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Abstract A cDNA (Vupatl) encoding a predicted 43 kDa
protein was isolated from drought-stressed cowpea (Vigna
unguiculata) leaves. It has homology with patatin, a potato
tuber storage protein with lipolytic acyl hydrolase activity. The
recombinant protein VUPAT1 expressed in the baculovirus
system displays preferentially galactolipid acyl hydrolase activ-
ity. Phospholipids are very slowly hydrolyzed and apparently
triacylglycerols are not deacylated. Vupatl promoter contains
putative drought-inducible sequences. Northern blots showed that
gene expression is stimulated by drought stress and is more
pronounced in a drought-sensitive cultivar than in a drought-
tolerant one. An involvement in drought-induced galactolipid
degradation is proposed for VUPAT1. © 2001 Federation of
European Biochemical Societies. Published by Elsevier Science
B.V. All rights reserved.
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1. Introduction

Galactolipids are main components of chloroplast mem-
branes accounting for more than 60% of total polar lipids
in photosynthetic tissues. Their hydrolysis is stimulated by
drought stress [1,2], chilling [3] and senescence [4]. In 1964
Sastry and Kates [5] reported for the first time the existence
in the leaves of Phaseolus multiflorus of an enzyme able to
catalyze the hydrolysis of monogalactosyldiacylglycerol
(MGDG) and digalactosyldiacylglycerol (DGDG). This en-
zyme capable of removing fatty acids (FA) from both sn po-
sitions was designated galactolipase (EC 3.1.1.26). The major-
ity of the galactolipid hydrolyzing enzymes purified from
plant leaves [6-12] were also active towards phospholipids
but not triacylglycerols so the term lipolytic acyl hydrolase
(LAH) is usually applied to those enzymes only described in
the plant kingdom. Despite the research done on leaf LAHs
the corresponding genes remain unknown.
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Abbreviations: LAH, lipolytic acyl hydrolase; MGDG, monogalacto-
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Galliard [13] first demonstrated the LAH activity of pata-
tin, the major reserve glycoprotein from potato tubers. Re-
combinant patatin is preferentially active towards phospholip-
ids and moderately active towards galactolipids [14]. Patatin-
like cDNAs were cloned from cucumber seedlings [15], Hevea
brasiliensis latex [16] and tobacco leaves [17]. Cucumber and
tobacco proteins were shown to display phospholipase A,
(PLA);) activity and the latex allergen was able to hydrolyze
p-nitrophenyl palmitate. Several other patatin-like genes are
published in sequence databases but remain putative.

In cowpea (Vigna unguiculata) leaf extracts, LAH activity
increases with water deficit and is more pronounced in
drought-sensitive cultivars (cvs) [1]. From the same plant a
soluble LAH hydrolyzing both galacto and phospholipids
was purified [2]. In this work a patatin-like cDNA designated
Vupatl was isolated from drought-stressed cowpea leaves. A
genomic clone containing the Vupatl promoter and coding
regions was also isolated. The recombinant protein was ob-
tained by expression in the baculovirus system and its ability
to hydrolyze several lipid substrates, extracted from cowpea
leaves, was investigated. The expression of Vupatl in cowpea
leaves, in response to progressive drought stress, re-hydration,
rapid desiccation and abscisic acid (ABA), was analyzed in
drought-sensitive and drought-tolerant cvs.

2. Materials and methods

2.1. Plant material and stress treatments

Two V. unguiculata L. Walp cvs differing in drought stress toler-
ance, cv EPACE-1 (drought-tolerant) and 1183 (drought-sensitive),
were grown in greenhouse as previously described [18]. Drought stress
was induced by withholding watering for 7-10 days in 21 days old
plants. Stress levels are based on leaf water potentials measured in a
pressure chamber [19] (PMS, ECS Instruments). ABA treatments were
performed on detached leaves incubated in a 0.1 mM ABA solution
(ABAT™) or water (ABA™) for 24 h. Desiccation was also assayed on
detached leaves left to dry at room temperature and daylight for 5 h.

2.2. ¢DNA cloning and sequence analysis

Primers corresponding to patatin consensus regions were used in
PCR amplifications, the sequences were GAYTAYTTYGAYRT-
NATVG for sense oligonucleotide and GGRKSNCCNAARATH-
TTYCC (H=A/T/C, K=G/T, N=A/C/G/T, R=A/G, S=G/C, V=
G/A/C, Y =CIT) for the antisense one. Template cDNAs were previ-
ously prepared by [18] from leaves of V. unguiculata cv EPACE-1
plants submitted to mild drought stress (S2). The fragment obtained
was used to screen a A Ziplox cDNA library constructed from the
same cDNAs [18]. A positive clone (Vupatl) was isolated, plasmid
DNA was extracted with a Maxi-prep kit (Qiagen) and sequenced
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on both strands (ESGS, France). Sequence analysis was performed
using PCgene software (Intelligenetics) and programs available at in-
ternet sites detailed in Section 3.

2.3. Genomic library construction and screening

The extraction of genomic DNA from V. unguiculata cv EPACE-1
leaves was performed as described by [20]. DNA was purified in a
CsCl gradient according to [21] and partially digested by Sau3Al
(Appligene). Suitable size fragments were separated in a sucrose gra-
dient as detailed in [22]. The fragments were ligated to the vector
lambda DASH/BamHI arms (Stratagene) with T4 DNA ligase (Ap-
pligene) and packaged with Gigapack III Gold Packaging extract
(Stratagene) according to the manufacturer’s instructions. Recombi-
nant phages were propagated on Escherichia coli XL1-Blue MRA (P»)
(Stratagene). Nylon filters (Hybond-N, Amersham) were prepared and
hybridized in high stringency conditions as described by [22] with a
full-length Vupatl cDNA radiolabeled with the kit Prime-a-gene
(Promega). Positive clones were isolated, the DNA was purified
with a lambda Midi kit (Qiagen) and sequenced on both strands
(ESGS, France). Searching for putative cis-acting sequences was per-
formed using PLACE database [23].

2.4. Expression in the baculovirus system

The coding region of Vupatl cDNA was cloned in the vector
pAcGP67 (Pharmingen). Recombinant baculoviruses were generated
by co-transfecting the recombinant plasmid and linearized baculovirus
DNA (Baculogold, Pharmingen) into Spodoptera frugiperda (Sf-9)
cells, for details see [24]. The recombinant protein was produced by
BTI-TN-5B1-4 cells derived from Trichoplusia ni egg (Invitrogen) in-
fected with recombinant baculovirus at a multiplicity of infection of
10 and cultured in TC100 medium (Life Technologies) in 150 cm?
culture flasks (Corning). Culture medium was harvested 3 days after
infection, centrifuged at 2000 X g for 5 min and the supernatant con-
taining the recombinant protein was kept at —20°C until needed.
Protein concentration was measured according to Bradford’s method
[25] with the protein assay kit (Bio-Rad), using bovine serum albumin
as a standard. The presence of the recombinant protein in the culture
medium was assessed by immunoblots with anti-VUPAT]I polyclonal
antibodies produced against recombinant VUPATI1 expressed in E.
coli (Matos et al., unpublished) performed according to [26] and en-
zymatic assays. Negative controls corresponding to culture medium
from cells infected with non-recombinant baculovirus were also tested.
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2.5. Lipolytic activity assays

Lipid substrates were prepared from V. unguiculata leaves fed for
24 h with ['*C]sodium acetate as described in [27]. Reaction mixtures
contained a volume of substrate corresponding to 0.3 umol hydro-
lyzable bonds, dried under a nitrogen stream and suspended in 10 ul
methanol, 10 pg total protein (50 pl culture medium) in a final volume
of 480 pul Tris-HCI pH 7 containing 0.3% Triton X-100. Reactions
were carried at 30°C for 90 min. Lipids were extracted and separated
by thin layer chromatography on silica-gel plates using Mangold sol-
vent system [28], bands corresponding to free FA were scraped off and
counted in a liquid scintillation spectrometer (1600 CA, Packard).
Leaf proteins extracted as in [2] were used as a positive control.

2.6. Northern blot analysis

Extraction of total RNA was performed according to [29]. Poly-
(A)" mRNA was isolated using Oligotex columns (Qiagen) following
the manufacturer’s instructions. 4 ug mRNA of each treatment was
separated on a 1% agarose-formaldehyde gel and transferred to nylon
membranes (Hybond-N, Amersham) as described by [22]. Hybridiza-
tions were carried out as described for the library screening except
that the probe used was a 186 bp fragment from the Vupat! 3’ un-
translated region.

3. Results

3.1. ¢cDNA cloning and sequence analysis

Degenerated primers corresponding to patatin consensus
sequences (DYFDV/IA/G and H/NC/A/GPKIFP) were used
in PCR amplifications. The 143 bp fragment obtained was
used as a probe to screen a cDNA library constructed from
cowpea leaves submitted to mild drought stress (S2). A full-
length clone of 1570 bp was isolated, sequenced and desig-
nated Vupat! (GenBank accession AF193067). It encodes a
predicted polypeptide of 400 amino acid residues with calcu-
lated p/ of 8.55 and deduced molecular mass of 43481 Da.
The 5’ untranslated region contains an in-frame stop codon
93 bp before the first methionine and the 3’ untranslated
region is 261 bp long. VUPATI shares 48% amino acid iden-
tity with potato patatin [14], 53% with Hev b 7 latex allergen
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Fig. 1. Amino acid sequence comparison of VUPATI, potato patatin (GenBank accession no. M21879), cucumber patatin-like protein
(Y12793) and Hev b 7 latex allergen (AJ223039). Similar amino acids (*), well conserved amino acids (.). Putative sites of phosphorylation (P),

glycosylation (G) and o/p fold hydrolase motif (+) in VUPATI sequence.
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Fig. 2. Schematic representation of Vupatl gene. Putative transcription start site and TATA box are located at positions —172 bp and —195
bp, respectively. The seven exons are represented by boxes and are 300, 191, 193, 159, 306, 176 and 305 bp long; the six introns are repre-

sented by lines and are 74, 99, 108, 138, 93 and 226 bp long.

[16] and 56% with cucumber patatin-like protein [15] (Fig. 1).
According to the hydropathy profile determined by PRED-
TMR2 method (http://02.biol.uoa.gr) no transmembrane seg-
ment was determined for VUPATI1. Sequence analysis by the
program pSORT (http://psort.nibb.ac.jp) reveals that VU-
PATI1 seems to have an uncleavable N-terminal signal se-
quence, however no chloroplast targeting peptide is predicted
by this program. Potential protein kinase C phosphorylation
sites are found at positions 96, 206, 241 and 338; casein ki-
nase II phosphorylation sites at positions 8, 140 and 375; one
tyrosine kinase phosphorylation site at position 313 and one
N-glycosylation site at position 373 (PROSITE, PCgene) [30].
An o/f fold hydrolase motif [31] with the characteristic sig-
nature (GXSXG) is present in positions 61-72 (eMotif, http://
dna.stanford.edu) [32] (Fig. 1).

3.2. Gene cloning and analysis

The screening of a cowpea cv EPACE-1 genomic library
allowed the isolation of a genomic clone (GenBank accession
AF318315) containing the promoter and the coding regions of
Vupatl. The coding region extends through 2368 bp and is
composed of seven exons and six introns bordered by canon-
ical sequences (GT/AG) (Fig. 2). The 3105 bp sequenced up-
stream the start ATG of the gene were searched for the bind-
ing sites of transcription factors and transcriptional regulatory
elements. A putative TATA box (TATATAA) is located
at —195 bp from the first Met and the plant consensus tran-
scription starting sequence (CTCATCA) is found at posi-
tion —172 bp. Among the putative cis sequences identified
in Vupatl promoter are the binding sites for MYB (TAACTG
at position —456) and MYC (CACATG at positions —1675,
—2251, —2289 and —2950), proteins that are known to be
induced by drought and ABA and bind to promoters of de-
hydration responsive genes in Arabidopsis thaliana [33]. The

CONTROL VUPATI1

<«— 43kDa

Fig. 3. Immunochemical detection of the recombinant VUPATI. In-
sect cell culture medium corresponding to 0.12 mg total protein was
separated in each lane by SDS-PAGE and transferred to a Hy-
bond-ECL membrane (Amersham). The protein was detected with
an anti-VUPAT] antibody followed by a rabbit anti-rat HPR-conju-
gated antibody revealed with ECL reagents (Amersham).

LTRE core (CCGAC at position —1088), besides the low
temperature responsiveness observed in Brassica napus [34]
genes is also induced by drought and ABA in A. thaliana
genes [35]. Other transcription factors binding sites involved
in phythormone and light responses are also present in Vupatl
promoter.

3.3. Expression in the baculovirus system and lipolytic activity
assays

Recombinant VUPAT1 was produced in insect cells with an
N-terminal peptide that mediates the forced secretion of the
protein and is cleaved during transport across cell membrane.
Culture medium from cells infected with recombinant baculo-
virus was tested for the presence of recombinant protein. VU-
PAT1 could not be detected in polyacrylamide gels after Coo-
massie staining, but through immunodetection with a specific
polyclonal antibody (Matos et al., unpublished) a single band
was revealed (Fig. 3). The band presents the expected M,
(approximately 43 kDa) and is absent in negative control.

The culture medium was assayed for lipolytic activity to-
wards several lipid substrates radiolabeled and extracted from
cowpea leaves. In the conditions described in Section 2 the
enzyme degrades preferentially the galactolipids MGDG and
DGDG and the sulpholipid sulphoquinovosyldiacylglycerol
(SQDG) (Fig. 4). Phospholipids are very slowly hydrolyzed
and apparently triacylglycerols are not deacylated. The opti-
mum pH for hydrolysis of MGDG is around 7 (data not
shown).

3.4. Northern blot analyses
Fig. 5 shows Vupatl expression pattern in response to
drought stress, desiccation and ABA in two cowpea cvs.

50+
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Activity (nmol FA/min/mg protein)

0~ —MGDG DGDG SQDG _ PC

Fig. 4. Hydrolysis of DGDG, MGDG, SQDG an PC by the re-
combinant protein VUPATI1. The activity is expressed in nmol FA
released per mg total protein per minute.
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Fig. 5. Northern blot analyses of Vupat] mRNA in V. unguiculata leaves cvs EPACE-1 (drought-tolerant) and 1183 (drought-sensitive). Control
(C), water potentials of —1.0 MPa (S1), —1.5 MPa (S2), —2.0 MPa (S3), 24 h S2 re-hydrated plants (R), 5 h desiccated leaves (D) and leaves
incubated in 0.1 mM ABA (ABA™) or in water (ABA™) for 24 h. Equal amounts of mRNA in each lane were checked with a Nicotiana taba-

cum ribosomal protein Nzsl9.

Vupatl is expressed in well watered plants (control) and is
stimulated by drought in both cvs. In the drought-sensitive
cv 1183, the transcripts show maximal accumulation at mild
drought stress (S2, —1.5 MPa) and decrease at severe water
deficit (S3, —2.0 MPa) probably due to a generalized degra-
dation of the cellular components. The tolerant cv EPACE-1
shows a less pronounced and slower response, with maximal
accumulation at severe water deficits (S3, —2.0 MPa). For
both plants a period of 24 h re-hydration is not enough to
reduce transcription to control levels. Rapid desiccation of
detached leaves does not induce an increase in Vupatl expres-
sion. A 24 h incubation in ABA seems to slightly induce gene
expression in the case of cv 1183.

4. Discussion

Little is known about galactolipid hydrolyzing enzymes;
after the first report by Sastry and Kates [5], other authors
tried to purify the enzyme from leaves, however no corre-
sponding gene has been isolated. The majority of the purified
enzymes including the one from cowpea were able to hydro-
lyze both galactolipids and phospholipids [8-12]. The only
authors who clearly demonstrated the existence of an enzyme
specific to glycolipids were Burns and his co-workers [6,7].
They partially purified two LAHs, one specific to MGDG,
DGDG, SQDG and monolein and another one that acted
on phosphatidylcholine (PC) and monolein. The molecular
weights were estimated to be in the range of 70-90 kDa and
the authors pointed out the difficulties to purify further those
proteins. The work of Matsuda et al. [11] in potato leaves also
highlighted the presence of several LAH isoforms sharing bio-
chemical properties that render difficult their purification to
homogeneity.

In contrast to leaf LAH, potato tuber patatins are well
studied. They are a group of 40 kDa vacuolar glycoproteins
with LAH activity that account for 40% of soluble protein in
tubers [36,37]. They are encoded by a family of genes which
are present at 10-18 copies per haploid genome [38]. The
expression of one of those genes in the baculovirus system
[14] showed that it encoded an enzyme active with phospho-
lipids, monoacylglycerols and moderately active with galacto-
lipids. The correspondence between patatin-like genes and the
leaf LAH has never been established.

In this work a patatin-like gene expressed in cowpea leaves
was cloned and through the use of substrates extracted from
the same biological source as the cDNA it was clearly shown
that it encodes a protein displaying high activity towards

MGDG, DGDG and SQDG and very little activity towards
PC. The reaction products are free FA, therefore the desig-
nation galactolipid acyl hydrolase is proposed. The results
obtained for the recombinant VUPATI indicate that in vivo
the native protein may be involved in galactolipid degrada-
tion. Nevertheless it is important to underline that besides
VUPAT]I1 other enzymes might contribute to galactolipid hy-
drolysis observed in leaf extracts [2]. The question whether
they are encoded or not by patatin-like genes remains to be
investigated.

Since galactolipids are restricted to plastids and are major
lipids in the thylakoids and in the inner envelope [39], it could
be expected that this protein had a consensus chloroplast
targeting sequence. The absence of such a peptide does not
exclude the hypothesis of a chloroplastic localization, that
should be further investigated, but the cytoplasmic localiza-
tion could explain why galactolipids are not rapidly hydro-
lyzed in vivo despite the considerable galactolipase activity in
leaf homogenates. Those proteins probably reach their sub-
strates only after a loss of compartmentation carried out by
other enzymes. Additionally modulation of the activity by
kinase phosphorylation should also be considered by analogy
to animal PLA;. Those enzymes are known to be regulated by
phosphorylation and stimulated by calcium which triggers
their translocation to membranes [40]. There is no direct evi-
dence for a same mode of action for LAH but a stimulation
by calcium [12] and calmodulin [41] was reported and VU-
PAT1 has several putative phosphorylation sites.

The physiological role of patatin-like proteins is still un-
clear. The existence of such a group of proteins sharing amino
acid identities but with different substrate specificity and
present in different organs and at different stages of develop-
ment indicates that probably they are important in many
aspects of plant physiology. In this work it is shown that
a progressive drought stress stimulates the expression of
Vupatl. The sensitive cv shows a rapid increase in Vupatl
expression at mild water stress while the tolerant one is able
to maintain lower levels of transcripts. Vupatl expression pat-
tern correlates with galactolipid content and degradation pre-
viously reported [1,2] since the drought-sensitive cv shows a
strong reduction of galactolipid content and high galactoli-
pase activity at mild water deficit while the drought-tolerant
is only significantly affected by severe water deficit. Further-
more the analysis of Vupatl promoter region indicates the
presence of several putative cis-acting elements associated
with water deficit response corroborating the results obtained
with Northern blots. Taken together, all those results allow to
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suggest that VUPAT1 might be involved in membrane degra-
dation induced by water stress.

Several other putative regulatory sequences including phy-
thormone response were detected in Vupatl promoter, which
suggests that this protein is involved in a wide variety of
cellular and developmental responses.

An involvement in the oxylipin pathway should also be
considered. The release of linolenic acid from membranes is
a key step in the formation of signalling molecules like jas-
monic acid that induce transcriptional activation of water
deficit [42], wound and pathogen responsive genes [43]. Pata-
tin-like proteins with PLA; activity were proposed to be in-
volved in such transduction pathways [17,44,45] and recently
it was suggested that a galactolipid ‘lipase’ must provide the
polyunsaturated FA that undergo peroxidation by enzymes
located on the chloroplast envelope [46,47].

Despite the growing interest in the fields of stress and senes-
cence only a few reports exist on lipid deacylating enzymes in
such physiological conditions. In this work are presented the
cloning and expression of a gene encoding a galactolipid acyl
hydrolase that is stimulated by drought stress. Since VUPAT1
exhibits different properties from those of the patatin-like
proteins analyzed so far it would be of great interest to char-
acterize in detail the biochemical and molecular properties of
this family.
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