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Abstract Interleukin-6 (IL-6) is a multifunctional cytokine that
plays important roles in the immune system, hematopoiesis, and
acute phase reactions. Estrogens have significant roles in a
variety of biological events, such as the development and
maintenance of female reproductive organs, and bone and lipid
metabolism. Previous studies demonstrated that estrogens
suppress IL-6-induced osteoporosis and the growth of multiple
myeloma cells by repressing IL-6 and IL-6 receptor gene
expression. Here we present a novel mechanism for the inhibitory
effect of estrogens on IL-6 function. IL-6-induced activation of
signal transducer and activator of transcription 3 (STAT3)
activity and STAT3-mediated gene expression were suppressed
by 17B-estradiol (E2) in breast cancer cells. E2-mediated
inhibition of STAT3 activation was reversed by tamoxifen, an
estrogen receptor (ER) antagonist. We provide evidence that the
inhibitory action of ER on STAT3 activity was due to direct
physical interactions between STAT3 and ER which represents a
novel form of cross-talk between STAT3 and ER signaling
pathways. © 2000 Federation of European Biochemical Soci-
eties. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates
immune and inflammatory responses [1,2]. IL-6 also acts as a
regulator in many malignant tumors, including breast cancer
cells [3]. The receptors for the IL-6 family of cytokines share
the gpl30 molecule through which signals are generated,
although the cytoplasmic region of gpl130 does not contain
any catalytic domain. Instead, the Janus kinase (Jak) family
of protein kinases constitutively associate with gp130 and are
activated by the IL-6 family of cytokines [4], leading to the
tyrosine-phosphorylation and activation of signal transducer
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and activator of transcription (STAT) family of transcription
factors.

One member of the STAT family of proteins is STAT3
which is mainly activated by IL-6 family of cytokines, epider-
mal growth factor, and leptin [2,5]. Like other members of the
STAT family, STAT3 is tyrosine-phosphorylated by Jak ki-
nases, upon which it dimerizes, and translocates into the nu-
cleus to activate target genes [5,6].

Estrogen receptor (ER) is a ligand-activated transcriptional
factor that is a member of the nuclear receptor superfamily
[7]. Estrogens play an important role in the differentiation and
development of various organs, in the maintenance of proper
cellular function in a wide variety of tissues and are also
characterized as risk factors for breast and endometrial cancer
in women [8].

ER activates transcription through interaction with estro-
gen response elements (EREs) in the enhancer region of target
genes and directly regulating their transcription [7].

In the previous studies, estrogens have been shown to in-
hibit IL-6 functions in osteoblast and multiple myeloma cells
by repressing IL-6 production and IL-6 receptor expression
[9-12] Consistent with these findings, ovariectomy in IL-6
knockout mice did not cause osteoporosis [13], indicating
that IL-6 is essential for the bone loss caused by estrogen
deficiency. Recent studies have also demonstrated that the
ER can directly interact with the transcription factors NF-
IL6 and NF-xB and can thereby inhibit their DNA binding
activity [14,15]. This, in turn, might be the molecular basis for
repression of IL-6-dependent gene expression by estrogens.
However, no direct effect of ER on the downstream molecules
of the IL-6 signaling pathway has been documented.

In this study, we provide an evidence for a new mechanism
by which estrogens inhibit IL-6 function which is mediated by
direct physical and functional interactions between STAT3
and ER.

2. Materials and methods

2.1. Reagents and antibodies

Human recombinant IL-6 was a kind gift from Ajinomoto (Tokyo,
Japan). Human recombinant leukemia inhibitory factor (LIF) was
purchased from Intergen (Purchase, NY, USA). 17B-Estradiol (E2),
retinoic acid (RA), dexamethasone (DEX), la, 25-dihydroxyvitamin
D;(1,25(0OH),;D3) and tamoxifen were purchased from Wako Chem-
icals (Osaka, Japan). FLAG-tagged STAT3-C [16], human ERo
(HEGO), Vit-luciferase (LUC), human VDR, DR3-LUC, human
RARa, BRE2LUC [17], C/EBPS ¢cDNA and STAT3-LUC (18) were
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kindly provided by Dr. J.F. Bromberg (Rockefeller University, New
York, USA), Dr. P. Chambon (Institut de Chimie Biologique, Stras-
bourg, France), Dr. D.J. Mangelsdorf (University of Texas South-
western Medical Center, Dallas, TX, USA), Dr. S. Akira (Osaka
University, Osaka, Japan) and Dr. T. Hirano (Osaka University, Osa-
ka, Japan), respectively. Anti-ERa antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-FLAG M2
was purchased from Upstate Biotechnology (Lake Placid, NY, USA).

2.2. Cell culture, transfections, and LUC assays

Human breast cancer cell line MCF7 was a kind gift from Cell
Resource Center for Biomedical Research (Tohoku University, Sen-
dai, Japan) maintained in DMEM containing 10% FCS. Before stim-
ulation, the cells were cultured for 24 h in DMEM containing 2%
TCM (ICN) followed by treatment with IL-6 and/or E2 [19]. MCF7
cells (2-2.5%10° in a 6-cm dish) were transfected by using LipoTAXI
(Stratagene) following the manufacturer’s instructions. 293T cells were
transfected in DMEM containing 1% FCS by the standard calcium
precipitation protocol. LUC assay was performed as described [20].
The cells were harvested 48 h after transfection and lysed in 200 ul of
PicaGene Reporter lysis buffer (Toyo Ink, Tokyo, Japan) and assayed
for LUC and B-galactosidase activities according to the manufactur-
er’s instructions. LUC activities were normalized to the B-galactosi-
dase activities. Three or more independent experiments were carried
out.

2.3. Northern blot analysis

MCEF7 cells were maintained as described above. After serum star-
vation, cells (1x107) were treated with 1L-6 (100 ng/ml) and/or E2
(1078M) for 6 h. Total RNAs were prepared by using Iso-Gen (Nip-
pon Gene) and used in Northern analysis according to established
procedures. A nylon membrane (Hybond N*, Amersham Pharmacia
Biotech) and radiolabelled cDNA probes, as indicated, were used.

2.4. Immunoprecipitation and immunoblotting

The immunoprecipitation and Western blotting were performed as
described previously [20]. Cells were harvested and lysed in lysis buffer
(50 mM Tris-HCI, pH 7.4, 0.15 M NaCl, containing 0.5% NP-40,
1 uM sodium orthovanadate, 1 uM phenylmethylsulfonyl fluoride
and 10 ug/ml each of aprotinin, pepstatin and leupeptin). The immu-
noprecipitates from cell lysates were resolved on 5-20% SDS-PAGE
and transferred to Immobilon filter (Millipore, Bedford, MA, USA).
The filters were then immunoblotted with each antibody. Immunore-
active proteins were visualized using an enhanced chemiluminescence
detection system (Amersham Pharmacia Biotech).

3. Results and discussion

3.1. Estrogens inhibit IL-6-induced STAT3 activation

To examine the molecular basis of the cross-talk between
IL-6 and estrogen signaling pathways, we utilized an IL-6-
responsive, ER-positive breast cancer cell line, MCF7, and
the transient transfection assay. The STAT3-mediated tran-
scriptional responses were measured by using STAT3-LUC,
in which the a2-macroglobulin promoter [18] drives expres-
sion of the LUC reporter gene. ER activity was monitored by
using Vit-LUC in which two copies of an ERE drive expres-
sion of the LUC gene. MCF7 cells were transfected with
STAT3-LUC and treated with IL-6 and/or E2 and LUC ac-
tivities were determined. As shown in Fig. 1A, IL-6 stimulated
STAT3-LUC activity, whereas E2 alone did not show effect.
When cells were treated with both IL-6 and E2, STAT3-LUC
activity was decreased by 40-50% compared with the activa-
tion by IL-6 alone.

To further examine whether estrogens affect 1L-6-induced
transcriptional activation of cellular genes, we carried out
Northern analysis on RNA samples prepared from MCF7
cells which were induced by IL-6 and/or E2. As a cellular
target for IL-6/STAT3, we analyzed the expression of C/
EBPo (CCAAT/enhancer binding protein §) which is a regu-
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Fig. 1. Estrogens inhibit IL-6 induced STAT3. A: MCF7 cells were
grown in a 6-cm dish and transfected with STAT3-LUC reporter
(1 pg) and then stimulated with IL-6 and/or E2 as indicated. 48 h
after transfection, cells were stimulated for an additional 12 h. Cells
were harvested and relative LUC activities were measured. The re-
sults are presented as fold induction of LUC activity from triplicate
experiments, and the error bars represent the standard deviations.
B: Effect of C/EBPS expression by IL-6 and/or E2 in MCF7 cells.
Northern blot analysis of 20 pg of total RNA from LNCaP cells
treated with IL-6 (100 ng/ml) and/or E2 (10~3M) for 6 h. The fold
induction of C/EBPJ expression was shown as the densitometric
intensity. Glyceraldehyde-3-phosphate dehydrogenase (G3PDH)
mRNA is included as a loading control (lower panel).

lator of acute-phase response genes in hepatocytes and is up-
regulated by IL-6 treatment [21]. As shown in Fig. 1B, IL-6
treatment induced C/EBPS expression in MCF7 cells by 5-fold
and this activation was decreased by 40% in the presence of
E2, whereas E2 alone did not affect C/EBPS expression. These
data show that E2 inhibits IL-6-induced transcription in
MCEF7 cells.

3.2. Reconstitution of the cross-talk between STAT3 and ER
signaling pathways in 293T cells

To further delineate the mechanisms of cross-talk between
STAT3 and ER signaling pathways, we carried out transient
transfection experiments in 293T cells. Cells were transfected
with STAT3-LUC with or without an expression vector for
ERa were stimulated with LIF [19] in the absence or presence
of E2. As shown in Fig. 2A, STAT3-LUC activity was stimu-
lated by LIF, whereas E2 alone did not change this activity.
In the presence of ERa and LIF, E2 suppressed STAT3-LUC
activity in a dose-dependent fashion. These results indicate
that the inhibitory effects of E2 on STAT3 transcriptional
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Fig. 2. Reconstitution of cross-talk between STAT3 and ERa signaling in 293T cells and comparison with other nuclear receptors. 293T cells
were transfected with 1 pg of reporter constructs STAT3-LUC (A, B, C, D), Vit-LUC (A), GRE-LUC (B), BRE2-LUC (C) or DR3-LUC
(D), together with ERo (A), GR (B) and VDR (D) expression construct (1 ug) or control vector (1 pg). 48 h after transfection, cells were
stimulated for an additional 12 h with LIF (100 ng/ml) and/or E2(A), DEX (B), RA(C) and 1,25(OH),D; (D) as indicated. Cells were har-
vested and relative LUC activities were measured. The results are presented as the fold induction of LUC activity from triplicate experiments,

and the error bars represent the standard deviations.
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Fig. 3. Tamoxifen reverses the inhibitory effect of E2 on STAT3 activation in 293T cells. 293T cells were transfected with STAT3-LUC (1 pg)
(A) or Vit-LUC (1 pg) (B) together with ERa expression construct (1 pug) or empty vector, pSG5 (1 pg). 48 h after transfection, cells were
stimulated for 12 h with or without LIF (100 ng/ml) and/or E2 (1077 M), and/or Tamoxifen as indicated. Cells were harvested and relative
LUC activities were measured. The results are presented as fold induction of LUC activity from triplicate experiments, and the error bars rep-

resent the standard deviations.
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Fig. 4. E2 inhibits a constitutively active form of STAT3 and evidence for physical interactions between STAT3 and ERo. A: 293T cells were
transfected with STAT3-LUC (1 ug) (A) or Vit-LUC (1 pg) (B) together with ERo and/or STAT3-C expression construct (1 ug) or the empty
vector (1 pg). 48 h after transfection, cells were stimulated for 12 h with or without E2 as indicated. Cells were harvested and relative LUC ac-
tivities were measured. The results are presented as fold induction of LUC activity from triplicate experiments, and the error bars represent the
standard deviations. B: 293T cells were transfected with FLAG-tagged STAT3-C (5 ug) alone or together with ERa (10 pug). 48 h after trans-
fection, cells were treated with E2 (10~% M) for 12 h. Cell lysates were then immunoprecipitated and immunoblotted with anti-FLAG or anti-

ERo antibodies as indicated.

activity can be reconstituted in 293T cells similar to those
observed in MCF7 cells.

We then assessed the reverse situation for the effects of
STAT3 on ER activity in 293T cells, using Vit-LUC as a
reporter gene. When ER was expressed in 293T cells, E2 treat-
ment resulted in a robust increase in Vit-LUC activity (Fig.
2A). E2-induced Vit-LUC activity was modestly augmented
by LIF in 293T cells, whereas LIF alone did not affect report-
er activity.

We also examined the cross-talk between STAT3 and reti-
noic acid, la, 25-dihydroxy vitamin D3, and glucocorticoid
receptors (RAR, VDR, and GR) in the reconstituted system
in 293T cells (Fig. 2B-D). As previously reported [22], GR
stimulated STAT3 activation in the presence of DEX, whereas
GR activity, when assessed by GRE-LUC, was not affected
by STAT3 in 293T cells (Fig. 2B). Neither RAR nor VDR
affected STAT3 activation by LIF treatment in 293T cells in
the presence of their respective ligands. Similarly, the tran-



T. Yamamoto et al.IFEBS Letters 486 (2000) 143-148

scriptional activities of these receptors assessed by appropriate
reporter constructs, BRE2-LUC and DR3-LUC, respectively,
were not affected by STAT3 activation (Fig. 2C,D). These
data suggest that inhibition of STAT3 activation in 293T cells
is not a general phenomenon of nuclear receptors, but highly
specific for ER.

3.3. Tamoxifen can reverse the inhibitory effect of E2 on
STAT3 activation

To further assess the specificity of E2 function on STAT3
activation, we utilized the anti-estrogen, Tamoxifen. STAT3-
LUC was transfected into 293T cells in the presence of an
expression vector for ERa, cells were treated with LIF in
the absence or presence of E2 and/or Tamoxifen. The inhib-
itory effect of ER/E2 on STAT3 activation was reversed by
Tamoxifen when cells were treated with increasing concentra-
tions of Tamoxifen (Fig. 3A). On the other hand, E2-induced
Vit-LUC activity was inhibited by Tamoxifen in a dose-de-
pendent manner (Fig. 3B). These results indicate that the in-
hibitory effect of E2 on STAT3 activation in 293T cells is
mediated by ERo.

3.4. Estrogens inhibit STAT3 activation by an active form of
STAT3

Several studies demonstrated that estrogens downregulate
IL-6 production and its receptor expression by acting on their
transcription activities [9—12]. To avoid these effects on inhi-
bition of STAT3 activation by E2, we used a constitutively
active form of STAT3, STAT3-C [16]. 293T cells were trans-
fected with STAT3-LUC and expression vectors for ERa
and/or STAT3-C and the cells were either left untreated or
stimulated with E2. As shown in Fig. 4A, STAT3-LUC ac-
tivity was stimulated by STAT3-C, whereas E2 alone did not
change this activity. In the presence of ERoa, STAT3-LUC
activation by STAT3-C was inhibited when cells were simul-
taneously treated with increasing amounts of E2. These results
indicate the presence of a direct cross-talk between ER and
STATS3 in 293T cells.

3.5. STAT3 and ER physically interact in vivo

One of the mechanisms that is consistent with the data
described above is that there are direct physical interactions
between ER and STAT3. We tested this possibility by co-
immunoprecipitation experiments. Expression vectors encod-
ing wild-type ERo. and/or FLAG epitope-tagged STAT3-C
were transiently transfected into 293T cells. Cells were either
left untreated or treated with E2, lysed, and subjected to im-
munoprecipitation with either an anti-ER monoclonal anti-
body or anti-FLAG antibody. Immunoprecipitates were
then used in Western blot analysis with the appropriate anti-
bodies. As shown in Fig. 4B, ERa physically associated with
STATS3 in the presence of E2, regardless of which one was
immunoprecipitated first. These data indicate that STAT3 and
ER physically interact in vivo.

3.6. Conclusive remarks

In the present study, we have shown that E2 negatively
regulates IL-6 signaling mediated by STAT3 in an IL-6 re-
sponsive, ER-positive breast cancer cells and that the recon-
stituted ER signaling in 293T cells suppresses STAT3-medi-
ated transcription in the presence of E2. Inhibitory effects of
E2 on STATS3 activation were reversed by the anti-estrogen,
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Tamoxifen. Furthermore, we demonstrated that active ER
directly associates with and acts as a transcriptional co-factor
for STAT3.

RA was also shown to inhibit the IL-6-induced growth in-
hibition and apoptosis in a radiation-induced murine hema-
topoietic cell line, Y6, without suppressing the IL-6-induced
junB gene expression [23]. However, our results indicated no
cross-talk between STAT3 and RAR (Fig. 2C). Similarly, the
cross-talk between STAT3 and VDR was not observed in the
reconstituted 293T cells (Fig. 2D), although both IL-6 and
1,25(OH),; D3 induce the macrophage differentiation in murine
myeloid leukemia cells (M1) [24]. Interestingly, the cross-talk
between STAT3 and GR was observed in the reconstituted
293T cells (Fig. 2B). It was previously reported that the inter-
action between STAT3 and GR enhances GR-mediated tran-
scription but not STAT3-mediated transcription, suggesting
that STAT3 is a transcriptional co-activator for GR [22].
However, our results suggest another form of interaction be-
tween STAT3 and ER, which leads to the repression of tran-
scription at the STAT3 binding site. Further understanding of
biochemical effects between STAT3 and ER may provide a
clue to develop new drugs for osteoporosis, multiple myeloma
and breast cancer.
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