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Involvement of B-Raf in Ras-induced Raf-1 activation
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Abstract The mechanism of Ras-induced Raf-1 activation is
not fully understood. Previously, we identified a 400-kDa protein
complex as a Ras-dependent Raf-1 activator. In this study, we
identified B-Raf as a component of this complex. B-Raf was
concentrated during the purification of the activator. Immuno-
depletion of B-Raf abolished the effect of the activator on Raf-1.
Furthermore, B-Raf and Ras-activated Raf-1 co-operatively,
when co-transfected into human embryonic kidney 293 cells. On
the other hand, Ras-dependent extracellular signal-regulated
kinase/mitogen-activated protein kinase kinase stimulator (a
complex of B-Raf and 14-3-3) failed to activate Raf-1 in our cell-
free system. These results suggest that B-Raf is an essential
component of the Ras-dependent Raf-1 activator. © 2001 Pub-
lished by Elsevier Science B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

A low-molecular-weight GTP-binding protein Ras cycles
between an active GTP-bound form and an inactive GDP-
bound form, and acts as a molecular switch that regulates
cellular proliferation, differentiation, and transformation [1-
3]. Several groups, including ourselves, identified Raf-1 as the
first target molecule of Ras [4-9]. Since then, extensive studies
have revealed the existence of multiple downstream effectors
of Ras, including Raf-1, phosphatidylinositol-3 kinase, and
RalGEF [10].

Raf is a cytosolic serine/threonine kinase that regulates ex-
pression of various genes through activation of the mitogen-
activated protein kinase kinase (MEK)/extracellular signal-
regulated kinase (ERK) signaling pathway. The Raf family
consists of three isoforms, A-Raf, B-Raf and Raf-1, in mam-
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malian cells [11,12]. It has been reported that Ras associates
with B-Raf and that formation of the Ras-B-Raf complex
directly leads to B-Raf activation [13]. On the other hand,
although Ras-induced translocation of Raf-1 to the plasma
membrane is important for activation of Raf-1 [14-16], their
interaction by itself is not sufficient for the Raf-1 activation
[9,17]. These observations have suggested that the activation
mechanism of Raf-1 is different from that of B-Raf, and have
raised the possibility that an additional molecule(s) might be
involved in Ras-induced Raf-1 activation. In fact, using a cell-
free system, we previously identified a 400-kDa protein com-
plex in rat brain cytosol as a Ras-dependent Raf-1 activator
[18]. In the present study, we further characterized this acti-
vator and found that B-Raf is an important component of the
activator complex.

2. Materials and methods

2.1. Materials

Polyclonal antibodies raised against the carboxy termini of A-Raf
(sc-165), B-Raf (sc-166), Raf-1 (sc-227g) and H-Ras (sc-520), and a
monoclonal antibody against FLAG-epitope (M2) were purchased
from Santa Cruz Biotechnology and Eastman Kodak, respectively.
DEAE Sephacel, butyl Sepharose, and Superose 6 were obtained
from Amersham Pharmacia Biotech. Full-length ¢cDNA of human
B-raf (a kind gift from T. Yamamoto, University of Tokyo, Japan)
was subcloned into the Mlul site of pCMVS5 [19]. The expression
vector for human Raf-1 with FLAG-epitope tag and six histidine
residues in its carboxy terminus (RafFH) was kindly provided by
M. McMahon (University of California, San Francisco, CA, USA).
Recombinant histidine-tagged Xenopus MEK (His-MEK) and gluta-
thione-S-transferase-fused kinase-deficient Xenopus ERK (GST-
kdERK) were produced and purified as described [20,21]. Ras-depen-
dent ERK/MEK stimulator (REKS) was purified from rat brain, and
its kinase activity was measured as described in a previous report [13].
Lipid modified K-Ras[G12V] was prepared as described [17].

2.2. Cell culture and transfection

Human embryonic kidney (HEK) 293 cells were cultured in Dul-
becco’s modified Eagle’s medium supplemented with 10% fetal bovine
serum at 37°C in an atmosphere of 10% CO,/90% air. For transient
expression, HEK?293 cells were transfected with suitable combinations
of expression vectors using the calcium-phosphate co-precipitation
technique.

2.3. Kinase assays

Raf-1 kinase assay was performed as described [18]. Raf-1 and
RafFH were immunoprecipitated using anti-Raf-1 and anti-FLAG
antibodies, respectively. The precipitate was then incubated with
His-MEK, GST-kdERK, and [y-**PJATP for 20 min at 30°C. The
reaction was terminated by addition of the sample buffer for sodium
dodecyl sulfate—polyacrylamide gel electrophoresis (SDS-PAGE), and
the sample was resolved by SDS-PAGE. The radioactivity incorpo-
rated into GST-kdERK was measured by image analyzer (BAS2000,
Fuji).

Assay for Raf-1 activator was carried out as previously described
[18]. Samples were incubated for 30 min at 16°C with the membrane
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fraction of baculovirus-infected Sf9 cells expressing H-Ras[G12V]
(Ras[G12V] membrane), and the partially purified cytosolic fraction
of HEK293 cells that express RafFH (RafFH fraction). The reaction
was terminated by addition of Triton X-100 at a final concentration of
0.5%. RafFH was then immunoprecipitated from solubilized fraction,
and its activity was measured as described above.

2.4. Purification of a Ras-dependent Raf-1 activator

All manipulations were carried out at 0-4°C. Brains (55.6 g) of
Wistar rats were homogenized with a Potter—Elvehjem homogenizer
in buffer A (20 mM HEPES/NaOH, pH 7.4, 5 mM MgCl,, 2 mM
EDTA, 1 mM dithiothreitol, 10 mM NaF, and 25 mM -glycerophos-
phate) supplemented with 10 pg/ml leupeptin, 20 pg/ml aprotinin, and
10 pg/ml pepstatin A. The homogenate was centrifuged at 100000 X g
for 1 h, and the supernatant (1500 mg of protein) was absorbed to a
DEAE Sephacel column (2.5X16.5 cm). After washing with buffer A,
proteins were eluted with buffer A containing 0.25 M NH4Cl, and the
fractions (600 mg of protein) that exhibited Raf-1 activator activity
were collected. Proteins in the collected fractions were precipitated
with 40% saturated ammonium sulfate in the presence of 10% (v/v)
glycerol. The pellet was dissolved in buffer A containing 0.7 M am-
monium sulfate, and the soluble proteins (240 mg) were applied to a
butyl Sepharose column (1.5X 19 cm). The column was washed with
buffer A containing 0.7 M ammonium sulfate, and proteins were
eluted with a linear gradient between buffer A containing 0.7 M am-
monium sulfate and buffer A. The fractions (18 mg) containing Raf-1
activator activity were collected, concentrated by precipitation with
50% saturated ammonium sulfate, and subjected to a Superose 6
column (1.0X30 cm). After elution with buffer A containing 0.1 M
NH4Cl, the activator-containing fractions (0.59 mg) were saved.

3. Results

To purify a Ras-dependent Raf-1 activator, we have estab-
lished a cell-free system in which an activated mutant of
H-Ras (Ras[G12V]) activates Raf-1 [17,18]. In this system,
incubation of the membrane fraction containing Ras[G12V]
(Ras[G12V] membrane) with the partially purified cytosolic
fraction containing RafFH (RafFH fraction) leads to activa-
tion of RafFH, but only in the presence of the activator.
Using this system, we purified the activator of Raf-1 from
the cytosol of rat brain through a series of chromatographies
(Table 1), and searched for a protein that was enriched in the
process of purification. Consequently, we found that the con-
centration of B-Raf in the activator fraction increased as pu-
rification proceeded (Fig. 1A). Furthermore, the elution peak
of B-Raf showed a good correspondence with that of the
activator in the hydrophobic chromatography with butyl Se-
pharose (Fig. 1B) and the gel filtration chromatography with
Superose 6 (data not shown). These observations raised the
possibility that B-Raf might contribute to the activation of
Raf-1 by Ras.

To examine whether B-Raf in the activator fraction is in-
volved in the Ras-induced Raf-1 activation, B-Raf was re-
moved from the activator fraction with the antibody (sc-
166) raised against the last 19 carboxy-terminal amino acids
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Fig. 1. Enrichment of B-Raf in the activator fraction. A: Compari-
son of the amount of B-Raf protein in the activator fraction. A
portion (1 pg of protein) of the activator fraction obtained from
each chromatography was subjected to Western blotting analysis
with anti-B-Raf antibody. Lane 1, rat brain cytosol; lane 2, DEAE
Sephacel; lane 3, ammonium sulfate precipitation (40% saturated);
lane 4, butyl Sepharose; lane 5, Superose 6. B: Purification of the
Ras-dependent Raf-1 activator with butyl Sepharose. Aliquots of
each fraction were subjected to the activator assay (upper panel,
closed circles) and Western blotting analysis with anti-B-Raf anti-
body (lower panel). The solid line in the upper panel indicates pro-
tein concentration.

of B-Raf (Fig. 2A). Since Raf isoforms (A-Raf, B-Raf and
Raf-1) differ from each other at their carboxy termini, this
antibody is specific for B-Raf among the three isoforms.
When the activator fraction was incubated with the
Ras[G12V] membrane and the RafFH fraction, RafFH was
activated (Fig. 2B, bar 4). In contrast, when B-Raf was de-
pleted from the activator fraction, the activation of RafFH
was abolished (Fig. 2B, bar 6). When the same experiment
was performed with anti-A-Raf antibody, the activator frac-
tion did not lose its Raf-1-activating ability (Fig. 2B, bar 8),

Table 1

Purification of Ras-dependent Raf-1 activator

Fraction Protein (mg) Activity? (units) Specific activity (units/mg) Fold Yield (%)
Rat brain cytosol 1500 263 0.18 1 100
DEAE Sephacel 600 439 0.73 4.1 167
Ammonium sulfate 240 368 1.53 8.5 140
Butyl Sepharose 18 92.1 5.12 28.4 35.0
Superose 6 0.59 5.4 9.15 50.8 2.1

‘One unit is defined as an activity that stimulates RafFH to incorporate 1 pmol of [**Plinorganic phosphate from ATP to GST-kdERK per 20

min at 30°C.
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Fig. 2. B-Raf is an essential component of the activator. A: Deple-
tion of B-Raf from the activator fraction. The activator fraction ob-
tained from the ammonium sulfate precipitation (40%) (lane 1) was
incubated with either anti-B-Raf or anti-A-Raf antibody, and the
supernatant was saved as an immunodepleted fraction (lane 2 or 3,
respectively). A portion (10 pg of protein) of the each fraction was
subjected to Western blotting analysis with anti-B-Raf antibody. B:
Activation of Raf-1 in the cell-free system. The RafFH fraction was
incubated with or without the Ras[G12V] membrane in the presence
or absence of the activator fraction, either depleted or non-depleted
with antibodies. After immunoprecipitation with anti-FLAG anti-
body, the activity of RafFH was measured as described in Section
2. The Raf-1 activity obtained in the absence of the Ras[G12V]
membrane was set to 100%.

indicating that the observed decrease of the activator activity
was due to the depletion of B-Raf. These data suggest that
B-Raf is an indispensable subunit of the activator.

If B-Raf is a component of the activator, B-Raf and Ras
should activate Raf-1 co-operatively. To test this possibility,
HEK293 cells were transfected with B-Raf and/or Ras[G12V],
and the kinase activity of Raf-1 was measured. While Ras
apparently increased the activity of Raf-1, we observed
weak, if any, activation of Raf-1 by B-Raf (Fig. 3A). A com-
bination of Ras and B-Raf, however, resulted in greatly en-
hanced activation of Raf-1. These results indicate that B-Raf
can activate Raf-1 in a co-operative manner with Ras, when
expressed in intact cells.

Our previous data indicated that the molecular size of the
activator is around 400 kDa [18], while that of B-Raf is about
90 kDa. Therefore, we examined whether B-Raf alone is suf-
ficient for Ras-dependent Raf-1 activation. For this, REKS, a
complex of B-Raf and 14-3-3 [13], was purified from rat
brains, and its ability to activate Raf-1 was examined. As
previously reported [13], REKS could induce activation of
MEK in a Ras-dependent manner (Fig. 4A). On the other
hand, REKS showed no effect on the kinase activity of
RafFH (Fig. 4B), suggesting that B-Raf complexed with 14-
3-3 is insufficient to stimulate the activation of Raf-1.
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4. Discussion

The mechanism of Raf-1 activation by Ras is complicated,
and several questions arise. For example, why is it required
for Ras to be farnesylated? Is phosphorylation of Raf-1 nec-
essary? What is a third factor essential for Raf-1 activation?
To answer these questions, we previously established a cell-
free system, and found that Ras needs to be farnesylated,
since the farnesylation allows Ras to undergo dimerization,
a crucial step for Ras-induced Raf-1 activation [17]. Using
this system, we also found the existence of a Ras-dependent
Raf-1 activator in the cytosolic fraction [18]. This finding
raised the possibility that the activator might be a cytosolic
protein, although the activator has been speculated to be lo-
calized at the plasma membrane [14-16].

To explore this possibility, in the present study, we set out
to further characterize the Ras-dependent Raf-1 activator in
the cytosolic fraction. Since our previous observations suggest
that the activator may be a complex consisting of several sub-
units [18], we searched for a protein that becomes concen-
trated during the purification of the activator. As a result,
we found that a cytosolic protein kinase, B-Raf, increased
its concentration in the activator fraction as the purification
proceeded. To confirm involvement of B-Raf in the Ras-
stimulated Raf-1 activation, B-Raf was depleted from the ac-
tivator fraction, which abolished almost all the activity of the
activator. Furthermore, it was found that B-Raf can enhance
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Fig. 3. Co-operative activation of Raf-1 by Ras and B-Raf. A:
HEK?293 cells were transiently transfected with H-Ras[G12V] and/or
B-Raf. After 1 day serum starvation, the cells were harvested, lysed,
and the kinase activity of endogenous Raf-1 in the lysate was mea-
sured as described in Section 2. The Raf-1 activity obtained in the
absence of H-Ras[G12V] and B-Raf was set to 1.0. Values shown
represent the mean and standard deviation (n=3). B: Expression
level of H-Ras[G12V] and B-Raf. A portion (16 pug of protein) of
the lysate was subjected to immunoblotting with antibodies against
B-Raf (upper panel) and H-Ras (lower panel).
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Fig. 4. B-Raf is insufficient for Ras-induced Raf-1 activation. A:
Ras-dependent activation of MEK by REKS. REKS was incubated
with His-MEK, GST-kdERK, and [y-*>P]ATP in the presence or ab-
sence of lipid-modified K-Ras[G12V]. The samples were resolved by
SDS-PAGE, and the radioactivity incorporated into GST-kdERK
was measured. The activity obtained in the absence of K-Ras[G12V]
was set to 1.0. B: REKS cannot activate Raf-1. The RafFH frac-
tion was incubated with REKS or the activator fraction from
DEAE Sephacel in the presence or absence of the Ras[G12V] mem-
brane, and the activity of RafFH was measured. The Raf-1 activity
obtained in the absence of the activator fraction and the Ras[G12V]
membrane was set to 1.0.

Ras-induced activation of Raf-1 in vivo. These results
strongly suggest that B-Raf plays an essential role in the acti-
vation of Raf-1 by Ras. On the other hand, B-Raf alone is
likely to be insufficient for the Raf-1 activation, since partially
purified B-Raf (i.e. REKYS) failed to activate Raf-1 even in the
presence of Ras. Taken together, our results indicate that
B-Raf is an indispensable subunit of the Ras-dependent
Raf-1 activator.

Though the present study demonstrated the involvement of
B-Raf in Ras-induced Raf-1 activation, its mechanism re-
mains unclear. Since Ras forms a homodimer at the plasma
membrane [17], it is possible that Raf-1 and B-Raf form a
heterodimer on the dimeric Ras. Indeed, Weber et al. have
recently reported that an activated form of Ras induces for-
mation of a Raf-1-B-Raf dimer [22]. Upon formation of the
complex, B-Raf becomes activated by association with Ras
[13], and in turn may facilitate the increase of Raf-1 kinase
activity by an unknown mechanism. In this activation step,
another subunit(s) of the activator, besides B-Raf, must be
involved, since B-Raf alone is unable to activate Raf-1. It
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has been reported that artificial homodimerization results in
activation of Raf-1 through transphosphorylation [23,24].
Therefore, it is possible that B-Raf directly phosphorylates
and activates Raf-1 in the presence of the other subunit of
the activator. An alternate possibility is that B-Raf phosphor-
ylates, not Raf-1, but the other subunit, which somehow leads
to Raf-1 activation. Identification of the other subunit will be
necessary to clarify the mechanism of Raf-1 activation by Ras
and B-Raf.
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