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Activation of a capacitative Ca’>* entry pathway by store depletion in
cultured hippocampal neurones
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Abstract Intracellular Ca** (|Ca2"];) changes were measured in
cell bodies of cultured rat hippocampal neurones with the
fluorescent indicator Fluo-3. In the absence of external Ca?*,
the cholinergic agonist carbachol (200 pM) and the sarco-
endoplasmic reticulum Ca2?* pump inhibitor thapsigargin
(0.4 uM) both transiently elevated [Ca*];. A subsequent addition
of Ca?" into the bathing medium caused a second [Ca?"]; change
which was blocked by lanthanum (50 pM). Taken together, these
experiments indicate that stores depletion can activate a
capacitative Ca?" entry pathway in cultured hippocampal
neurones and further demonstrate the existence of such a Ca>*
entry in excitable cells.
© 2000 Federation of European Biochemical Societies.
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1. Introduction

The activation of metabotropic receptors, via the down-
stream phospholipase C/inositol 1,4,5-trisphosphate (IP3)-de-
pendent signalling cascade, releases Ca?t from intracellular
stores. In non-excitable cells, depleted Ca?t compartments
can be refilled by a store-operated Ca®t influx also designated
capacitative Ca>* entry [1,2].

Neurones possess various intracellular Ca®* stores such as
the endoplasmic reticulum, mitochondria or the nuclear enve-
lope [3,4]. The release of Ca?t from internal compartments is
thought to play a central role in Ca?* signalling and neuronal
physiology [4]. It is therefore of importance to characterise the
mechanisms by which neurones can replenish their stores. The
store-operated Ca’" influx has long been regarded as a spe-
cific property of non-excitable cells. However, several impor-
tant pieces of evidence for the existence of such a Ca’* entry
in neurones have been accumulated. For example, metabo-
tropic receptors give rise to biphasic intracellular Ca>* signals
consisting of a fast Ca?" transient spike, most likely due to
the release of Ca®* from IP;-sensitive stores, followed by a
plateau phase of slower kinetics during which intracellular
Ca?t ([Ca®'];) remains elevated. This latter point indicates
the existence of different Ca®* routes [2]. In agreement with
this hypothesis, the presence of a store-operated Ca?t entry
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has been demonstrated in neuronal cell lines [5-7]. For in-
stance, in neuroblastoma cells thapsigargin and the muscarinic
agonist carbachol activate a Ca’* current [6] similar to Icrac,
a Ca’* release-activated current which is commonly described
as a Ca’" influx through store-operated channels. Further-
more, two recent studies showing a store-operated Ca?* entry
in adrenal chromaffin cells and dorsal root ganglion (DRG)
neurones [8,9] clearly confirmed that store depletion can acti-
vate a capacitative Ca’t entry in excitable cells.

The present study was undertaken to verify the existence of
a store-operated Ca?* influx in CNS neurones. Ca?* signals
were detected in cell bodies of cultured rat hippocampal neu-
rones by means of the Ca’* indicator Fluo-3. In Ca’*-free
medium, the muscarinic agonist carbachol or thapsigargin
transiently elevated [Ca?*];. A subsequent readdition of
Ca’* into the external medium increased [Ca®*]; which indi-
cates a Ca’" entry pathway through the plasma membrane.
This influx could be blocked by lanthanum (La’t), a cation
known to inhibit store depletion-operated Ca’* channels [10].
Taken together, these results suggest the existence of a capaci-
tative Ca®* entry pathway through the plasma membrane of
cultured hippocampal neurones. This influx can be activated
by the metabotropic receptor agonist carbachol and by [Ca®*];
store depletion.

2. Materials and methods

2.1. Cell preparation

Mixed cell cultures of glial cells/hippocampal neurones from 3-5-
day-old rats were prepared and maintained as described previously
[11,12].

2.2. Imaging system

Cultured hippocampal cells were transferred from the culture me-
dium to a standard solution containing (in mM) 135 NaCl, 5 KCl,
2 MgCl,, 2 CaCl,, 10 HEPES, 30 glucose, pH 7.4 (NaOH). The
depolarising medium contained 50 mM KCI. In this case, the NaCl
concentration was reduced to maintain the osmolarity. Cells were
incubated with 5-10 uM Fluo-3/AM at 37°C for 30-50 min. They
were then rinsed with the standard solution and the coverslip was
mounted on an experimental chamber and placed on the stage of
an inverted microscope (Axiovert 100) connected to a laser scanning
imaging system (LSM 410, Zeiss AG, Germany). Cells were super-
fused continuously by a gravity-driven system with the standard so-
lution. A 488 nm excitation wavelength focused through a X 40 Neo-
fluar objective lens (numerical aperture 1.4, Zeiss AG, Germany) was
provided by an argon laser. Emitted fluorescence was collected at 2-s
intervals at 530 nm through a 515-560-nm filter [12,13]. Analysis of
somatic [Ca®"]; signals was performed in visually identified hippocam-
pal neurones.

2.3. Materials

Cell culture reagents were obtained from Sigma Chemie AG
(Buchs, Switzerland) or Gibco BRL (Life Technologies, Basel, Swit-
zerland). Tetrodotoxin (TTX) was purchased in Alomone Labs (Jer-
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usalem, Israel), Fluo-3/AM was from Molecular Probes (Leiden, The
Netherlands), and thapsigargin from Calbiochem (Juro Supply AG,
Lucerne, Switzerland). All experiments were performed at room tem-
perature 7-21 days after the dissociation of the neonatal hippocampi.

3. Results

The experiments were carried out at room temperature with
cultured hippocampal neurones dissociated from 3-5-day-old
rats. Unless otherwise indicated, the external medium con-
tained TTX (0.4 uM) to prevent the action potential-depen-
dent entry of Ca?*. It also contained the AMPA/kainate re-
ceptor antagonist CNQX (10 uM) to inhibit spontaneously
occurring excitatory synaptic inputs.

Stimulation of hippocampal cholinergic muscarinic recep-
tors leads to phosphatidylinositol hydrolysis and [Ca?*]; mo-
bilisation [14,15]. In the presence of 2 mM external CaCl,,
200 uM of the muscarinic agonist carbachol, a concentration
that maximally induces the accumulation of myo-inositol-1-
phosphate [14], failed to evoke any [Ca’*]; transients in 90%
of the pyramidal cells tested. This latter point is in agreement
with a previous report showing that intracellular Ca>* stores
of cultured hippocampal neurones are empty at rest [16]. To
increase the number of responsive neurones, the cells were
then superfused for 1 min with a depolarising medium con-
taining 50 mM KCI but without TTX and CNQX. The high
K* medium strongly elevated [Ca?*]; which slowly decayed to
the resting level (not shown). Five to 10 minutes after the
washout of the high K* solution, a second application of
carbachol transiently increased [Ca®*]; in 70% of the pyrami-
dal neurones tested (12 out 17 cells). Fig. 1 illustrates such
experiments where the muscarinic agonist was added before
and following depolarisation with high external K*. The car-
bachol-induced mobilisation of Ca?* consisted of a biphasic
[Ca?t]; signal characterised by a rapid elevation of [Ca®*);
followed by a smaller plateau phase of slower kinetics. Similar
experiments were also performed in the absence of external
Ca?t. Under these conditions, none of the cells tested re-
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Fig. 1. Intracellular Ca?* stores of cultured hippocampal neurones
are empty at rest. Cytosolic Ca?* changes [Ca?*]; were measured by
means of the Ca?" indicator Fluo-3 in cell bodies of pyramidal hip-
pocampal neurones dissociated from neonatal rats. The graph shows
the normalised fluorescence as a function of time. The external me-
dium contained 2 mM Ca**, 0.4 mM TTX and 10 uM CNQX. The
muscarinic cholinergic agonist carbachol (200 uM) was added when
indicated by the horizontal bar before (M) or after the superfusion
of a depolarising medium containing 50 mM KCI, and no added
TTX and CNQX (0). For each cell, [Ca’*]; transients were detected
in the same region of interest before and after the KCI challenge.
Mean + S.E.M. from five pyramidal cell bodies. A similar observa-
tion was made in two other experiments.
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Fig. 2. Carbachol and thapsigargin induce a capacitative entry of
Ca?*. A-C: Normalised Fluo-3 fluorescence measured in individual
hippocampal cell bodies as a function of time. The external medium
contained TTX (0.4 pM) and CNQX (10 pM) without or with
2 mM Ca’*. A: Carbachol (200 uM) was added when indicated by
the horizontal bar. It transiently elevated [Ca>"];. B: Thapsigargin
(0.4 uM), added when indicated by the arrowhead, also increased
[Ca®"]i. A capacitative Ca>* entry was observed in only three out
of the 12 carbachol-treated cells tested whereas it could be observed
in all thapsigargin-treated cells tested (n=46). C: Summary graph
showing the effect of La*" (50 uM) on the capacitative Ca’* entry.
Thapsigargin (0.4 uM) was added in the absence of external Ca>*.
[Ca®*); first slowly increased (not shown) and then returned to the
basal level. Upon readdition of Ca®", the capacitative Ca’* entry
was blocked by 50 uM La** (m, n=9 cells bodies). La’** was added
when indicated by the horizontal bar. Similar experiments were per-
formed but without introducing 50 uM La** (O, n=12 cell bodies).
Mean = S.E.M.
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sponded to the first application of carbachol. However, the
percentage of responsive neurones increased to 25% (eight out
of 32 cells) when the second application of carbachol was
preceded by a KCI challenge. In this case, the high external
K™ solution contained 2 mM CaCl, (without TTX and
CNQX). These observations further illustrate that under con-
trol conditions intracellular Ca”* stores of cultured hippocam-
pal neurones are empty [16]. In the following experiments, a
high K*-containing depolarising solution was always added
for 1 min 5-10 min prior to the addition of [Ca’*];-mobilising
drugs.

A store-operated Ca** entry pathway has been described in
various excitable cells such as neuronal cell lines, adrenal
chromaffin cells and DRG neurones [5-9]. Therefore, it was
of interest to verify whether such capacitative Ca’>" entry
could also exist in CNS neurones. In the presence of a
Ca’*-free solution, carbachol (200 uM) transiently elevated
[Ca?t]; (Fig. 2A). A subsequent addition of 2 mM Ca’*
caused a second [Ca®*]; rise in 25% of the hippocampal neuro-
nes tested (n=12) (Fig. 2A). In another set of experiments, the
sarco-endoplasmic reticulum Ca?* (SERCA) pump inhibitor
thapsigargin was used to deplete intracellular Ca>* stores [17].
Cells were kept in a Ca>*-free medium. The addition of thap-
sigargin (0.4 uM) slowly increased [Ca2*];. The addition of
2 mM Ca’>" activated an influx of Ca>" (Fig. 2B) in all
pyramidal cell bodies tested (n=46). In a last set of experi-
ments, the Ca®>* channel blocker lanthanum (La3t) was used
to inhibit the capacitative Ca®t entry pathway. Micromolar
concentrations of La3* reversibly blocked this pathway in
bovine aortic endothelium cells [10]. As before, the cells
were first bathed in a Ca’*-free medium. Thapsigargin
(0.4 uM) slowly increased [Ca®*]; (not shown) which returned
to the basal level. When added, 2 mM external Ca>* produced
a robust Ca?* signal that could be blocked by La3* (50 uM,
n="9) (Fig. 2C).

4. Discussion

The release of Ca>* from internal stores influences many
neuronal processes [4]. Therefore, a better understanding of
the Ca?* entry pathways through the plasma membrane of
nerve cells is of crucial interest. Neurones express a great
diversity of voltage-gated Ca’* channels. Dihydropyridine-
sensitive Ca>" channels are thought to mediate a sustained
Ca”" entry at resting membrane potentials in hippocampal
neurones [18]. This Ca>* influx could play a role in maintain-
ing resting [Ca>"]; and in refilling intracellular Ca>* compart-
ments. However, the existence of a steady-state Ca>* entry
through dihydropyridine-sensitive Ca>* channels and operat-
ing at resting membrane potentials is still debated. Recent
studies demonstrated that voltage-gated Ca?* channel block-
ers do not affect this Ca>* influx which is activated by deple-
tion of caffeine-sensitive Ca>" stores [9,19]. A similar caffeine-
sensitive store-operated Ca?* pathway has recently been iden-
tified in cultured DRG neurones [9]. In addition, a voltage-
independent current carried by Ca?>* and Na* could be mea-
sured in bovine adrenal chromaffin cells in response to store
depletion induced by thapsigargin or Ca?t chelators [8]. Tak-
en together, these observations provide functional evidence
for the existence of a Ca?*t influx through voltage-independent
channels of excitable cell membranes and activated by store
depletion. The experiments described in the present study
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show that a similar Ca>* entry pathway operates in cultured
hippocampal neurones. It can be activated in response to store
depletion induced by the IP3-generating agonist carbachol as
well as the SERCA pump inhibitor thapsigargin.

The Drosophila and mammalian TRP channels are thought
to function as store-operated Ca’* channels [2]. However, the
exact molecular identity of the channels underlying the capaci-
tative Ca>" entry is unknown [1]. Another important unre-
solved issue concerns the mechanism of activation of these
channels. Since the capacitative entry pathway can be acti-
vated by caffeine [9,19] or thapsigargin ([8]; present study),
phospholipase C activation and IP; production are most
likely not the signalling molecules linking store depletion
and the Ca?" influx [1]. In the light of recent experiments,
two models (although not mutually exclusive) can be pro-
posed to explain the gating of capacitative Ca>" entry chan-
nels. Functional data indicate an interaction between the plas-
ma membrane and the endoplasmic reticulum [20]. On the
other hand, the second model suggests a secretory-like mech-
anism involving the insertion of the capacitative Ca?t entry
channel into the plasma membrane [21,22]. Neither a diffusi-
ble messenger nor a GTP-dependent process seems to be in-
volved in the gating of the channels [22,23].

The experiments of the present study showing that intra-
cellular Ca?* stores of cultured hippocampal neurones are
depleted at rest are in agreement with previous observations
(see [16]) and suggest a constant Ca’>" leak from the stores.
Therefore, depleted intracellular compartments should acti-
vate the capacitative Ca®* entry pathway. However, the ca-
pacitative Ca** influx was only observed after carbachol or
thapsigargin treatment. It could be hypothesised that the ca-
pacitative Ca?" channels are recruited by a rapid and short-
lasting elevation of [Ca>"];. According to this scheme, the
continuous leak of Ca’" from the stores would not provide
a signal capable of activating this pathway.

The physiological significance of a neuronal store depletion-
activated Ca”" entry is not clearly established. This influx of
Ca’* may affect membrane excitability or Ca”"-dependent
processes. For instance, it maintains Ca?* oscillations in
DRG neurones [9]. In the light of recent experiments showing
that a capacitative Ca?t entry modulates exocytosis in adrenal
chromaffin cells [8] it would be interesting to determine
whether this Ca®* entry pathway could also modulate neuro-
transmitter release and synaptic plasticity in the hippocampus.
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