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The role of protein structure in genomics
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Abstract The genome projects produce an enormous amount of
sequence data that needs to be annotated in terms of molecular
structure and biological function. These tasks have triggered
additional initiatives like structural genomics. The intention is to
determine as many protein structures as possible, in the most
efficient way, and to exploit the solved structures for the
assignment of biological function to hypothetical proteins. We
discuss the impact of these developments on protein classi-
fication, gene function prediction, and protein structure pre-
diction. © 2000 Federation of European Biochemical Socie-
ties. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The genome projects generate biological sequence data on a
breath-taking pace. The complete sequencing of the first ge-
nome (Haemophilus influenzae) [1], the first eukaryotic genome
(Saccharomyces cerevisiae) [2], and the first genome of a multi-
cellular organism (Caenorhabditis elegans) [3] are celebrated
milestones, and now the human genome, the most precious
of all, is on the finish line. In the wake of these achievements
we are confronted with the information revolution in biology
and medicine and we witness the creation of new paradigms
like genomic medicine, genomic health care, and genomic and
proteomic technologies [4]. No doubt we live in exciting times.

There is some way to go before we can take full advantage
of the tremendous amount of information encoded in the
genomes. Identifying the genes in a given genome, determin-
ing the biological role of their protein products, and under-
standing their interplay are challenging tasks that will keep
biologists busy in the years to come.

In understanding the genomes molecular structure plays an
important role. Lacking a three-dimensional structure our
knowledge of the biological function of a protein and its mo-
lecular interactions is largely incomplete. One of the goals of
structural genomics, therefore, is to determine as many struc-
tures as possible [5]. In spite of recent technical advances in
experimental structure determination, discovering the three-
dimensional structure of all protein products found in all
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the sequences genomes is a daunting task. The associated
workload prevents to determine the structure of every protein
by experimental techniques. But there is hope that in the long
run computational techniques that are based on experimental
data might provide a viable solution.

These initiatives in computational and structural genomics
trigger a number of interesting questions and pose interesting
problems. It is now well established that proteins often have
similar folds, even if their sequences are seemingly unrelated
[6]. Hence the number of sequences is much larger than the
number of folds. Therefore the number of distinct folds could
be small. If so, how many folds are there [7]?

Several classification schemes are available that organize
our current knowledge of protein structures in a systematic
way [8]. From these databases the number of distinct super-
families seems to be in the order of one thousand. It is clear
that such an estimate depends on the grain size used. Even if
two protein structures are similar, they are never identical.
Hence, a question particularly relevant for molecular model-
ing studies is whether fold space is discrete or continuous.

In the past protein structures were solved to understand
their biochemical function in atomic detail. Hence, as a rule,
the function was known before an attempt was made to de-
termine the structure. The attitude of the structural genomics
approach is radically different. Structures are solved to obtain
information on the biochemical function and biological role
of genes. But to what extent can we deduce function from
structure? This is not as straightforward as one might hope.
In fact this difficulty has triggered some doubts on the value
of protein structure factories and the structural genomics ini-
tiative as a whole. Below we address these questions in some
detail, concluding that the more structures are solved the bet-
ter.

2. Protein structure classification

The Protein Data Bank [9] has been accumulating thou-
sands of protein structures over the last years. In March
2000 the number of entries was 12000. In order to make
such a large amount of data understandable and usable, clas-
sification schemes have been implemented. Popular schemes
are SCOP [10], CATH [11] and FSSP [12]. SCOP is a hier-
archical classification based on human expertise where pro-
teins are grouped according to structure and evolutionary
relationships. CATH wuses a semi-automated classification
method that also follows a hierarchical scheme with clear
structure similarity thresholds. FSSP is an automated classi-
fication method based on pairwise structure comparison. A
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major advantage of FSSP is the constant update with the
latest PDB entries.

These classification databases provide an overall view of the
protein structure space. Currently in SCOP release 1.48, No-
vember 1999, there are 520 folds and 771 superfamilies. In
CATH, version 1.6, June 1999, there are 672 topologies and
1028 families. The total number of superfamilies is estimated
to be approximately 1000 [13], but other estimates are in the
range from 1000 to 6000 [8].

The question arises whether the classifications obtained are
similar across the various schemes. Recently the grouping at
fold and superfamily levels has been compared between
SCOP, CATH, and the pairwise matches in FSSP [14]. Two
thirds of all the pairs of proteins with the same fold in SCOP
also matched in CATH and FSSP, but there is a difference in
one third of the assignments. One reason for the observed
differences might be that in SCOP human expertise on evolu-
tionary relationships is used, while CATH and FSSP rely
more on sequence similarity and geometric criteria. Another
possibility is that the notion of discrete fold space is not
adequate so that boundaries between folds are difficult to
define.

3. Fold space, discrete or continuous

To address the question whether there are significant over-
laps among distinct fold types, we deliberately searched the
protein structure database using ProSUP [15] and found sev-
eral examples. Fig. 1 demonstrates that three proteins consid-
ered to belong to distinct folds in SCOP show structure sim-
ilarity. This is somewhat surprising considering that one of
them (1tphl) is a TIM barrel and the other two (1tadC and
2pgd) have the frequently observed three layer o-B-o sand-
wich architecture. Also, CATH differs from SCOP by classi-
fying 1tadC and 2pgd to belong to the same fold type. The
example indicates that fold classifications are somewhat arbi-
trary. Fig. 1 can even be extended to include additional folds
(Fig. 2), and one gets the impression that it is possible to
move around in structure space by hopping from one fold
type to the next. This is reminiscent of a continuous rather
than a discrete fold space. Orengo et al. [11] already observed
that the recurrence of structural motifs results in a continuum
of fold types. This was observed in the case of the three layer
o-B-a sandwich architectures and in the B sandwich architec-
tures.

Then is fold space continuous or discrete? The question is
somewhat academic as the answer is bound to lie between
these two extremes. On the one hand the notion of discrete
groups of folds forms the basis for useful classification
schemes, but on the other hand the boundaries between these
families are often difficult to define.

4. Structure and function

A question that comes up repeatedly in structure genomics
is to what extent function can be deduced from structure. To
answer that question one has to consider three categories. The
fold topology which describes structural similarity, the homol-
ogous superfamily that implies evolutionary relationship, and
functional similarity. Classification would be easy if proteins
follow the principle that whenever two proteins have the same
topology they belong to the same homologous superfamily
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and also have the same function. Of course, biology usually
is not as easy as that. Functions can be associated with differ-
ent folds (e.g. serine proteases), distinct homologous super-
families can have the same fold [13] (e.g. o/f} barrel or OB-
fold), and homologous superfamilies can evolve into distinct
functions [16]. There are even examples where proteins diverge
to distinct structures [16].

Nevertheless, if structure and function coincide in a large
number of cases, structural information would be helpful to
assign function to new proteins. Hence the question is how
often the functions of two proteins match when they are struc-
turally similar and at the same time have no significant se-
quence similarity. This correlation of protein structure and
function has been investigated by Koppensteiner et al. [17].
The result is that 66% of the proteins having a similar fold
also have a similar function. In other words, observing struc-
tural similarity without sequence similarity implies functional
relatedness in two out of three cases.

Currently for 17% of all protein sequences of complete ge-
nomes, functions can be assigned by sequence comparison
[18]. Exploiting structural information to the largest possible
extent could yield assignments for almost 50% [17]. The re-
maining question then is how we can obtain structural infor-
mation for a protein to deduce its function. One possibility is
to use structure prediction techniques like fold recognition
and ab initio prediction [19-21]. Although these techniques
are far from perfect it has been demonstrated that predicted
structures can be used to assign functions. Xu et al. [22] pre-
dicted the function of two hypothetical Methanococcus janna-
schii proteins. They suggested MJ0301 is a dihydropteroate
synthase (DHPS) and MJ0757 a tymidylate synthase (TS).
Both predictions have been verified experimentally. Similarly
Fan et al. [23] identified the accessory subunit of mtDNA
polymerase (poly) to be structurally related to the antico-
don-binding domain of class Ila aminoacyl-tRNA synthetases
and assigned the functions of processivity clamp and primer
recognition factor in mtDNA replication.

The second and most obvious possibility is to determine the
structure by X-ray crystallography and NMR. In fact to de-
termine as many possible structures as possible is the main
goal of structural genomics initiatives. The solved structure
can then be used to scan structure databases. If a related
structure is found then frequently functional information
can be deduced from the match. In the last 2 years several
pilot studies have addressed the feasibility of this approach by
solving the structures of several hypothetical proteins. A suc-
cessful function assignment was reported by Hwang et al. [24]
who identified the ORF MJ0226 of M. jannaschii as an novel
nucleotide triphosphatase for the non-standard nucleotides
XTP and ITP. This function was inferred from structural
similarity to nucleotide binding proteins and has been con-
firmed experimentally. Colovos et al.[25] recognized the
yeaC gene product of Escherichia coli as a hydrolase by struc-
ture comparison to N-carbamoylsarcosine amidohydrolase. In
the case of of the yjgF gene product of E. coli, insights for the
design of selective experiments were gained although a definite
functional assignment was not possible[26]. Cases where the
determination of structure resulted in a novel fold also can
yield important structure information. In the work of Zarem-
binski et al. [27] the function of ORF MJ0577 of M. jannaschii
was deduced from a bound ATP. Finally, by application of
the Fuzzy Functional Form technique Fetrow et al. [28] dis-



100

Fig. 1. Pairwise structure similarity across fold types. Structurally
equivalent regions are according to ProSUP. Transducin-a (1tadC)
has a three layer a-f-o sandwich architecture, it has 74 equivalent
residues relative to triose phosphate isomerase (1tphl), marked red
in both models. 6-Phosphogluconate dehydrogenase (2pgd), has also
a a-B-o. sandwich architecture. Marked red in the model are the 76
equivalent residues relative to 1tphl. In the superposition of 1tadC
and 2pgd there are additional equivalent residues (not shown). The
regions of similarity between these three folds overlap to a large ex-
tent.
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covered an active site similar to those of thiol-disulfide oxi-
doreductases in serine/threonine protein phosphatase-1,
although the folds are not related.

Another goal of structural genomics is to determine a set of
protein folds that covers fold space. Here the question what
are the chances that a structure determination results in a
novel fold is important. From the structures submitted to
PDB in 1998 only 200 domains had no sequence similarity
to a known structure [17]. Only one quarter of these corre-
spond to a novel fold. Taking into account the estimated
number of transmembrane and non-globular proteins, the
fraction of novel folds in complete genomes is estimated to
be in the order of 16%, a surprisingly low number. Hence
chances are high that a new structure resembles a known
fold. Therefore to cover fold space one should use appropriate
strategies to avoid redundant structure determination.

In terms of genome annotation novel folds are the most
valuable since they provide structural data for whole protein
families. A novel fold on average annotates 70 sequences in
the current non-redundant sequence database of NCBI (Table

1).
5. Conclusion

Although function assignment from structure is not as
straightforward as one might wish, it is clear that almost every
new structure significantly increases our knowledge and im-
proves our computational tools. First steps in the analysis of
genomes are gene finding and annotation of putative genes.
Gene and protein functions are discovered using search en-
gines like BLAST [29] and FASTA [30] to scan sequence data-

Fig. 2. Walking in fold space across fold types. Structurally equivalent regions are according to ProSUP. Carboxypeptidase G2 (1cg2A) shares
structure similarity to transducin-o. (1tadC), both have the same three layer o-f-o architecture. The 94 structurally equivalent residues are
marked red in the 1cg2A model. Triose phosphate isomerase (1tphl), is a TIM barrel fold and shares 74 equivalent residues relative to 1tadC,
marked red in both 1tphl and 1tadC. Ribonucleotide reductase protein R1 (Irlr), has 85 equivalent residues relative to 1tphl, marked red in
Irlr. There is a lower degree of structure similarity between 1cg2A and Irlr, where only to two helices and partially two strands match (not

shown).
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Table 1

From the analysis of Koppensteiner et al. [17] 30 novel folds were used to estimate the average number of sequences which can be annotated

with a novel fold

PDB Id Homologues PDB 1d Homologues

Close Distant Close Distant
pdbla68.- 154 71 pdblhp8.- 2 0
pdbla74.A 4 0 pdblhus.- 92 33
bl ¢ 3 - 7 2
pdblaiw.- pdbljsg.- 5
pdblal0.1 8 0 pdblkdx.A 18 3
pdblap8.- 35 4 pdblnoc.A 89 0
pdblapj.- 4 1 pdblrkd.- 13 248
dblavg A s s hdblioh- Io |
pdblavq. pdbltoh.-
pdblay2.- 146 87 pdbluch.- 21 11
pdblbag.- 10 25 pdblvgh.- 35 0
pdblbbg.- 8 0 pdblygs.- 59 17
pdblbgf.- 50 4 pdb2hgf.- 22 30
pdblbnl.A 21 0 pdb2kin. A 245 77
pdblfgj.A 5 0 pdb2kin.B 234 8

Homologous sequences for each fold were searched in the non-redundant sequence data base (NCBI server ftp://ncbi.nlm.nih.gov/blast/db/) us-
ing the iterative sequence search program PSI-Blast [40]. On average a novel fold can be linked to 46 close homologues (more than 30% se-
quence identity) and 23 distant homologues (less than 30% sequence identity). The number of homologues per fold varies considerable in the

range of 2 (pdblhp8) to 322 (pdb2kin.A).

bases for significant hits. Unfortunately, these databases con-
tain numerous errors [31], and consequently the results are
often misleading even if the sequence homology is significant.
In contrast, if the structure of at least one member of a pro-
tein family is known, then the annotation is almost always
reliable. Moreover, the structure often yields important infor-
mation on key residues and binding sites for all family mem-
bers that can form the basis of selective experiments.

In principle, the structure of proteins should be computable
from their amino acid sequences. But this protein folding
problem turned out to be a notoriously difficult. Nevertheless
there are signs of progress [19-21]. Approaches to structure
prediction come in three flavors. Comparative modeling starts
with the structure of a protein having clear sequence homol-
ogy to the target sequence. Fold recognition and threading
methods scan fold libraries to identify structures compatible
with the target sequence, and ab initio methods attempt to
predict a structure from sequence information alone.

What these methods have in common is that practically all
of them heavily rely on the knowledge pool of known struc-
tures in some way or another. Known structures are essential
for comparative modeling and fold recognition. The second-
ary structure prediction techniques [32] are trained on libraries
of known structures and many techniques that build struc-
tures from scratch either employ structural fragments derived
from known folds [33,34] or employ knowledge based energy
functions derived from the protein structure database [35-37].
Of course, the study and simulation of protein-ligand [38] and
protein—protein interactions [39], and virtual screening depend
on structures obtained from experiments. Hence, the large
scale protein structure determination efforts will fuel genome
annotation, functional assignments, and computational ap-
proaches with precious data, and the hope is justified that
the expanding database of molecular structures will trigger
major breakthroughs [5].
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