FEBS Letters 484 (2000) 48-54

FEBS 24228

Srb7p is essential for the activation of a subset of genes
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Abstract The mediator complex in the RNA polymerase II
holoenzyme is known to be involved in transcriptional activation.
The role of the essential mediator component Srb7p has been
difficult to investigate, since no conditional lethal allele has been
available to date. While the expression of Srb7p under the
control of a repressible promoter is not sufficient to reduce the
level of Srb7p beneath the threshold for survival, we have been
able to isolate a clone termed ts16 which confers a temperature
sensitive phenotype. ts16 contains an insertion mutation that
requires translational frameshifting for correct expression of
Srb7p, leading to extremely low protein levels. Strains bearing
the ts16 construct show mild defects in the transcription of
constitutive genes like TDH1 but severely affect activated
transcription, e.g. of the GAL1 gene. In contrast, CUP1, which
is also independent of other holoenzyme components, is not
affected by ts16. © 2000 Federation of European Biochemical
Societies. Published by Elsevier Science B.V. All rights re-
served.
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1. Introduction

Recruitment of the RNA polymerase II machinery is an
important step in transcriptional activation [1,2]. Recent evi-
dence suggests that the polymerase is brought to the promoter
as a holoenzyme complex [3-5] containing a subset of the
general transcription factors, the mediator subunit and the
Swi/Snf complex [6]. The mediator subunit is sufficient to
confer to an in vitro reconstituted transcription system the
ability of responding to activator proteins [4]. It consists of
16 polypeptides including the Med proteins and a subset of
the Srb (suppressor of RNA polymerase B) proteins [7]. The
Med proteins have been identified biochemically because of
their presence in the mediator [7,8] while the Srb proteins were
discovered in a genetic screen with a truncated C-terminal
domain (CTD) of the largest subunit of RNA polymerase
II. Mutations in the Srb proteins were able to suppress the
cold sensitive phenotype of yeast strains with such a CTD
truncation [3,9]. Within the mediator, the Srb proteins 2, 4,
5 and 6 form a small subcomplex together with Med6p and
Rox3p [10,11]. Of the Srb proteins, Srb proteins 4, 6 and 7 are
essential. Studies with temperature sensitive (ts) alleles of
SRB4 and SRB6 or deletion strains of SRB2 and SRBS
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have shown that these proteins are needed for efficient tran-
scription of the vast majority of RNA polymerase II genes
[3,12,13]. One of the notable exceptions is the CUP1 gene,
which is also independent of Kin28p, the kinase subunit of
TFIIH [14,15]. In contrast to these Srb proteins, a ts mutant
of Med6p was shown to selectively affect transcription of
some activated yeast genes [16]. Even more specifically, muta-
tions in Med9p or Med10p cause defects in the induction of
only certain activated genes [17]. A conditional lethal mutant
of Srb7p has not been available to date. Here we report that a
ts allele of SRB7 negatively affects transcription of some but
not all genes to a moderate degree, while impairing the acti-
vation of a subset of genes.

2. Materials and methods

2.1. Yeast strains and plasmids

Parental yeast strains were JDS53 (mato wra3-52 leu2-3,-112
his3A200 lys2-801 trplA63), the isogenic a strain JD52 [18] and strain
NLY?2 (mato gal4- gal80- ade- ura3-52 leu2—1 his3A200 trpl—1 lys2A3)
[19]. Strains JD53Asrb7 and NLY2Asrb7 were generated by first trans-
forming plasmid YCplac33 [20] containing SRB7 with its own pro-
moter and terminator and then deleting the chromosomal copy of
SRB7 by homologous recombination with a linearised construct con-
sisting of the SRB7 promoter, the LYS2 gene and the SRB7 termi-
nator. The resulting Lys+ strains are suitable for the plasmid shuffle
method. The plasmid Pgall-SRB7 contains 660 bp GALI promoter
sequences and the coding sequence and terminator of SRB7 generated
by polymerase chain reaction (PCR), with the second codon ex-
changed from ACA to TAC (see text) in vector YCplacl11 [20]. Strain
JD53::PgallSRB6 was made by replacing the chromosomal SRB6
promoter with the TRP1 gene and 660 bp GAL1 promoter sequences
using a cassette consisting of SRB6 upstream sequences, the TRPI
gene, the GAL1 promoter and the SRB6 coding sequence with the
second codon AGC replaced by TAC. The correct recombination was
checked by growth phenotype and PCR with genomic DNA. Plasmid
dihydrofolate reductase (DHFR)“SRB7 contains the CUP1 promoter
and ubiquitin-DHFR" sequences of pPW66R (BamH1/BamHI1 and
BamH1/Asp718 fragments) [21] and the coding sequence and termi-
nator of SRB7 in vector YCplac22 [20]. In the original ts16 construct,
an Escherichia coli DNA sequence (see text) replaced the BamHI-
Asp718 fragment of pPW66R. In addition, there was a base insertion
mutation in the third codon of SRB7. To eliminate the CUPI pro-
moter, a PCR generated fragment containing all sequences down-
stream of the ATG of ubiquitin was subcloned into YCplaclll.
This construct was used in most experiments. A construct starting
with the E. coli DNA sequence (compare Fig. 2) was also generated
and tested for ts and mating defect phenotypes. Plasmid Pcupl GAL4
contains 450 bp CUP1 promoter sequence and the coding sequence
and terminator of GAL4 in vector pRS314 [22]. Yeast cells were
grown in YPDA or dropout medium [23]. Galactose media contained
2% galactose instead of glucose. 5-Fluoro orotic acid (FOA) medium
contained 0.5 g/l FOA [24].

2.2. Primer extension

Yeast strain JDS53Asrb7 was transformed with plasmids
SRB7wtYCplaclll or tsl6, streaked on FOA medium to eliminate
the URA3 marked SRB7wt plasmid and cells were grown in YPDA
medium. RNA was prepared as described [25] and primers
(TTGCAGCTACCACATTGGCATTGGCACTCA for CUPI and
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AAACGAAATAAATCTCTTTGTAAAACGGTTCA for U6) were
labelled with polynucleotide kinase [26]. Primer extension reactions
were carried out following the protocol for aqueous hybridisation
[27]. Samples were further treated according to [26] and resolved on
a 6% polyacrylamide 7 M urea gel.

2.3. Northern blots

RNA preparation and Northern blot were carried out as described
[25,26]. For the probes, gel purified PCR fragments of the ACTI,
TDHI, GAL1 and MFal coding sequences were labelled with Kle-
now fragment and random hexanucleotide primers. For CUPI, the
promoter and coding sequence was used to generate a longer probe.

3. Results

3.1. Expression of Srb7p from a glucose repressed promoter
still supports cell viability

In order to investigate the function of an essential protein
like Srb7p, it is necessary to create a conditional lethal allele.
One way to achieve this is to place the coding sequence of the
gene in question under the control of a repressible promoter,
e.g. the GALI1 promoter. The resulting yeast strain should be
viable under inducing conditions (galactose) but non-viable
under repressing conditions (glucose). To achieve faster deg-
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radation of the protein after the switch from galactose to
glucose medium, we changed the codon following the ATG
to TAC, coding for tyrosine instead of threonine. According
to the N-end rule, this should increase the turnover of the
protein [28]. Surprisingly, the Pgall-SRB7 construct supports
cell viability also under repressing conditions, even at elevated
temperature (Fig. 1A). However, a Western blot using aSrb7p
antibody confirmed that Srb7p expression in this strain was
regulated in a carbon source dependent manner (Fig. 1B). In
contrast to the results with Srb7p, placing SRB6 under the
control of the GAL1 promoter in a similar strategy led to a
conditional lethal strain as predicted (data not shown). For
both the SRB6 and the SRB7 deletion, the entire open reading
frame (ORF) had been deleted and the respective expression
vectors contained the ORFs under the control of heterologous
promoters and terminators. Therefore, we can exclude homol-
ogous recombination as a way for the promoterless SRB7 or
the ts16 clone to support viability. In case that the unexpected
result for Srb7 was a peculiarity of the GAL1 promoter, we
also tested the MET3 promoter which is repressed in the
presence of methionine. But like Pgall-SRB7, Pmet3-SRB7
also supports cell viability under inducing as well as repressing
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Fig. 1. Expression of Srb proteins from a repressible promoter. A: Strain JD53Asrb7 was transformed with empty vector (left), SRB7wt on a
LEU2-marked plasmid (middle) or a plasmid carrying the SRB7 coding sequence under the control of the GALI promoter (right). The con-
struct is depicted on top; T—Y is a mutation of the second amino acid to achieve faster degradation, see text for details. The Pgall-SRB7
strain can still grow under repressive conditions (glucose FOA medium). The control plates do not contain FOA and thus allow retention of
the URA3 marked SRB7wt plasmid. The strain with empty vector does not contain any other source of SRB7 and cannot grow on FOA me-
dium (left). B: Western blot showing the expression of Srb7p in strain JD53Asrb7 from the Pgall-SRB7 plasmid in galactose medium (left) and
its repression in glucose medium (middle). For comparison, the expression of Srb7p from its own promoter (SRB7wt) is shown (right). Two
different exposures of the same blot are shown. The asterisk marks a non-specific band recognised by the a:Srb7p antibody.
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SRB7 |
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Fig. 2. Clone tsl6 is a ts allele of SRB7. A: Growth phenotype of different SRB7 constructs. Strain JD53Asrb7 was transformed with plasmids
carrying the SRB7wt sequence (top), the heat inducible degron based construct DHFR®SRB7 (middle) or clone tsl16 (bottom). Growth was
tested on FOA containing media at different temperatures. While the DHFR®SRB7 construct unexpectedly supports growth even at 36°C, the
clone ts16 confers a ts phenotype. B: Clone ts16 contains DNA sequences from the E. coli genome instead of a promoter and a base insertion
mutation leading to a frameshift just after the ATG. Top: Schematic representation of clone ts16. Bottom: Effect of the base insertion. The in-
serted A is marked in grey. The amino acid sequence of both native Srb7p and the predicted translation product of clone ts16 is given. The as-
terisk marks a stop codon generated by the frameshift. C: Western blot with aSrb7p antibody. Left: Strain JD53Asrb7 expressing wild-type

Srb7p. Right: Strain JD53Asrb7 expressing Srb7p from clone tsl16.

conditions even though the amount of Srb7 protein was re-
duced in medium containing methionine (data not shown).
These results indicate that very low levels of Srb7p expression
are sufficient for cell viability.

3.2. Identification of a ts allele of SRB7

As an alternative method to create a conditional lethal al-
lele of SRB7, we used the heat inducible degron system [21].
But the DHFR®SRB7 construct supported cell viability also
at high temperatures and did not confer a conditional lethal
phenotype. However, one clone tested in this set of experi-
ments showed the expected ts phenotype (Fig. 2A). This clone,
termed tsl6, turned out to be a cloning artefact with two
alterations compared to the DHFR®SRB7: first, it contained
E. coli DNA sequences (640 bp comprising upstream sequen-
ces and the first 191 codons of the araB gene) instead of the
DHFR sequence. Second, there was a one base insertion in
the third codon of the SRB7 sequence. This insertion muta-
tion leads to a frameshift and, as a result, to a stop codon at
position 4 of SRB7 (Fig. 2B). Clone ts16 does not contain a
bona fide yeast promoter. Several control constructs were
tested to determine the nature of the effect elicited by this
cloning artefact. Different observations were made: (i) the

SRB7 coding sequence lacking any kind of promoter is suffi-
cient to support cell viability; (ii) the E. coli DNA fused to the
SRB7 coding sequence without the base insertion supports cell
viability also at 36°C; (iii) the E. coli DNA alone or the SRB7
coding sequence with the frameshift mutation alone cannot
support viability even at 30°C. Therefore, both the E. coli
DNA and the frameshift mutation are needed to give the
conditional lethal phenotype. Since the frameshift creates a
stop codon just after the ATG of SRB7, it is a plausible
assumption that translation in clone ts16 may start only at
the second ATG in the SRB7 sequence, corresponding to
codon 15. However, a construct with the first 14 codons de-
leted but under the control of the natural SRB7 promoter
does not support cell viability, indicating that the N-terminus
is an essential part of the Srb7 protein. It therefore seems that,
despite the frameshift mutation, the N-terminus of Srb7p is
correctly expressed from clone ts16, probably via a rare trans-
lational frameshifting event (see Section 4). In a Western blot,
Srb7p is not detectable in a strain bearing the ts16 construct
(Fig. 2C). Although the exact nature of its ts phenotype is not
understood, clone ts16 fulfils the requirements for a condi-
tional lethal allele and can thus be used to study the function
of Srb7p.



A. Gromdéller, N. Lehming/ FEBS Letters 484 (2000) 48-54 51

A B

SRB7 wt ts16 SRB7 wt ts16
min at 36°C: 0 60 120 0 60 120 Acti - e
cup1  — GAPDH i
U6 control — rANA
50 uM Cu: -+ -+ -+ -+ -+ -+ CUP1 .

Fig. 3. Transcription in strain JD53Asrb7 bearing an SRB7wt plasmid or clone ts16. A: Primer extension analysis using a CUPI specific prim-
er. As a control for the reaction and loading efficiency a primer for the snRNA U6 was used in the same reaction (bottom). CUPI transcrip-
tion was induced by adding CuSOy4 to a final concentration of 50 uM 30 min prior to harvesting where indicated. Some cultures were incu-
bated at the restrictive temperature for ts16 (36°C) for the indicated times. B: Northern blot with ACT1 and TDHI probes. The rRNA and a

blot with a CUP1 probe are given as controls.

A B
SRB7 wt ts16 AntimycinA YPDA YPGal

hat36°C 3h 5h 3h 5h
Galactose 2h 4h 2h 4h

Gal 1

e e g SRB7wt ®00w |
tsite [ 9%

CUP1 %w o

SRB7wt

0,5 ng/mi
ts16

wt ts16

Gal 1

rBRNA

Fig. 4. Effect of tsl6 on GALI transcription. A: Northern blot with a GALI probe with strain JD53Asrb7 bearing an SRB7wt plasmid (left)
or clone ts16 (right). Cultures were induced by growth in 2% galactose medium for the indicated times. The incubation temperature was
switched to 36°C 1 h prior to galactose induction. However, the marked decrease in GALI transcription caused by tsl6 is also seen at 30°C
(compare C). The rRNA and a CUPI blot are given as controls. B: Growth phenotype on galactose medium. 10-fold serial dilutions of strain
JD53Asrb7 bearing an SRB7wt plasmid or clone ts16 were spotted onto glucose or galactose medium containing the indicated amounts of the
respiration inhibitor antimycin A. C: Northern blot with a GAL1 probe with strain NLY2Asrb7 bearing an SRB7wt plasmid or clone ts16 and
a plasmid with the coding sequence of Gald4p under the control of the CUP1 promoter to ensure equal expression of Galdp. Cells were grown
at 30°C and induced in Trp~ galactose medium (selecting for the GAL4 plasmid) for 4 h. The rRNA and a blot with a CUP1 probe are given

as controls.
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3.3. Clone tsl6 has no effect on transcription of CUPI and only
minor effects on ACTI1 and TDHI

To investigate the role of Srb7p in transcription, the effects
of clone ts16 were analysed on the level of RNA. First, we
looked at the CUP1 message. CUP1 was previously shown to
be independent of both Srb4p [14] and Kin28p [15]. Fig. 3A
shows a primer extension experiment with a strain bearing the
clone ts16 and a CUP1 specific primer. As a control, a primer
for the snRNA U6 was used. U6 is transcribed by RNA poly-
merase III and is therefore independent of the polymerase II
specific Srb7p. CUPI is transcribed at equal levels in SRB7wt
and ts16 strains under induced and non-induced conditions,
even after incubation at the restrictive temperature for the
ts16 clone. Thus CUPI transcription is independent not
only of Srb4p and Kin28p, but also of Srb7p, and can be
used as a control for further experiments. In Fig. 3B, the
ACT1 and TDHI1 messages were analysed by Northern blot.
Both are expressed below wild-type level in the ts16 strain
even at the permissive temperature. Incubation at the restric-
tive temperature yields comparable results. In the example
shown, both ACT1 and TDHI1 expression were normalised
to the CUPI expression that served as a control and quanti-
tated to be two-fold reduced compared to the strain bearing
the SRB7wt plasmid. In other experiments, the effect was even
less pronounced. Clone tsl6 therefore has a detectable but
minor effect on the expression of constitutive genes like
ACT1 and TDHI.

constitutive expression
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Fig. 5. Effect of ts16 on mating factor expression. A: Northern blot
with an MFal probe with strain JD53Asrb7 bearing an SRB7wt
plasmid (left) or clone ts16 (right). The rRNA and a blot with a
CUP1 probe are given as controls. B: Mating efficiency defect
caused by tsl6. Mixed cultures of JD53Asrb7 bearing an SRB7wt
plasmid or clone tsl6 (both Lys+) and JD52::His3 (His+) were
grown overnight and 10-fold serial dilutions were spotted onto
plates lacking histidine or lysine to control for equal concentrations
of cells of both mating types and onto plates lacking both histidine
and lysine selecting for diploid cells (bottom). Mating in the strain
with clone ts16 is less efficient.

3.4. Activation of GALI and MFal is impaired in strains
bearing the tsl6 mutant

As an example for an inducible gene, we looked at the
GAL1 mRNA. As seen in Fig. 4A, GALI1 expression is se-
verely compromised in the strain bearing the ts16 construct.
This effect is observed at both 30 and 36°C. The defect in
GAL gene expression also leads to a growth defect on galac-
tose medium for the ts16 strain. Transcription defects at the

slightly affected
due to structural
change

-

activated transcription

@
TATA

compromised due to
lack of SRB7 containing
holoenzymes

Gall l

Fig. 6. Model for the effects of clone tsl16. In a strain with ts16 as the only source for Srb7p, Srb7p is expressed at extremely low levels. Thus
the majority of RNA polymerase II holoenzymes does not contain Srb7p. In the case of constitutive expression, the lack of Srb7p leads to
only minor effects. Srb7p is not essential for this process, but structural changes in the holoenzymes lacking Srb7p may lead to minor defects
(top). In contrast, Srb7p is required for activated transcription, e.g. at the GAL1 promoter. If only a small fraction of holoenzymes contains
Srb7p, transcription from these promoters is severely compromised (bottom).
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permissive temperature are commonly found for the ts alleles
of transcription factors [29-31], especially if they display a
slow growth phenotype as does the tsl6 strain. However,
while the slow growth phenotype of a tsl6 strain is more
pronounced on galactose than on glucose medium, the growth
defect only becomes really apparent in the presence of the
respiration inhibitor antimycin A (Fig. 4B). The effect of
ts16 on GAL1 expression could be a direct or indirect effect.
Since GALI1 transcription is activated by Galdp, ts16 might
simply reduce Galdp levels and thus prevent GAL1 activation.
To rule out this possibility, we used a GAL4 deletion strain
with a construct containing the GAL4 coding sequence under
the control of the CUP1 promoter. In this strain, Galdp
should be expressed at equal levels in the wt and ts16 strain,
because the CUP1 promoter is not influenced by ts16 (Fig.
3A). The experiment depicted in Fig. 4C demonstrates that
under these conditions, GALI expression is still impaired in
strain ts16, arguing that the effect is direct. To test if clone
ts16 has a similar effect on other activated genes, we looked at
the mRNA levels of the mating factor MFol. Similarly as for
GALI1, MFal expression was reduced to background levels in
a ts16 strain (Fig. 5A). Again, this transcriptional defect cor-
responds to a phenotype, since mating efficiency in strain ts16
is reduced (Fig. 5B).

4. Discussion

In experiments with SRB7 constructs under the control of
repressible promoters or with the heat inducible degron sys-
tem we have been able to demonstrate that low levels of Srb7p
are still sufficient for cell survival. When using repressible
promoters, another explanation might also account for the
lack of an effect: if Srb7p were itself necessary for repression,
a kind of feedback loop would prevent the protein level from
dropping beneath the threshold necessary to keep up the re-
pression at the promoter used in the SRB7 construct. The
question of repression, however, was not addressed in this
study. We used the conditional lethal SRB7 allele ts16 to
study the role of Srb7p in constitutive and activated transcrip-
tion. The ts16 construct lacks a bona fide yeast promoter and
contains E. coli DNA sequences instead. In addition, it con-
tains a frameshift mutation that creates a stop codon just after
the ATG. Since the N-terminus turned out to be essential for
Srb7p function it must, at least in part, be expressed correctly
from clone ts16. The event of such a translational frameshift-
ing leading to a 100-fold reduction in protein levels is a
known phenomenon in yeast [32]. We propose that frame-
shifting occurs at a low frequency and that the extremely
low level of Srb7p in ts16 cells is responsible for the ts phe-
notype. However, the E. coli DNA sequences are also needed
in the ts16 clone to allow cell survival. They may exert an
effect at the level of transcription or RNA stability, but
most likely they influence the frameshifting event. Since the
araB coding sequence in the E. coli DNA is in frame with the
ATG of SRB7, a possible explanation is that tsl6 cells
express a fusion protein, with the N-terminal extension facil-
itating the translational frameshifting that would otherwise
have to occur extremely close to the translational start site.
In this case, the N-terminal extension might also contribute to
the effects elicited by clone ts16. A direct demonstration of the
putative fusion protein has not been possible, due to too
many cross-reacting bands produced by the anti-Srb7p anti-

53

body in the relevant area of the Western blot (data not
shown).

The analysis of transcription in strains bearing the tsl16
clone defined three kinds of genes. First, transcription of the
CUPI1 gene was not affected by tsl6. Since CUPI is also
independent of Srb4p and Kin28p [14,15], this result confirms
its exceptional status. All other genes tested were affected by
ts16, but to very different degrees. While the expressions of
the constitutive genes ACT1 and TDHI1 was only mildly re-
duced, expression of the activated genes GAL1 and MFal
was almost completely impaired. We propose that the minor
effects on e.g. TDHI1 transcription are not due to a direct role
of Srb7p in this process but rather to an indirect effect such as
a structural change in holoenzymes lacking the Srb7 protein
(Fig. 6). The dramatic effect on GAL1 and MFal transcrip-
tion, however, argues that Srb7p is essential for activated
transcription from these promoters. This behaviour of the
ts16 strain resembles that of a Med6p ts mutant, which also
selectively affects activated transcription [16]. In a more recent
study, it was proposed that signals of activator proteins to
different mediator subunits might be transmitted to Med6p
as a central regulatory subunit [17]. Since Med6p is part of
the small mediator subcomplex while Srb7p, like potential
activator targets such as Med9p or Med10p, is localised in
the large subcomplex [11], one might speculate that Srb7p
acts between the two. It will be very interesting to more
closely define the relationship between Med6p and Srb7p.
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