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Abstract Myotonic dystrophy protein kinase (DMPK) is a
serine^threonine protein kinase encoded by the myotonic
dystrophy (DM) locus on human chromosome 19q13.3. It is a
close relative of other kinases that interact with members of the
Rho family of small GTPases. We show here that the actin
cytoskeleton-linked GTPase Rac-1 binds to DMPK, and
coexpression of Rac-1 and DMPK activates its transphosphor-
ylation activity in a GTP-sensitive manner. DMPK can also bind
Raf-1 kinase, the Ras-activated molecule of the MAP kinase
pathway. Purified Raf-1 kinase phosphorylates and activates
DMPK. The interaction of DMPK with these distinct signals
suggests that it may play a role as a nexus for cross-talk between
their respective pathways and may partially explain the
remarkable pleiotropy of DM. ß 2000 Federation of European
Biochemical Societies. Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction

Myotonic dystrophy protein kinase (DMPK) is the de¢ning
member of the `myotonic dystrophy family of protein kinases'
(MDFPK) [1] because it is the protein product of the locus
mutated in myotonic dystrophy (DM) [2,3]. Other putative
serine^threonine protein kinases belonging to this group are
Neurospora Cot1, Drosophila Wts, rat ROKK, human
p160ROCK, human PK428 [1], Caenorhabditis elegans LET-
502 [4], Drosophila Genghis Khan [5], murine Citron Rho-
interacting kinase (CRIK) [6], rat DM kinase-related Cdc42-
binding kinase (MRCK) [7] and C. elegans DM kinase-related
kinase (M. Shimizu and H.F. Epstein, unpublished results).
The prediction based upon amino acid sequence that DMPK
is a serine^threonine kinase has been veri¢ed by enzymolog-
ical studies of recombinant proteins [8,9].

Several MDFPK members have been shown to interact
with members of the Rho family of small GTPases. This fam-
ily includes RhoA, Rac-1 and Cdc42 and belongs to the larger
Ras superfamily of GTPases that share conserved amino acid
sequences [10]. These MDFPK members include rat ROKK,
human p160ROCK, murine CRIK [6] and MRCK [7]. The pro-
tein kinase domain is highly conserved between CRIK and
DMPK. CRIK and its close relative the Rho and Rac-binding
protein Citron also share putative RhoA interaction and
coiled-coil motifs with DMPK [11] (see Fig. 1).

In addition to activation by Rho-type GTPases and their
associated guanylyl exchange factors (GEFs) and GTPase ac-
tivating proteins (GAPs), certain serine^threonine protein ki-
nases are also activated intracellularly by convergence or in-
teraction with other signaling pathways. For example, ERKs
and PAK show convergence of Ras^Raf kinase with Rac and
Rho [12^16]. For these reasons, we have examined the direct
interactions of DMPK with several signaling proteins. We
¢nd that Rac-1 and Raf-1 kinases bind to DMPK. Further-
more, coexpression with Rac-1 activates the transphosphory-
lation of generic protein substrates by DMPK, and phosphor-
ylation by Raf-1 kinase stimulates the autophosphorylation of
DMPK.

2. Materials and methods

2.1. Plasmid construction
The glutathione-S-transferase (GST)-small GTPase bacterial pro-

tein expression constructs, pGEX-Ras, pGEX-RhoA, pGEX-Cdc42
and pGEX-Rac-1, were kindly provided by Dr. J. Silvio Gutkind at
NIH. The eukaryotic expression vector pCGN and the small GTPase
constructs, pCGN-Rac-1, pCGN-Rac-1 G12V, pCGN-Rac-1 S17N,
were obtained from Dr. Robert J. Schwartz at Baylor College of
Medicine [17]. See Fig. 1 for de¢nition of di¡erent truncated
DMPK molecules. The His PKH FLAG construct (pET15b.PKH.-
FLAG) was constructed and characterized in this laboratory [8]. The
LPK and LPK K100A constructs were prepared as follows. The
cDNA sequence corresponding to LPK (codons 1^432) was ampli¢ed
by PCR from either T7.tag.LPKHT or T7.tag.LPKHT K100A which
were obtained from Dr. A. Balasubramanyam at Baylor and sub-
cloned in the BamHI/EcoRV site of the pBSKII(SK3) plasmid (Stra-
tagene) to yield pBSK.LPK and pBSK.LPK K100A. The BamHI/SalI
fragment of the pBSK derivatives was inserted into the BamHI/SalI
site of pET28a(+) (Novagen) to yield His.T7tag.LPK and His.T7-
tag.LPK K100A, respectively.

2.2. Cell culture
COS-M6 cells were a gift of Dr. J. Bryan at Baylor and were

maintained at 37³C in Dulbecco's modi¢ed Eagle's medium (Life
Technologies, Inc.) with 10% fetal bovine serum (Hyclone) and Anti-
biotic^Antimycotic drugs (Life Technologies, Inc.). COS-M6 cells
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were plated at a density of 2U106 per 100 mm plate, and transfections
were performed by calcium phosphate precipitation on the next day.
Bacterial cultures containing pET15b.PKH.FLAG were performed as
described [8] and bacteria carrying pET28a.His.T7tag.LPK and pE-
T28a.His.T7tag.LPK K100A were grown at 26³C.

2.3. Protein isolation and puri¢cation
His.PKH.FLAG and the GST fusion proteins with the small

GTPases were puri¢ed as described [18]. LPK and LPK K100A
were puri¢ed using either His.Bind Resins (Novagen) or a HiTrap
metal a¤nity column (Pharmacia Biotech). Ras-activated Raf-1 ki-
nase was kindly provided by Dr. J. Avruch at the Massachusetts
General Hospital. Histone H1 was from Boehringer-Mannheim.

2.4. Protein-binding assays
The GST-small GTPase fusion proteins (630 nM) were complexed

with glutathione-Sepharose beads and incubated with 530 nM
His.PKH.FLAG in 25 mM Tris^HCl, pH 7.5, 1 mM dithiothreitol,
30 mM MgCl2, 100 mM NaCl, 2 mg/ml bovine serum albumin and
0.5% Nonidet P-40 for 3 h. The beads were then washed (three times)
in bu¡er without albumin and (two times) in bu¡er without albumin
or Nonidet. The beads were suspended in 2USDS^PAGE sample
bu¡er [8], heated to 95³C for 5 min and the soluble proteins separated
on 10% SDS^PAGE. The gel was transferred to an Immobilon-NC
membrane (Millipore), reacted with a 1:1000 dilution of monoclonal
anti-FLAG antibody (Kodak IBI), followed by a 1:1000 dilution of
a¤nity-puri¢ed alkaline phosphatase-conjugated goat anti-mouse IgG
(Cappel), and the alkaline phosphatase color reaction was developed
according to the manufacturer (Promega).

Lysates from transfected COS-M6 cells were incubated with 540 nM
His.PKH.FLAG bound to His.Bind Resins in 20 mM Tris^HCl, pH
7.5, 150 mM NaCl, 10% glycerol, 0.5% Triton X-100, 1 mM EDTA,
2 mM PMSF, 3 WM benzoyl-L-arginine ethyl ether, 3 WM N-p-tosyl-L-
arginine methyl ester, 50 nM soybean trypsin inhibitor, and 2 WM
each of chymostatin, leupeptin and pepstatin. The complex was in-
cubated for 3 h at 8³C, washed with a column volume of bu¡er (3U),
and 2USDS^PAGE sample bu¡er [8] was added, the mixture heated
to 95³C for 5 min and the soluble proteins were electrophoresed on
12% SDS^PAGE. Blotting was as described above. The monoclonal
antibody (BabCO) to the hemagglutinin (HA) antigen was used at a
dilution of 1:1000. Secondary and color reactions were as described
above.

2.5. Protein kinase assays
Assays of puri¢ed proteins were performed as described and quan-

ti¢ed by densitometry of radioautograms (Bio-Rad) [8]. Assays of
proteins from COS-M6 cells were performed as follows. 48 h after
transfection, cells were lysed in 50 mM Tris^HCl, pH 7.5, 150 mM
NaCl, 1 mM EDTA, 2 mM PMSF, 1% Triton X-100, 2 mM sodium
orthovanadate, 2 mM sodium £uoride, 3 WM each of N-p-tosyl and
L-arginine methyl ether, and 2 WM each of chymostatin, leupeptin and
pepstatin. Cell lysate was incubated with 67 nM monoclonal anti-
FLAG antibody (Kodak IBI) and 10% (v/v) of protein G-Sepharose
(Pharmacia Biotech) beads at 8³C for 3 h. The bead^antibody^kinase
complex was washed two times with the above bu¡er, layered onto a
1 M sucrose cushion, centrifuged at 13 500Ug for 3 min at 8³C in a
bench top centrifuge (Fisher Scienti¢c), and washed two times with

20 mM Tris^HCl, pH 7.5, 5 mM MgCl2 (kinase bu¡er). The beads
were then incubated with 100 WM ATP, 5 WM histone H1 and 0.33
WCi/Wl of [Q-32P]ATP for 30 min at 30³C. An equal volume of
2USDS^PAGE sample bu¡er was added and the mixture was heated
to 95³C for 5 min in order to stop the reaction. The soluble proteins
were electrophoresed on 10% SDS^PAGE. The gel was stained with
Coomassie blue, dried, and 32P incorporation into histone H1 was
measured on a phosphorimager (Packard).

3. Results

3.1. Rac-1 binds to DMPK and activates the kinase activity
We found that Rac-1 was capable of binding to DMPK in

vitro (Figs. 2 and 3A). As shown in Fig. 2, equal amounts of
bacterially expressed GST fusion proteins RhoA, Rac-1,
Cdc42 and Ras were incubated with bacterially expressed
DMPK-(PKH) (de¢ned in Fig. 1). The DMPK was shown
to bind to Rac-1 but not to the RhoA, Cdc42 or Ras fusion
proteins. This result was con¢rmed by the independent experi-
ment using the Rac-1 which was expressed in mammalian

Fig. 1. Protein modules of DMPK and the constructs used in this study: L, leucine rich region; PK, serine^threonine protein kinase catalytic
domain; H, helical region containing predicted coiled-coil and leucine zipper domains which also exhibit similarities to known Rho GTPase in-
teraction sites; T, putative transmembrane anchoring region [11].

Fig. 2. Rac-1 binds DMPK. Four bacterially expressed, small
GTPase protein GST fusion proteins: RhoA, Rac-1, Cdc42 and Ras
at concentrations of 630 nM were each incubated with 530 nM
FLAG-tagged DMPK-(PKH) and then glutathione-Sepharose beads.
The presence of DMPK was detected on Western blots of the solu-
bilized Rac-1 complexes, but not of the other GTPases by anti-
FLAG (upper panel). The GTPase proteins present were detected
by the Coomassie brilliant blue staining of the SDS^PAGE (lower
panel). The control was GST alone.
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COS-M6 cells and was shown to bind to bacterially expressed
DMPK-(PKH) (Fig. 3A). These results indicate that Rac-1
can physically interact with DMPK.

The cotransfection experiments in Fig. 3B show that Rac-1

could lead to the activation of DMPK in a GTP-sensitive
manner within cells. The individual GTPases and DMPK-
(PKH) were cotransfected and the DMPK was absorbed
from lysates of the cotransfected cells. Histone H1 was then
added to the DMPK as a generic kinase substrate. The con-
stitutive GTP-bound active Rac-1 mutant (G12V) showed
over 2.5-fold activation of transphosphorylation of histone

Fig. 3. (A) Rac-1 physically interacts with DMPK. Rac-1 expressed
in COS-M6 cells showed detectable binding to bacterially expressed
DMPK-(PKH) that was tagged with both His6 and FLAG. The
Rac-1^DMPK complexes were bound to a nickel column, solubi-
lized and detected on Western blots by anti-HA to detect Rac-1
(upper panel). Coomassie brilliant blue-stained SDS^PAGE of the
COS-M6 cell lysates (left two lanes) and recombinant DMPK (right
two lanes) used in each experiment are shown for comparison (low-
er panel). The control was transfection by vector alone. (B) Rac-1
can activate DMPK in a GTP-sensitive manner. Constitutive mutant
of Rac-1 was each cotransfected with recombinant DMPK-(PKH)
in COS-M6 cells, and the resulting DMPK activity was assayed by
transphosphorylation of the generic substrate histone H1. The Rac-
1 G12V mutant represents the GTP-bound state, and the Rac-1
S17N mutant represents the GDP-bound state. The Rac-1 GTP
state mutant gave the highest activity, whereas the Rac-1 GDP state
mutant e¡ect was similar to DMPK alone.

Fig. 4. A and B represent radioautograms of SDS^PAGE separa-
tions of the 32P-incorporated proteins. (A) Raf-1 kinase phosphory-
lates DMPK. At excess DMPK to Raf, 1.5 WM of the DMPK-
(LPK) K100A mutant did not show any autophosphorylation but
was phosphorylated by 54 nM Raf-1. Wild-type DMPK-(LPK) also
at 1.5 WM showed signi¢cant autophosphorylation that was in-
creased by incubation with 54 nM Raf-1. The ratio of DMPK:Raf
was about 28:1. (B) Raf-1 kinase and DMPK interact with each
other. The e¡ects of mixtures of 37 nM DMPK-(PK), 13.5 nM
Raf-1 and 793 nM histone H1 were studied. Here, the DMPK:Raf
ratio was about 3:1 but histone was in excess. Raf-1 also increased
DMPK phosphorylation from non-detectable to the detected level,
however, the presence of histone leads to a marked increase in the
phosphorylation of DMPK and Raf-1 in addition to itself.
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H1 by DMPK-(PKH), whereas the constitutive GDP-bound
inactive mutant (S17N) showed insigni¢cant activation of
DMPK. These results indicate that Rac-1 may have functional
interactions with DMPK although only the Rac-1 results are
consistent with guanylyl nucleotide regulation.

3.2. Raf-1 phosphorylates and activates DMPK
Fig. 4A (K100A) shows that Raf-1 kinase was able to di-

rectly phosphorylate DMPK. For this experiment, we con-
structed a mutant DMPK-(LPK) where K100 was replaced
by A producing a kinase-de¢cient protein [19]. However, ac-
tive Raf-1 kinase phosphorylated the mutant LPK to signi¢-
cant levels when both puri¢ed enzymes were incubated togeth-
er. No other phosphorylatable bands could be observed in
either preparation. LPK was used so that DMPK and Raf
could be distinguished on SDS^PAGE.

Fig. 4A (WT) shows that wild-type DMPK-(LPK) phos-
phorylation was also enhanced by incubation with Raf-1 ki-
nase and ATP. LPK phosphorylation was increased signi¢-
cantly by incubation with Raf to 19.45 optical density mm
densitometer units when compared to either the autophos-
phorylation of LPK alone, 11.25 units, or the transphosphor-
ylation of the K100A mutant by Raf, 3.2 units, or their sum,
14.45. Similar results were obtained with active DMPK-(PK)
construct at lower concentrations than with LPK (Fig. 4B).
Phosphorylation of both DMPK and histone H1 was highest
in a ternary mixture with Raf-1 kinase in comparison to
DMPK and Raf-1 (just detectable) or DMPK and histone
(not detectable). In the absence of Raf-1, the levels of
DMPK were insu¤cient for detection of their autophosphor-
ylation whereas their transphosphorylation of histone H1 was
just detectable. In the presence of Raf-1, DMPK phosphory-
lation was detectable. In the absence of DMPK, Raf-1 showed
signi¢cant autophosphorylation and transphosphorylation of
histone H1.

4. Discussion

We have shown that Rac-1 and Raf-1 kinase can physically
interact with DMPK. Cotransfection with GTP-bound Rac-1
but not GDP-bound Rac-1 activated DMPK transphosphor-

ylation of histone H1 by almost 3-fold, consistent with a po-
tential regulatory interaction. Raf-1 kinase transphosphory-
lated DMPK, activated DMPK autophosphorylation and
activated transphosphorylation of generic substrate protein,
histone H1. The e¡ects of Rac-1 and Raf-1 kinase with
DMPK are likely to be signi¢cant because they both show
binding, enzymic activation and sensitivity to known regula-
tory interactions.

Other members of the small GTPase family including Ras,
RhoA and Cdc42 failed to show binding with DMPK. The
absence of these interactions may re£ect the di¡erences in the
requirements of each for GAPs and GEFs [20]. It is possible,
therefore, that in the presence of additional proteins or pro-
tein complexes, these other GTPases may also be able to
activate or bind DMPK.

The biochemical observations that Rac-1 and Raf-1 kinase
can stimulate DMPK activity are interesting from a mecha-
nistic viewpoint. Rac-1 together with other Rho family mem-
bers such as RhoA and Cdc42 are generally considered to be
associated with the actin cytoskeleton and to regulate its dy-
namic interactions with the plasma membrane [10,21,22]. The
assembly and function of focal adhesion plaques and related
structures which link organized actin-containing stress ¢bers,
the membrane and the extracellular matrix into a complex
capable of mechanical and chemical transduction are partic-
ularly dependent upon the action of Rac-1 and its relatives.
Raf-1 kinase, on the other hand, has been associated with the
small GTPase Ras as its activator. Ras in turn responds to
receptor^tyrosine kinase complexes which are stimulated by
the binding of extracellular ligands. The Ras^Raf system is
generally considered to be a chemical signaling pathway
linked to the MAP kinase cascade [23]. When observed within
cells, this dual response has been termed `convergence' as in
the example of the activation of PAK and the subsequent
transformation of rat ¢broblasts by Raf kinase, RhoA and
Rac-1 [16,24,25]. Other biological examples of convergence
and `cross-talk' include the stimulation by growth factors of
membrane ru¥ing and focal adhesion stress ¢ber assembly
[10,26] and conversely, the activation of the MAP kinase
pathway by coexpression of Rho family GTPases or through
cell adhesion instead of the usual growth factor^Ras^Raf
route [12^15].

The biochemical ¢ndings of such dual activation of DMPK
in this report suggest that this enzyme may play an important
role in the cross-talk between the adhesion-dependent and
chemically stimulated transduction systems (Fig. 5). Further
work is required to verify these interactions in di¡erent cellu-
lar systems in order to fully assess their functional signi¢cance
[13,15,16].

DMPK is likely to play an important role in the alterations
of DM [27^31]. For example, in a single cell type, the type I
skeletal muscle ¢bers, DM a¡ects di¡erentiation, growth and
maintenance of the myo¢brillar protein structures, electrical
excitability of the plasma membrane and associated struc-
tures, and the metabolic response to insulin [11]. The interac-
tion of the DMPK molecule with multiple signals provides a
potential model for understanding this highly diverse pleiotro-
py within a single cell type.
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Fig. 5. Model of activation of DMPK by Rac-1 and by Raf-1 ki-
nase, a component of the Ras-based chemical signaling pathway.
We propose that this activation may regulate the interactions of
DMPK with its target substrate proteins, permit cross-talk between
the distinct signals and explain some of the pleiotropy of DM even
within a single cell type such as type I skeletal muscle ¢bers [11].
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