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Abstract The solution structure of filipin III, an antifungal
polyene macrolide biosynthesized by Streptomyces filipinensis
and widely used for the detection and the quantitation of
cholesterol in biomembranes, has been calculated with a set of
geometrical restraints derived from 1H NMR in DMSO-d6 at
25³C. Filipin III appears as a rod-shaped molecule of 18 Aî
length. Its amphiphilic structure is made of an all-syn 1,3-polyol
motif, stabilized by intramolecular hydrogen bonds on one side,
and a conjugated pentaene moiety on the other side of the
molecule. The overall shape is comparable to cholesterol, and the
molecular structure of filipin III affords a first molecular basis to
the comprehensive understanding of the interactions possible in
the filipin III^cholesterol complex which is still unknown at the
atomic resolution. ß 2000 Federation of European Biochemi-
cal Societies. Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

The polyene macrolide antibiotic ¢lipin III has been iso-
lated in 1955 from Streptomyces ¢lipinensis cultured from
samples of Philippine soil [1]. Its covalent structure (Fig. 1)
was ¢rst established by a series of chemical degradation stud-
ies as a 28-membered lactone ring equipped with a 1,3-polyol
motif (eight hydroxyl groups) and a conjugated pentaene [2].
The too strong a¤nity of the ¢lipin III for cholesterol has
disquali¢ed this polyene for antifungal therapies in mammals
while other polyene macrolides as nystatin A1 and amphoter-
icin B are classic molecules used in such therapies [3]. This
strong a¤nity for cholesterol rendered however ¢lipin III a
useful tool for probing and quantifying histologically the pres-
ence of cholesterol in cell membranes [4]. The £uorescent ¢l-
ipin III^cholesterol complex is consequently used in the clin-
ical diagnosis of the type C of the Niemann^Pick inherited
disease, for which a resulting de¢cit of cholesterol in the cy-
toplasmic membrane is detected [5^7]. To date, no de¢nite
structural basis characterizing the polyene macrolide a¤nities

with sterols is available, mainly because such complexes are
soluble at a too low concentration (ca. 1 WM) for the NMR
analysis in aqueous solution.

Due to the lack of radio-crystallography data, ¢lipin III
absolute con¢guration has been established only recently by
means of chemical derivations of the native structure as 1PR,
2R, 3S, 5S, 7S, 9R, 11R, 13R, 15S, 26S and 27R as shown in
Fig. 1 [8]. Based on this assignment, the ¢rst total stereose-
lective synthesis has been published past year by Richardson
and Rychnovsky [9,10]. A conformational study of ¢lipin III
was also reported recently based on NMR data collected in a
mixture of DMSO-d6 and MeOH-d4 (2:3, v/v) [11], with num-
ber of erroneous structural and spectral assignments [12]. We
report herein the ¢rst solution structure of a polyene macro-
lide, the ¢lipin III, based on the revised and complete 1H-13C
NMR assignments in DMSO-d6 [12]. We used the magnitude
of 3J spin^spin coupling constants and ROE cross peaks to
derive a set of approximate geometric structural restraints.
This restraint set was used to explore the conformational
space accessible to ¢lipin III by protocols homologous to
those used for biopolymers as proteins and nucleic acids
[13,14].

2. Materials and methods

NMR spectra have been collected at 25³C for a 3 mM solution of
¢lipin III (Sigma) in 99.9% DMSO-d6 (CEA Eurisotope) as previously
described [12]. All the interproton distance restraints, derived from a
two-dimensional homonuclear ROESY experiment recorded with a
250 ms spin-lock mixing time [12], were classi¢ed into three categories
depending on their volume integration values using GIFA 4.2 soft-
ware [15]. Upper limit bounds were ¢xed at 2.7, 3.3 and 3.9 Aî for
strong, medium and weak correlations, respectively. The possibility of
spin di¡usion precludes higher precision in the derivation of distance
limits. The intensities of the H17-H19 ROE was considered as a refer-
ence intensity for strong correlations. Pseudo-atom corrections of the
upper bounds were applied for distance restraints involving the unre-
solved methylene and methyl protons (+1 Aî ) [16]. For non-stereo-
speci¢cally assigned but spectroscopically resolved diastereotopic
methylene protons, the interproton distances were treated as single
(Gr36f)31=6 average distances. Dihedral angle restraints were deduced
from the magnitude of 3JH;H coupling constants previously reported
[12].

Structures were calculated using the X-PLOR software version
3.851 [17]. Initial atomic coordinates and parameter structure ¢le
for ¢lipin III were generated step by step (given as supporting infor-
mation) from the X-PLOR libraries and topology ¢les of di¡erent
parts of other molecules, such as daunomycin or rapamycin, collected
from the Protein Data Bank (http://www.rcsb.org/pdb/). The result
was visualized using the program MOLMOL version 2.4 [18]. For
the widest possible sampling of the conformational space, we used a
protocol that starts from fully randomized atomic coordinates as
starting points for a simulated annealing algorithm (random SA)
under experimental NMR restraints as described previously
[13,19,20]. A simpli¢ed molecular force ¢eld (the allhdg.pro force ¢eld
of X-PLOR) was used. In particular, the non-bonded van der Waals
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interactions were represented by a simple repulsive quadratic poten-
tial. The experimental distance restraints were represented as a soft
asymptotic potential beyond the upper limit de¢ned, and electrostatic
interactions were ignored. The force constant associated with the dis-
tance restraints was kept at 209 kJ mol31 Aî 32 throughout the proto-
col. One cycle of random SA consisted of 1500 steps of 3 fs at 1000 K
followed by 3000 cooling steps of 1 fs from 1000 K to 100 K. At the
end each structure was subjected to 1500 steps of conjugate gradient
energy minimization.

DQF-COSY were calculated back using the Bruker NMRSim soft-
ware version 2.7.1 with the same digital resolution as the experimental
spectra [12]. The 3J coupling constants were determined from the
average of the coupling constants calculated for each torsion angle
of the ¢nal structures with the optimized Karplus-type empirical func-
tions [21].

3. Results and discussion

Thirty eight unambiguous distance and 14 dihedral angle
restraints (Table 1), derived respectively from ROESY experi-
ments and the magnitude of 3J spin^spin coupling constants,
were used for the structure calculations. From the 50 struc-
tures calculated, 29 structures with a total potential energy
below a threshold of 13 kJ mol31 were retained due to their
double satisfaction of NMR geometric restraints and the
back-calculated patterns of the cross peaks in the DQF-
COSY spectrum (given as supporting information on the
web edition of this article). The ¢lipin III models have no
ROE violations exceeding 0.1 Aî and no dihedral angle viola-
tions exceeding 5³. The structures are almost represented as a
single conformation of the macrocycle and superpose to the

geometric average using the heavy atoms (C and O) with root
mean square atomic deviation (rmsd) of 0.37 Aî excluding the
C1P-C6P part (Fig. 2A). Structural statistics of ¢lipin III struc-
tures are given in Table 2. The H^C^O^H torsions in the C1P-

Fig. 1. The molecular structure and absolute con¢guration of ¢lipin
III [6].

Table 1
Angle and interproton distance restraints deduced from spin^spin
3JH;H coupling constants and ROE cross peak volume integrations
for ¢lipin III measured at 1H = 400 MHz in DMSO-d6 and 25³C [9]

Position Angle restrainta ROEsa

1P H2 (180 þ 40³) ^
H³1P ^ H2PM
2 H3 (180 þ 40³) H2PW
3 H³3 (+90 þ 30³) H3PW, H³5M

H³3 ^ H4W, H5W

4 ^ H³5M

5 H³5 (+90 þ 20³) H³7M

H³5 ^ H6W, H7W

6 ^ H³7M

7 H³7 (+90 þ 20³) ^
H6a (+180 þ 60³)

H³7 ^ H8W

8 ^ H³9M

9 H³9 (+90 þ 20³) H³11M

H8a (+180 þ 60³)
H³9 ^ H10W, H11W

10 ^ H³11M, H13W, H³13W

11 H³11 (+90 þ 30³) H13W, H³13W

H12a (+180 þ 30³)
H10a (+180 þ 60³)

H³11 ^ h12W, H13W

12 ^ H³13W, H15W

13 H12b (+180 þ 30³) H14W

H14b
eq (+180 þ 30³)

H³13 ^ H14W

14 ^ H³15M

15 H14b
ax (+180 þ 30³) H17S, H19W

H³15 ^ H17M

24 ^ H26M, H³26W

25 ^ H³26M, H27M

26 ^ 27CHS
3

H³26 ^ H27S, 27CHS
3

aThe J coupling and ROE partners are listed only once according
to the proton having the lower number. Intensities of the ROEs are
strong (S), medium (M) or weak (W).
bRefers to the pseudo-axial (ax) or pseudo-equatorial (eq) orienta-
tion of these protons relative to the average plane of the macro-
cycle.

Fig. 2. Stereoviews of (A) 29 NMR structures of ¢lipin III superposed for a minimum root mean square deviation of C and O atoms of C2-
C27 segment. The C atoms are labeled according to their structural numbering indicated in Fig. 1. B: Stick representation and accessible sur-
face of the closest structure to the geometric average of the NMR ensemble shown in A of ¢lipin III. Dashed lines represent intramolecular hy-
drogen bonds between hydroxyl groups.
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C11 segment were restrained to +90 þ 20³ (Table 1) due to the
weak 3JHO;CH observed (6 3 Hz) [12]. H^C^O^H torsions re-
strained to 390 þ 20³ led to structures con£icting with other
restraints derived from ROE and the back-calculated DQF-
COSY patterns.

The hydroxyl hydrogens are hydrogen bonded to the neigh-
boring 1,3-hydroxyl oxygen from C11 to C1P (Fig. 2B),
though electrostatic and hydrogen bond energetic terms are
not taken into account in our calculation protocols (see Sec-
tion 2). The same arrangement of hydrogen bonds stabilizing
syn 1,3-polyol motifs has been already observed for a solution
in benzene-d6 of an acyclic C1-C10 polyol fragment of nysta-
tin A1 [22]. Syn 1,3-polyols are known to be stabilized in the
trans carbon chain conformations by intramolecular hydrogen
bonds between adjacent 1,3-diol motifs in apolar media [23].
However, these stabilizing intramolecular hydrogen bonds can
be strongly competed by interactions between the hydroxyls
and polar solvent molecules in polar media, leading to a mix-
ture of trans and gauche carbon chains [24]. For ¢lipin III, it
could be anticipated that the rigidity and the all-E C16-C25
conjugated pentaene is an important feature for the macro-
cycle restricted conformation. This restricted conformation
could participate in preserving the C1P-C11 1,3-polyol moiety
in an almost all-trans conformation with 1,3-hydrogen bonds
despite the presence of a polar solvent (DMSO-d6). Such all-
trans 1,3-polyol conformation was also characterized for vac-
idin A and rimocidin polyene macrolides using NMR [25,26].

Filipin III appears in its solution NMR structures, as a rod-
shaped molecule of 18 Aî length (from H14 to H28, Figs. 1
and 2) £anked by a linear ridge of hydroxyls interacting in a
hydrogen bond network from C1P to C11 (Fig. 2). Cholesterol
has a length of about 11 Aî for the tetracyclic rigid moiety
extended at ca. 18 Aî to the end of its lateral aliphatic chain. It
is known that exposure of sterol-containing biomembranes to
¢lipin III, causes a ¢lipin-induced extraction of sterols at the
origin of a global disorganization of the membrane [27]. The
structural features of ¢lipin III and cholesterol lead to imagine
possible speci¢c interactions of ¢lipin III and cholesterol that
could involve probably hydrophobic interactions along their
long axis, completed by a possible hydrogen bond involving
the cholesterol hydroxyl and a polar group located at one end
of ¢lipin III. Such a hydrogen bond with cholesterol, or in

general with sterols, has been demonstrated recently [13] of a
crucial importance for bacillomycin L, a member of lipidic
cyclo-octapeptides biosynthesized by Bacillus subtilis. In this
family [13], a conserved D-Tyr2 is thought to interact specif-
ically with sterols both by hydrophobic interactions and a
speci¢c hydrogen bond involving the D-Tyr2 hydroxyl as
the hydrogen donor to the cholesterol hydroxyl as the accep-
tor of the speci¢c hydrogen bond. The molecular structure
and solution conformation is the ¢rst structural basis avail-
able for a future characterization of the exact nature of the
¢lipin^cholesterol complex at atomic resolution.
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