
were prepared and analyzed by EMSA using NF-UB oligonucleo-
tide. Molar excess of unlabeled NF-UB oligonucleotide or AP-1 oli-
gonucleotide was used for competition as speci¢city control. A re-
sult of representative four individual experiments is shown.

Fig. 5. TNF-K-induced release of IL-6 and IL-8 was inhibited by
suppression of NF-UB. VSMC were prepared and treated as de-
scribed in Fig. 4. Two days after infection with AdIUB-KM or Ad-
null, VSMC were stimulated with TNF-K (10 ng/ml) for 12 h. In
additional experiments, ActD (1 Wg/ml) or CHX (1 Wg/ml) was
added 30 min prior to TNF-K. Medium was collected and IL-6 and
IL-8 concentration determined by ELISA. *P6 0.05 vs. TNF-K
alone or TNF-K+Adnull. �P6 0.05 vs. TNF-K (10 ng/ml) alone or
TNF-K+Adnull. Values are mean þ S.D. for six experiments.
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migration experiment was terminated, the cells released IL-6
and IL-8 into the medium which was inhibited by infection
with AdIUB-KM, but not the control virus vector, and by
treatment with ActD (1 Wg/ml) or CHX (1 Wg/ml) (Fig. 5).
To determine if IL-6 and IL-8 acted as autocrines in TNF-K-
stimulated cell migration, we measured the e¡ect of appropri-
ate antibodies on the migration assay. As seen in Fig. 6,
addition of anti-IL-6 (0.15 Wg/ml) and/or anti-IL-8 (0.2 Wg/
ml) signi¢cantly attenuated TNF-K-induced migration. Simul-
taneous addition of both antibodies produced greater inhibi-
tion than either antibody alone. Addition of an irrelevant
antibody at concentrations equal to the active was without
e¡ect (data not shown). To test whether IL-6 or IL-8 per se
stimulated VSMC migration, we observed the e¡ect of re-
combinant human IL-6 (1.5 ng/ml) or IL-8 (3.5 ng/ml), con-
centrations found in the medium of TNF-stimulated cells, on
the cell migration. As shown in Fig. 7, both IL-6 and IL-8
signi¢cantly stimulated migration. IL-6 and IL-8 are likely not
the only factors that are involved in TNF-K-directed, NF-UB-
mediated migration of VSMC. This notion is supported by
our observation that prevention of NF-UB activation inhibited
cell migration by approximately 60% while addition of anti-
bodies to IL-6 and IL-8 inhibited migration by about 30%.
Such results indicate that other signaling factors are involved
in TNF-K-directed migration. Collectively, These results indi-
cated that released IL-6 and IL-8 functioned as secondary
mediators contributing in part to the migratory activity of
TNF-K. As previously stated, IL-8 is a chemoattractant for
VSMC [21]. However, IL-6 regulation of VSMC migration
has not been previously reported. Therefore, the data pre-
sented here provide new information about IL-6 activity in
regulation of VSMC migration.

The mechanism by which NF-UB controls TNF-K's chemo-
tactic activity may also involve activation of cytosolic protein
kinases and degradation of the extracellular matrix by MMPs.
TNF-K was found to induce expression or overexpression of
MMP-1, -2, -3, and -9 in cultured VSMC [19]. Expression of
MMP-2 and -9 appears to be regulated by NF-UB in endo-

thelial cells and HT-1080 cells [27,28]. However, it remains to
be determined if TNF-K regulates MMPs through NF-UB in
VSMC. Additionally, multiple cytosolic signals such as cyclic
AMP, MAPKs, FAK and PI3K are involved in the regulation
of cell migration [1]. In this regard, it is reported that inhibi-
tion of MAPK activation attenuated TNF-K-mediated VSMC
migration [17]. These multiple cytosolic signals might con-
verge on NF-UB [9,26,38,39]. Therefore, NF-UB may play a
pivotal role in regulating migration of VSMC induced by a
number of stimuli but this remains to be investigated. Our
results do not rule out the possibility of other transcription
factors in regulation of the VSMC migration by TNF-K.

In conclusion, our experiments showed for the ¢rst time
that TNF-K, a cytokine expressed by VSMC in vascular dis-
ease, promoted VSMC migration through a mechanism de-
pendent on the activation of NF-UB. TNF-K-induced expres-
sion of the NF-UB-responding cytokines, IL-6 and IL-8, and
both partly contributed to the chemotatic activity of TNF-K.
Additionally, the data presented here provide ¢rst evidence
that IL-6 is a chemoattractant for VSMC. Collectively, these
¢ndings support the idea that activation of NF-UB plays a key
role in regulating migration of VSMC.
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