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Abstract The Synechocystis sp. PCC 6803 genome encodes
four putative homologues of the AAA protease FtsH, two of
which (slr0228 and sll1463) have been subjected to insertional
mutagenesis in this study. Disruption of sll1463 had no
discernible effect but disruption of sIr0228 caused a 60%
reduction in the abundance of functional photosystem I, without
affecting the cellular content of photosystem II or phycobili-
somes. Fluorescence and immunoblotting analyses show reduc-
tions in PS I polypeptides and possible structural alterations in
the residual PS I, indicating an important role for slr0228 in PS I
biogenesis. © 2000 Federation of European Biochemical Soci-
eties. Published by Elsevier Science B.V. All rights reserved.

Key words: AAA protease; Cyanobacterium;
Photosynthesis; Photosystem I; Synechocystis

1. Introduction

Photosynthetic electron transport and photophosphoryla-
tion are carried out by large protein—pigment complexes in
the thylakoid membranes of cyanobacteria and chloroplasts,
and these complexes contain some of the most abundant pro-
teins in nature. Despite their abundance and complexity (pho-
tosystem (PS) II alone contains over 20 different polypeptides)
astonishingly little is known about their assembly.

The AAA (ATPases associated with a variety of cellular
activities) proteases are widely, if not universally, distributed
in prokaryotes and eukaryotes and have been implicated in
processes as diverse as cell cycle regulation, protein degrada-
tion, vesicle-mediated transport, and organelle biogenesis (re-
viewed in [1,2]). Members of the AAA protease superfamily
are characterised by one or two copies of a highly conserved
230-250 amino acid AAA motif [1] also referred to as the
conserved ATPase domain or CAD, which evolutionary anal-
ysis suggests was present in the last common ancestor of eu-
bacteria, archaebacteria and eukaryotes [3]. The AAA motif
itself contains three boxes of particularly highly conserved
residues, two of which can be assigned to motifs A and B
of the Walker-type ATPases and the third may be a portion
of the catalytic centre [4]. FtsH is an archetypal member of
the AAA protease superfamily. The ftsH gene was first iden-
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tified by the isolation of a temperature-sensitive Escherichia
coli mutant defective in septation [5] and encodes a polypep-
tide of 71 kDa with two potential membrane-spanning o-heli-
ces towards the N-terminus with the rest of the polypeptide,
including the ATPase domain, being presumably cytoplasmic
[6]. A further characteristic of the cytoplasmic domain of
FtsH is a zinc metallo-protease signature [7]. FtsH is involved
in a number of processes in E. coli (for review see [8]) includ-
ing the degradation of a number of unassembled proteins and
the control of phospholipid and lipopolysaccharide biosynthe-
sis [9].

Recently, using an antibody against the E. coli FtsH pro-
tein, Lindahl et al. [10] demonstrated the presence of a cross-
reacting protein in the thylakoids of spinach that appeared to
be an integral membrane protein with a hydrophilic portion
exposed to the stroma. Isolation and characterisation of an
Arabidopsis cDNA revealed a protein with a high degree of
similarity to FtsH, which was capable of import into isolated
chloroplasts where it was processed to its mature form and
targeted to the thylakoid membrane. Genes encoding FtsH
homologues have also been characterised in the chloroplast
genomes of red and brown algae [11,12]. Light-stimulated
degradation of an unassembled Rieske FeS protein has been
shown to involve a FtsH-like thylakoid-associated protease
[13] and FtsH has been implicated in the secondary degrada-
tion steps of the PS II D1 protein [14].

Sequencing of the complete genome of the cyanobacterium
Synechocystis sp. PCC 680 revealed the presence of four open
reading frames (ORFs) encoding polypeptides which appeared
to be homologues of FtsH [15] (http://www.kazusa.or.jp/
cyano/). The purpose of the research described was to estab-
lish whether any of these four cyanobacterial proteins plays a
role in the assembly of the thylakoid-associated photosyn-
thetic protein-complexes.

2. Materials and methods

2.1. Growth of cyanobacteria

The laboratory strain of Synechocystis sp. PCC 6803, which exhibits
a spreading colonial morphology and does not utilise glucose [16], was
grown in BG11 medium [17] supplemented with 10 mM sodium bi-
carbonate at 30°C and at a light flux of 30 uE m~2 s~! (PAR) in an
illuminated shaking incubator. Solid media were prepared by the ad-
dition of 1.5% Difco Bacto-agar.

2.2. DNA manipulations, PCR and insertional mutagenesis
Restriction enzymes and T4 DNA ligase were used under the con-
ditions recommended by the manufacturers. Standard molecular bio-
logical procedures were carried out as described by Sambrook et al.
[18]. PCR primers were designed using Primer Designer version 3

0014-5793/00/$20.00 © 2000 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

PII: S0014-5793(00)01871-8



N.H. Mann et al./[FEBS Letters 479 (2000) 72-77

(Educational and Scientific Software). For each of the four ORFs to
be mutated the primers were designed such that the forward primer
was upstream of the ORF startpoint and the reverse primer was in the
C-terminal portion of the ORF and that a convenient restriction site
compatible with one of the drug resistance cassettes was roughly cen-
tral to the fragment to be amplified. The primers for the four ORFs
are as follows: slr1604 (F) 5'-GGCCACTAGCACCGTCATTA-3'
(R) 5'-ACCGGTGGTGACTTCCTCTT-3" (1678 bp); slr1390 (F)
5'-CTGATGGCCACCATGGCTAA-3" (R) 5-GTGGCCGCAAT-
GACAATGAT-3" (1397 bp); slr0228 (F) 5'-GCCGTTCCGTCTT-
GCAATTC-3" (R) 5'-ATGGCGTGGCCTACTTCGTG-3" (1684
bp); (sll1463) 5S'-TACAAGCCGCCTGTGAACTG-3" (R) 5'-ACCA-
ATACCTGGCGATCGAA-3’ (1416 bp). The PCR products for the
four ORFs were cloned into pCR2.1 using a TA cloning kit (Invitro-
gen). ORF slr1604 was mutated by insertion into a Smal site of the
3.7 kb Smal fragment from plasmid pUIDCI [19]. The 2 kb Q frag-
ment from plasmid pHP45 [20] was inserted into the Accl site and
Nhel site of slr0228 and sll1463 respectively. ORF slr1390 received the
1.4 kb kanamycin resistance fragment from plasmid pKRP-11 [21]
into a Bsgl site. Synechocystis sp. PCC 6803 was transformed with
each of the constructs and selection made for the appropriate anti-
biotic. Representative colonies from each transformation were
streaked out three times to allow for segregation and their genotype
was confirmed by both PCR and Southern blotting.

2.3. Transformation of Synechocystis sp. PCC 6803

Synechocystis sp. strain PCC 6803 was transformed as described
elsewhere [22]. Cells were grown to a density of 2-5X10% cells ml~!
and collected by centrifugation at room temperature. After resuspen-
sion in fresh growth medium to a density of 1Xx10° cells ml~! they
were used immediately for transformation. 150 pl cell suspension was
mixed with plasmid DNA and incubated for 1 h. After incubation the
mixture was spread onto the non-selective BG-11 plates. After incu-
bating the plates under standard conditions for 18 h to allow for
expression of antibiotic resistance in the transformed cells, the appro-
priate antibiotic was placed underneath the agar. Antibiotics were
used at the following concentrations: kanamycin (5 pg ml™!), chlor-
amphenicol (7.5 ug ml™'), spectinomycin (25 pg ml~"). Colonies of
transformed cells were usually seen after a week of incubation.

2.4. Preparation of total membranes, SDS—PAGE and Western blotting

Synechocystis membranes were isolated according to England and
Evans [23]. Membrane fractions corresponding to 1 pg chlorophyll
and 15 pg protein were analysed by SDS-PAGE and immunoblotting
using antibodies to PsaF, PsaD and PS I-9. Detection was made using
Enhanced Chemiluminescence according to the manufacturers instruc-
tions (Amersham).

2.5. Measurement of absorption and fluorescence spectra

Cell absorption spectra were measured in an Aminco DW2000
spectrophotometer. Fluorescence emission spectra were measured at
77 K in a Perkin-Elmer LS50 luminescence spectrometer. Cells were
resuspended in growth medium to a concentration of 5 uM chloro-
phyll, injected into 4 mm diameter silica tubes, dark-adapted for 5 min
and then frozen in liquid nitrogen. The excitation and emission slit-
widths were 5 nm.

2.6. Estimation of the cell content of PS I, PS II and phycobilisomes

Cell density of cultures was estimated from light-scattering at 750
nm. A haemocytometer was used to calibrate the measurement for
Synechocystis cells. Chlorophyll a concentrations were estimated from
the absorbance of methanol extracts at 665 nm [24]. The ratio of
phycocyanin to chlorophyll was estimated from the cell absorption
spectrum, using the formulas of Myers et al. [25]. Thylakoid mem-
branes were isolated as described by Mullineaux [26]. An absorption
spectrum of the phycobilin-containing supernatant from the prepara-
tion was used to calculate the phycocyanin/allophycocyanin ratio [27].
Phycobilisome content was estimated on the assumption that there are
66 allophycocyanin subunits per phycobilisome core [28]. PS I content
was estimated spectrophotometrically. Thylakoid membranes were
homogenised and resuspended to a chlorophyll concentration of 10
UM. An absorption difference spectrum was then recorded for mem-
branes in the presence of ascorbate or ferricyanide (2 mM). The con-
centration of Py was estimated from the maximum absorption differ-
ence (at approximately 702 nm) using an extinction coefficient of 64
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mM~! em~! [29]. PS II was assayed from the binding of '#C-labelled
atrazine [30]. Whole cells were incubated for 5 min in the dark with
different concentrations of the labelled atrazine. The samples were
then centrifuged and the supernatants were separated from the cell
pellets. The supernatants were mixed with a scintillation cocktail and
counted in a scintillation counter. The amounts of atrazine bound by
the cells were estimated by reference to the counts from a series of
known dilutions of the atrazine. The PS II content of the samples was
assumed to be equivalent to the saturating amount of atrazine bound.
This was estimated by weighted linear regression on a double-recip-
rocal plot of atrazine added versus atrazine bound.

3. Results

The genome of the cyanobacterium Synechocystis sp. PCC
6803 has been completely sequenced and shown to encode
four ORFs which represent putative FtsH homologues [15].
An alignment (Fig. 1) of these four ORFs with FtsH from
E. coli, together with the chloroplastic FtsH-homologue from
Arabidopsis thaliana, reveals that the six proteins exhibit ex-
tensive similarity/identity and that the four cyanobacterial
proteins contain the highly conserved ~230 amino acid
AAA protease domain, including the two nucleotide binding
motifs and the SRH motif, as well as a zinc-binding motif
characteristic of the active site of zinc-metalloproteases. Fur-
thermore, the Pedant database (http://pedant.mips.biochem.
mpg.de/) [31] indicates that the proteins encoded by slr1390
and sll1463 are likely to have one N-terminal transmem-
brane region and ORFs slr1604 and slr0228 are likely to
have two.

The sequence information available for the cyanobacterial
genes presents the opportunity to investigate the involvement
of their protein products in the assembly of components of the
photosynthetic apparatus. The four genes encoding putative
FtsH homologues were cloned and insertionally mutated with
drug resistance cassettes (for details see Section 2). Transfor-
mation into Synechocystis sp. PCC 6803 of each of the four
mutated genes would be expected to primarily yield recombi-
nants in which double crossovers replaced the chromosomal
copy of the gene with the mutated copy via marker exchange.
The pCR2.1 vector is unable to replicate in cyanobacteria and
consequently after segregation the transformants should carry
only the insertionally mutated copy of the gene in question.
Since cyanobacteria contain multiple copies of the genome,
representative transformants for each construct were streaked
out three times to permit complete segregation of cells carry-
ing mutant genomes. Thus, each mutant strain would contain
one mutated fzsh-like gene and three wild type ftsH-like genes.
Analysis by both PCR and Southern hybridisation of repre-
sentative clones for mutated ORFs slr0228::Q and sll1463::Q
for confirmed complete segregation (data not shown), thus
ruling out the presence of any residual copies of the unmu-
tated gene. Since the transformants were able to segregate
clones which lacked the wild type copy of the gene it can be
inferred that neither of these genes by themselves are essential,
in contrast to the E. coli ftsH gene [7]. In contrast, analysis of
representative clones carrying mutations in ORFs slr1390 and
slr1604 revealed incomplete segregation even after multiple
rounds of restreaking which would suggest that these ORFs
encode proteins essential for cell viability. Visual screening of
the transformants indicated that only in the case of clones
carrying the mutant allele slr0228::Q was there a marked
change in pigmentation with colonies appearing more blue
than blue-green. This change in pigmentation was confirmed



74

N.H. Mann et al.IFEBS Letters 479 (2000) 72-77

0228 1z
1390 3z
1604 22
ARATH 79
1463 23
ECOLI 1z
0zzs :  =--PLLVVGFFFUQG--------------- SFGGADA----NLGS--NTANTRMTHGRFI#E AGRMTSVDLYEN--GRTAIVQVSDPE---VDRTLR 83
1330 :  A--)#PVSTLAQEGGEGAQPKASPSPIQSPNSSNGEATPRSFFNSGSP-RSAEP GQL Q) EVDTN--RRQAIVTLKDAP---PGSKPQ : 124
1604 : A--JBASAFFDRPT------—-==-=== QT------- RETLS--—-=—===—=—=—=~ SDF| EANQMERVNLSAD----RTQAQVPNPS----- GGPP 75
ARATH :  SSPPALAVVDEPASPSVVIESQAVKPSTPSPLFIQNEILKAPSPRKSSDLPEGSQURHSEF CRYERVRFSKD----GSVYQLTAVD----- NRRA : 170
1463 H SUYVGQNEIRYQLKPEAEDEG---KERAAR : 84
ECOLI REARINGR----EINVTKKD------ SNRYT : 67
0zzs S L--PTNAPEMIARARD SN--MRLDSHPVRNNG-MVWGFVGNLIFP 171
1390 :  T-lOL--LDNNPEMLNLARSRSETMDLDINRTPDNS-ALYGLLTNLLVV. 210
1604 :  YL@N---LPNDPDAINIMTQHN--WDIAVQPQSDEG-FWFRIASTLFLPI 160
ARATH :  SVM----VPNDPDMIDI G--fYPISVSEGESSGNDLFTVIGNLIFPL| 261
1463 :  GQUMLRTTPIFDLEMPKRMAEAKG--MEFAAAPPAKNS--WFGTLLSWVIPP 173
ECOLI 1 TYM----PVQDPRMLDNIAL TKN- -| GEPPEEPS--LLASIFISWFP! 151
0zzs .-'FFFF'JEHF’.-‘CV ! HE-Ar S §
1390 .-'PFFF'JE!IF'.-'G*E‘ x FAJENEN HE )
1604 .:'PFFF'."E!IFVG‘IZ‘ 3 » CAAANEN @ 260
ARATH VP FFERINUSFUVELFV : 361
1463 273
ECOLI 251
0zzs 369
1390 408
1604 358
ARATH 459
1463 373
ECOLI 349
02zs8 H R 2 LEW d WIL TERSRRKS. LLEIDD 467
1330 H RR WIF TRRIRRKE EVND! 506
1604 H R RYSB T 2 ) L 118 RNLTE| EVND! 457
ARATH H JR4T CAD LN ) L 118 RDVKE| EISD 558
1463 : T N LUNEALLA QD S{YEADFRE! 473
ECOLI H R “HL'.-'NEP.AL GNKR! EFE 448
0zzs SLESSGGE 56z
1330 LEEEGD 601
1604 LGRQGGG! 556
ARATH VGGPGGNP 657
1463 YDKGQQ! 568
ECOLI LYAEEEGE 544
0228 ARYARVPUKEQLIPQL-----==------- o m o mm——m e mm—mm o oo 627
1390 ESYQQSQRQPALACK- - : 665
1604 LANNNAKLALLV . 6l6
ARATH FIDG- : 709
1463 LGQVQAPGT LYV - - - ———— - — - — - e 628
ECOLI RRDVRPPAGWEEPGASNNSGDNGSPKAPRPVDEPRTPNPGNTMSEQLGDK  : 644

Fig. 1. A Clustal W 1.74 alignment of E. coli FtsH (ECOLI) and the homologues from Synechocystis sp. PCC 6803 (0228, 1390, 1604, 1463)
and A. thaliana (ARATH). Groups of conserved or identical residues are shown in inverse video.

by the whole cell absorption spectrum (Fig. 2), which revealed
a marked increase in the phycocyanin/chlorophyll ratio. The
apparent alteration in the abundance of PS I was confirmed
and extended by assays for the cell content of PS II, PS I and
phycobilisomes, the results of which are summarised in Table
1. These results show that the cell content of PS II and phy-
cobilisomes in mutant slr0228::Q is largely unchanged com-
pared to the wild type, but there is a 60% reduction in the
number of functional PS I reaction centres per cell. The anal-
ysis of PS Il-chlorophyll obtained by measurement of the
binding of !#C-atrazine is shown in Fig. 3. Under normal
laboratory conditions the growth rate of mutant slr0228::Q
was only slightly reduced compared to that of the wild type
(data not shown).

Fig. 4 shows low-temperature fluorescence emission spectra
for cells of mutant slr0228::Q and the wild type. Excitation
was at 435 nm (light absorbed primarily by chlorophyll a in
the PS II and PS I core complexes). The peaks at about 685
and 692 nm arise from PS II, and the peak at about 725 nm
from PS 1. In comparison to the wild type, the mutant shows
a decrease in fluorescence emission from PS I relative to PS II
(the spectra are normalised to the PS I peak because the
absolute amplitudes of fluorescence spectra from frozen sam-
ples are unreliable). This is consistent with the decreased PS
II/PS T ratio in the mutant (Table 1). The spectrum for the
0228 mutant also shows a blue-shift in the PS I fluorescence
emission maximum, from 725 to 722.5 nm. This shift is not
simply a consequence of the altered PS I/PS II ratio, because
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Fig. 2. Whole cell absorption spectra of wild type Synechocystis sp.
PCC 6803 (solid line) and the slr0228::Q mutant (broken line).

it has not been observed in other cases where the PS I/PS II
ratio changes. It suggests that the PS I centres present in the
0228 mutant are structurally different from those in the wild
type. In contrast, there was no alteration in the abundance of
PS II and there was no detectable shift in the absorbance
difference spectrum for P;oy (data not shown).

The spectrophotometric analysis cannot distinguish between
the possibilities of a general reduction in normally functional
PS 1, a heterogeneous population of PS I with a proportion of
inactive or partially active complexes, or a homogeneous pop-
ulation of partially active PS I complexes. Western blotting
using antibodies raised against components of PS I was used
to establish whether PS I polypeptides were present in normal
or reduced abundance (Fig. 5). The SDS-PAGE profile of
total membranes from the wild type and mutant (Fig. 5A)
shows few differences with the exception of unidentified
new, diffuse bands representing proteins of about 32 kDa
and 23-25 kDa. However, differences in the content of PS I
proteins are revealed by immunoblotting carried out with
samples loaded at either constant chlorophyll or constant pro-
tein. Since the mutant has a reduced chlorophyll content, the
logical comparison is likely to be on the basis of constant
protein. Antibodies raised against Synechocystis sp. PCC
6803 PsaD and PsaF revealed a reduction in both polypep-
tides, which was more marked under loadings of constant
protein and consistent with the 65% reduction in PS I ob-

Table 1
A summary of the effects of the slr0228::Q mutation on the light-
harvesting structures of Synechocystis sp. PCC 6803

Wild type Mutant
slr0228::Q

Chlorophyll/cell 1.70x 107 1.39x 107
Phycocyanin/chlorophyll 0.519 0.649
Phycocyanobilin/cell 8.82x10° 9.02x 10°
Phycocyanin/allophycocyanin 4.35 3.81
Phycocyanobilin/phycobilisome 431 377
Phycobilisomes/cell 20500 23900
Chlorophyll/PS 1 187+£5 390+ 19
PS I/cell 9100022000 360001500
Chlorophyll/PS 1T 370+ 33 293 £60
PS Il/cell 460004000 4700010000
PS I/PS 11 2.0+0.2 0.79+0.17
PS I/phycobilisome 44+0.1 1.5%0.1
PS Il/phycobilisome 22+0.2 2.0+04
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Fig. 3. PS II assay of wild type Synechocystis sp. PCC 6803 (circles,
solid line) and the slr0228::Q mutant (squares, broken line) pre-
sented as a double reciprocal plot of atrazine added versus atrazine
bound. Both samples were at the same chlorophyll concentration.
The lines are derived from weighted linear regression; the intercept
with the y-axis gives the concentration of PS II.

served by difference spectroscopy. An antibody raised against
whole PS I from barley recognised a 15 kDa polypeptide in
Synechocystis membranes, which was likewise reduced in the
mutant.

4. Discussion

The results demonstrate that inactivation of the slr0228
gene causes a marked reduction in the abundance of func-
tional PS I and a probable alteration in its structure, with
no apparent significant effects on the content of PS II or
phycobilisomes. Western blotting indicated a reduced abun-
dance of PsaD and PsaF in thylakoids from mutant
slr0228::Q which was consistent with the spectrophotometric
data. Since other PS I polypeptides have been shown not to
accumulate in the absence of the PsaA/B reaction centre pro-
teins [32,33] it may be assumed that PsaA/B were present in at
least the same abundance as the non-core polypeptides. Thus,
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Fig. 4. Low-temperature fluorescence emission spectra at 77 K (nor-
malised at 725 nm) of wild type Symnechocystis sp. PCC 6803 (solid
line) and the slr0228::Q mutant (broken line). Excitation was at 435
nm.
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Fig. 5. Protein analysis of total membrane preparations from wild type Synechocystis sp. PCC 6803 and the slr0228::Q mutant. A: Coomassie-
stained gel of total protein from wild type (WT) and 0228 mutant cells (0228). Mobilities of molecular weight markers (in kDa) are indicated.
B: Western blots probed with antibodies against (a) PsaD, (b) PsaF and (c) barley PS 1. The tracks are as follows: wild type (1) and
slr0228::Q mutant (2) loaded at constant protein, and wild type (3) and slr0228::Q mutant (4) loaded at constant protein. The relative band
intensity, measured by laser scanning densitometry, is shown in the upper panel.

it would appear that either (a) there is a reduced abundance of
fully functional PS I complexes, or (b) that there is a reduced,
but heterogeneous population of partially active PS I. There is
also the question of the residual assembly of PS I, albeit with
slightly altered properties as indicated by the blue shift in the
low temperature fluorescence emission spectrum. It would
seem reasonable to assume that one or more of the other three
cyanobacterial FtsH homologues can, to a restricted extent,
replace the function of the slr0228 gene product in the assem-
bly of PS I. This is being tested by the construction of multi-
ple ftsH mutants.

The effect of the slr0228::Q mutation on the assembly of
PS I may be direct or indirect. The ORFs on either side of the
slr0228 gene are on the opposite strand of the DNA and
therefore slr0228 is not part of an operon. Consequently there
is unlikely to be a polarity effect of the interposon, but also no
clue to the function(s) of the gene can be obtained from ex-
amining the homologies of co-transcribed genes. Indirect ef-
fects of the mutation might be to cause a reduction in the rate
of transcription of PS I genes or the translation of PS I
mRNAs. There are a number of points at which the slr0228
gene product might be directly involved in the assembly of
mature, functional PS T complexes that are consistent with the
presence of PS I complexes in the thylakoid in reduced abun-
dance. The mutation might lead to a reduced or incorrect
insertion of PS I polypeptides into, or through, the thylakoid
membrane. These possibilities can be considered in the light of
the activities of closely related proteins. The gene product of
slr0228 falls into the SF6 sub-family of AAA proteases as
defined by Beyer [4]. This subfamily, which includes the F.
coli FtsH, the FtsH-like proteins from Synechocystis sp. PCC
6803 and A. thaliana, as well as YtalOp and Ytal2p proteins
from Saccharomyces cerevisiae, is apparently restricted to eu-
bacteria, chloroplasts and mitochondria. E. coli FtsH is in-
volved in the proteolytic degradation of specific proteins (for
review see [2,8]), but has also been suggested to function as a
molecular chaperone [34]. This idea is supported by the ob-
servation that over-production of GroEL/GroES and HtpG
can suppress some of the pleiotropic effects of ftsH mutations
[35].

Further support for the role of SF6 sub-family members

acting as molecular chaperones comes from the observation
that the Ytal0-12 complex of S. cerevisiae is required, inde-
pendently of its proteolytic function, for the assembly of the
mitochondrial membrane-associated ATP synthase [36]. Most
recently, a chaperone-like activity has been associated with the
AAA domain of the yeast Ymel AAA protease [37]. This
evidence would support the notion that the slr0228 gene prod-
uct may function as a molecular chaperone in the correct
assembly of PS I complexes, a topic which is currently being
investigated in this laboratory. Given the similarity of the
cyanobacterial and A. thaliana proteins (Fig. 1), a similar
molecular chaperone role may be suggested for in the chloro-
plastic FtsH. This proposed role would not exclude additional
functions relating to thylakoid protein turnover, such as a
quality control function degrading incorrectly assembled poly-
peptides/complexes. The E. coli FtsH can degrade both the
transmembrane and periplasmic domains of several integral
membrane proteins, provided they are not tightly folded
[38]. There is already evidence for the protein turnover func-
tion, given the apparent role of the FtsH in the light-stimu-
lated degradation of unassembled Rieske FeS protein [13] and
secondary degradation of DI [14].
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