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Abstract We previously reported that the nuclear localization
signal (NLS) peptides stimulate the in vitro phosphorylation of
several proteins, including a 34 kDa protein. In this study, we
show that this specific 34 kDa protein is a novel murine leucine-
rich acidic nuclear protein (LANP)-like large protein (mLANP-
L). mLANP-L was found to have a basic type NLS. The co-
injection of Q69LRan-GTP or SV40 T-antigen NLS peptides
prevented the nuclear import of mLANP-L. mLANP-L NLS
bound preferentially to Rchl and NPI-1, but not to the Qipl
subfamily of importin o.. These findings suggest that mLANP-L
is transported into the nucleus by Rchl and/or NPI-1.
© 2000 Federation of European Biochemical Societies.
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1. Introduction

Protein import into the cell nucleus occurs via nuclear pore
complexes (NPCs). The NPC consists of diffusion channels
that permit the passive diffusion of small molecules, such as
ions and proteins, which are smaller than 20-40 kDa. Karyo-
philic proteins can be actively transported through the NPC
by a selective, mediated process, even though they are larger
than the diffusion channel. This selective, active nuclear pro-
tein transport is mediated by a nuclear localization signal
(NLS). The best characterized ‘classical’ NLS is the SV40
T-antigen, which contains a cluster of basic amino acids [1].

The NLS-mediated import process involves multiple se-
quential steps. Soluble factors required for nuclear protein
import have been identified by using the NLS of SV40 T-
antigen as a substrate, mainly via the use of an in vitro trans-
port assay [2]. The NLS triggers the formation of a stable
heterotrimeric complex containing importin o and B [3-5].
This complex binds to the NPC via importin f, then trans-
locates through the NPC into the nucleus. After the trans-
location, the GTP-bound form of a small GTPase Ran inter-
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Abbreviations: NLS, nuclear localization signal; WGA, wheat germ
agglutinin; LANP, leucine-rich acidic nuclear protein; NPC, nuclear
pore complex

acts with importin B to trigger the dissociation of the complex
(for reviews [6-9]).

Although little is known about how the import machinery is
regulated, data suggesting the existence of a relationship be-
tween nuclear protein import and protein phosphorylation
have accumulated [10-14]. Kurihara et al. found that syn-
thetic NLS-containing peptides stimulate the phosphorylation
of several cellular proteins both in vivo and in vitro and that a
murine 34 kDa protein was found to be preferentially
phosphorylated in an NLS-dependent manner, suggesting
the existence of a protein kinase which is specifically activated
by the NLS [15].

In this study, we purified this specific 34 kDa protein from
mouse Ehrlich ascites tumor cells and isolated its cDNA
clone. The protein was found to have approximately 58%
amino acid identity with the leucine-rich acidic nuclear pro-
tein (LANP). The LANP was first isolated from rat cerebellar
proteins and immunohistochemical studies revealed that the
protein is localized mainly in the nuclei of Purkinje cells [16].
Although LANP has been extensively studied, its function is
not well understood. We report the sequence of a novel mur-
ine LANP-like protein and the characterization of its nuclear
transport pathway.

2. Materials and methods

2.1. Molecular cloning of mLANP-L

A 34 kDa protein was partially purified as described previously [15],
and the partially purified samples were applied to gel filtration and
then subjected to SDS-PAGE. The protein band corresponding to a
34 kDa protein (mLANP-L) was cut from the gel and digested with a
lysyl endopeptidase, and the digested peptides of the protein were
separated by reverse-phase HPLC. The sequences of two fragments
were determined by a peptide sequencer. These sequences were used as
queries for FASTA homology searches against the EST database.
Clones AA212094 (mouse) and AA051736 (mouse) almost coincided
with these partial sequences. A 6-week-old C57BL6 mouse (male)
brain cDNA library in AZAPII was screened by PCR products, gen-
erated using oligonucleotide probes.

2.2. Expression and purification of the recombinant proteins

The recombinant mLANP-L proteins were generated as follows.
mLANP-L was cloned into pGEX6p1 to produce a GST fusion pro-
tein. A FLAG tag was fused into the BamHI site. A fragment encod-
ing the entire amino acid sequence was generated by PCR using oli-
gonucleotides (5'-TACTACGGATCCATGGAGATGAAGAAGAA-
GATTACC and 3’-CCCCTCCTTCTGCTGCTAATCCTTAAGCA-
TCAT) and cloned into the BamHI-EcoRI site of pGEX6pl, to pro-
duce an in-frame fusion with GST. The expression vectors described
above were transformed into Escherichia coli strain BL21, and puri-
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fied to homogeneity using glutathione-Sepharose (Pharmacia) follow-
ing the manufacturer’s recommendations.

2.3. Transfection experiments

Plasmids for transient expression, consisting of full-length mLANP-
L or mLANP-L(1-245), were inserted into pEGFP-GFP-Cl
(pEGFPx2). A fragment encoding the entire amino acid sequence of
mLANP-L was generated by PCR using oligonucleotides (5'-GCCG-
GCGAATTCATGGAGATGAAGAAGAAG and 3'-CTCTTCCTG-
CTGCTAATCTCCAGGTAGCTA or 3'-CCAGAAGCCCCTCTC-
ATCCCTAGGTAAATT) and cloned into the EcoRI-BamHI site of
pEGFPx2. mLANP-L was shortened by EcoRI-Pstl digestion, and
mLANP-L(1-140) was cloned into the EcoRI-Pstl site of pEGFPx2.
mLANP-L(140-260) was cloned into the PstI-EcoRI site of
pEGFPx2-Cla. mLANP-L(1-245) was shortened by PstI-BamHI di-
gestion, and the mLANP-L(140-245) was cloned into the PstI-BamHI
site of pEGFPx2a. To obtain LANP-1L(245-250), a fragment encoding
the entire amino acid sequence was generated using oligonucleotides
(5'-GATCCGAGAAGAGAAAGCGAGATCCC and 3'-GCTCTTC-
TCTTTCGCACTAGGG) and the PCR product was cloned into the
BgllI-Smal site of pEGFPx2. These cDNA clones were introduced
transiently into HeLa cells by the microinjection method.

2.4. Synthetic peptides

Synthetic peptides containing SV40 large T-antigen wild-type NLS
(CYGGPKKKRKVEDP), its reverse type mutant NLS (CYG-
GPDEVKRKKKP) and mLANP-L NLS (CGGGEKRKRD) were
purchased from the Peptide Institute (Osaka, Japan).

3. Results and discussion

3.1. Identification of a murine 34 kDa protein specifically
phosphorylated in an NLS peptide-dependent manner
In a previous study, we reported that a 34 kDa protein was
preferentially phosphorylated in an NLS peptide-dependent
manner in vitro. In order to identify this protein, we at-
tempted to purify the 34 kDa protein from Ehrlich ascites
tumor cells extract [15]. After purification, we determined
the internal amino acid sequences of two fragments derived
from the purified protein. Clones AA212094 (mouse) and
AA051736 (mouse) matched these partial amino acid sequen-
ces. The cloned cDNA encodes a novel polypeptide consisting
of 260 amino acids with a calculated molecular mass of 29.6
kDa. The clone was found to have 58, 57, 57 and 58% amino
acid identity with mLANP [18], rLANP [16], PHAPI [20] and
APRIL [21], respectively (Fig. 1). Therefore, we designated
this protein murine LANP-like large protein (mLANP-L).

3.2. In vitro phosphorylation of recombinant mLANP-L
proteins

In order to confirm that the obtained clone encodes the 34
kDa protein which is preferentially phosphorylated in an NLS
peptide-dependent manner, we examined whether the phos-
phorylation of the recombinant protein was specifically acti-
vated in vitro by the addition of NLS peptides. mLANP-L
was actually phosphorylated in an NLS peptide-dependent
manner (data not shown), suggesting that the 34 kDa protein,
which was phosphorylated preferentially by the addition of
NLS peptides, is mLANP-L.

3.3. mLANP-L migrates into the nucleus in a temperature-
dependent, WGA-sensitive and Ran-GTP-sensitive manner
in living cells

LANP was reported to be primarily localized in the nuclei
of Purkinje cells [16]. Using yeast two-hybrid experiments,

LANP has been shown to bind to ataxin-1, the spinocerebellar

ataxia type 1 (SCA1) gene product [18]. It was found that
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mLANP MEMDKRIYLELRNRTPSDVKELVLDNCKSIEGK IEGLTDEFEELEFLSTINVGLTSISNL
rLANP MEMDKRIYLELRNRTPSDVKELVLDNCRSIEGKIEGLTDEFEELEFLSTINVGLTSISNL
PHAPI MEMGRRIHLELRNRTPSDVKELVLDNSRSNEGKLEGLTDEFEELEFLSTINVGLTSIANL

APRIL --MKRR IHLELRNRTPAAVRELVLDNCKSNDGK IEGLTAEFVNLEFLSLINVGLISVSNL
mLANP-L  MEMKKKINMELKNRAPEEVTELVLDNCLCVNGEIEGLNDTFKELEFL SMANVELSSLARL
¥ LIk DRRIKKIEK K RRRRRK, | DRIIRRE, X KKKKK O KX X XII X

mLANP PKLNKLKKLELSENRISGDLEVLAEKCPNLKHLNLSGNK IKDLSTIEPLKKLENLKSLDL
rLANP PKLNKLKKLELSENRISGDLEVLAEKCPNLKHLNLSGNK IKDLSTIEPLKKLENLKSLDL
PHAPI PKLNKLKKLELSDNRVSGGLEVLAEKCPNLTHLNLSGNK IKDLSTIEPLKKLENLKSLDL
APRIL PKLPKLKKLELSENRIFGGLDMLAEKLPNLTHLNLSGNKLKDISTLEPLKKLECLKSLDL
mLANP-L  PSLNKLRKLELSDNIISGGLEVLAEKCPNLTYLNLSGNKIKDLSTVEALQNLKNLKSLDL

X RXIRRERKCE DK KD IRRRR KKK, DRRORRRER DRRDRKR KD KD RRkkkE

mLANP FNCEVINLNAYRENVFKLLPQVMYLDGYDRDNKEAPDSDVEGYVE------ DDDEEDEDE
rLANP FNCEVTNLNAYRENVFKLLPQVMYLDGYDRDNKEAPDSDVEGYVE------ DDDEEDEDE
PHAPI FNCEVINLNDYRENVFKLLPQLTYLDGYDRDDKEAPDSDAEGYVEGL -~ -~DDEEEDEDE
APRIL FNCEVTNLNDYRESVFKLLPQLTYLDGYDREDQEAPDSDAEVDGVDEEEEDEEGEDEEDE
nLANP-L  FNCEITNLEDYRESIFELLQQITYLDGFDQEDNEAPDSEEEDDDDE-----| DGDEDEEDE

KRR IRKKD KKK, DRORK KD RKRKIRD DD IRRRRKD X DokIrkkE

nLANP EEYDEYAQLVEDEEEEDEEEEGEEEDVSGEEEE-----------] DEEGYNDGEVDDEEDE

rLANP EEYDEYAQLVEDEEEEDEEEEGEEEDVSGEEEE----~------DEEGYNDGEVDDEEDE
PHAPI EEYDEDAQVVEDEEDEDEEEEGEEEDVSGEEEE-----------] DEEGYNDGEVDDEEDE
APRIL DDEDGEEEEFDEEDDEDEDVEGDEDDDEVSEEE----------- FEFGLDEEDEDEDEDE
nLANP-L  DEDEAGPPEGYEEEEDDDEDEAGSEVGEGEEEVGLSYLMKDEIQDEEDDDDYVDEGEEEE
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nLANP EEAGEEEGSQKRKREPDDEGEEDD-
rLANP EDAAEEEGSQKRKREPDDEGQEDD-
PHAPT EELGEEERGQKRKREPEDEGEDDD-
APRIL EEE-EGGKGEKRKRETDDEGEDD--
nLANP-L  EEEEEGLRGEKRKRDAEDDGEEDDD
LHIE S S5 SORT 3 H |

Fig. 1. Multiple sequence alignments among LANP. The amino
acid sequence, which is indicated with the single-letter notation,
are sites separated by gaps (-) to achieve maximum homology by
the CLUSTAL W (1.8) software. Asterisks and dots below the
alignment indicate positions which are occupied by identical amino
acids and chemically conserved amino acids among all the sequen-
ces, respectively. Sequence data from mLANP=mouse LANP
(AF022957), r(LANP =rat LANP (D32209), PHAPI = human PHAPI
(X75090) = mapmodulin = pp32, APRIL =human APRIL (Y07969),
mLANP-L =murine LANP-like large protein.

mutant ataxin-1 with a polyglutamine tract causes a redistrib-
ution of the nuclear matrix-associated structures, which may
be involved in SCA1 pathogenesis. The ataxin-1/LANP com-
plex was found to be, in fact, localized in the nuclei of Pur-
kinje cells [19]. From these findings, it was proposed that
cerebellar LANP is involved in the pathogenesis of SCAL.
However, the specific pathway for how the LANP family
proteins are transported into the nucleus has not yet been
elucidated.

Therefore, we attempted to examine the nuclear import of
mLANP-L in more detail. Purified GST-FLAG-mLANP-L,
when injected into the cytoplasm of living HeLa cells, mi-
grates into the nucleus within 30 min (Fig. 2). Moreover,
the nuclear migration of mLANP-L was temperature-depen-
dent and was strongly inhibited by a lectin, wheat germ ag-
glutinin (WGA) (Fig. 2), indicating that the nuclear migration
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Fig. 2. mLANP-L migrates into the nucleus of living cells in a temperature-dependent and WGA-sensitive manner and the migration is inhib-
ited by mutant Ran. Purified recombinant GST-FLAG-mLANP-L (0.1 mg/ml) was injected into the cytoplasm of HeLa cells with (c) or with-
out (a, b) 1 mg/ml WGA. GST-FLAG-mLANP-L was co-injected with 8 mg/ml Q69L Ran-GTP (d). After incubation for 30 min at 37°C (a,
¢, d) or on ice (b), cells were fixed with 3.7% formaldehyde in PBS(—). Injected GST-FLAG-mLANP-L was visualized by indirect immuno-
fluorescence with anti-FLAG mouse monoclonal antibody and Alexa488-labeled anti-mouse goat IgG. The localization of GST-FLAG-

mLANP-L was examined by Axiophot microscopy (Zeiss).

of mLANP-L is an active process, although mLANP-L is
sufficiently small to passively diffuse into the nucleus.

To further characterize the transport pathway, we co-in-
jected Q69LRan-GTP, which is deficient for GTP hydrolysis
[22]. Tt is known that Q69LRan-GTP, when co-injected into
the cytoplasm, dominant-negatively inhibits the nuclear im-
port mediated by importin B-like transport factors. As shown
in Fig. 2, the nuclear import of mLANP-L was blocked by
Q69LRan-GTP, indicating that the nuclear import of
mLANP-L occurs in a Ran-dependent manner.

3.4. Identification of the NLS of mLANP-L

In order to identify the NLS of mLANP-L, we constructed
several deletion mutants and expressed these transiently.
When mLANP-L(1-140) was expressed in HeLa cells, it lo-
calized to the cytoplasm. In contrast, when mLANP-L(140-
260) was expressed, it localized to the nucleus. These results
indicate that the C-terminal portion is necessary for the nu-
clear localization (Fig. 3). Furthermore, the fact that
mLANP-L(140-245) localized to the cytoplasm suggests that
amino acids 246-260 contain the functional NLS of mLANP-
L. This portion contains a basic amino acid cluster,
HMSKRKR.

In order to better understand whether this sequence KRKR
acts as a functional NLS of mLANP-L, we tested the nuclear
import of recombinant mLANP-L(245-250) tagged with the
GFP epitope at its C-terminus. As shown in Fig. 4, the puri-
fied recombinant GST-mLANP-L NLS-GFP, when injected
into the cytoplasm of living cells, migrates into the nucleus
within 30 min. The nuclear migration of GST-mLANP-L
NLS-GFP was temperature-dependent and was potently in-
hibited by WGA and Q69LRan-GTP (Fig. 4), which faithfully
reproduces the behavior of the full-length mLANP-L protein
(cf. Fig. 2). These results indicate that amino acid sequence
245-250, DKRKRE, represents a functional NLS of
mLANP-L. Moreover, the fact that the sequence KRKR is
well conserved among other LANP family molecules suggests
that KRKR is critical for the nuclear import of all the LANP
family molecules.

3.5. Possible nuclear import pathway of mLANP-L

In order to verify the nuclear import pathway of mLANP-L
in vivo, we examined the issue of whether the import is com-
petitively inhibited in the presence of an excess amount of the

NLS peptides. As shown in Fig. 5, the nuclear import of
mLANP-L NLS-containing substrates was strongly inhibited
by the SV40 T-antigen NLS peptides as well as mLANP-L
NLS peptides, but not by reverse-type T-antigen mutant NLS

Fig. 3. The subcellular distribution of GFPx2-mLANP-L in transi-
ent transfection to HeLa cells. HeLa cells were transfected with
GFPx2 alone (a), GFPx2-mLANP-L(1-260) (b), GFPx2-mLANP-
L(1-140) (c), GFPx2-mLANP(140-260) (d), GFPx2-mLANP-L(140-
245) (e) or GFPx2-mLANP-L(245-250) (f). After incubation for 6 h
at 37°C, cells were fixed with 3.7% formaldehyde in PBS(—). The
localization of GFPx2-mLANP was examined by Axiophot micros-
copy (Zeiss).
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Fig. 4. mLANP-L NLS migrates into the nucleus of living cells in a temperature-dependent and WGA-sensitive manner and the migration is in-
hibited by mutant Ran. Purified recombinant GST-mLANP-L NLS-GFP (2 mg/ml) was injected into the cytoplasm of HeLa cells with (c) or
without (a, b) 1 mg/ml WGA. GST-mLANP-L NLS-GFP was co-injected with 8 mg/ml Q69LRan-GTP (d). After incubation for 30 min at
37°C (a, ¢, d) or on ice (b), cells were fixed with 3.7% formaldehyde in PBS(—). The localization of GST-mLANP-L NLS-GFP was examined

by Axiophot microscopy (Zeiss).

peptides. These data suggest that the nuclear import of
mLANP-L most likely occurs via the classical importin o/
pathway.

3.6. Interaction between importin o family and mLANP-L
NLS in vitro

In mammalian cells, the importin o family proteins are
classified into three major classes, namely Rchl, NPI-1 and
Qipl. Miyamoto et al. demonstrated that these NLS receptors
have specificity in the recognition of various substrates [17].
We analyzed the binding affinity of each importin o family
molecule with mLANP-L NLS using native gel electrophore-
sis, in which complex formation between two proteins gives
rise to a new band. A mixture of the GST-mLANP-L NLS-
GFP with Rchl or NPI-1 efficiently gave a new band with a
mobility shift from each protein alone (Fig. 6, lanes 2, 3 and

SvV40T

Sv40T
-NLS-GFP

mLANP-L
-NLS-GFP

5, 6). In contrast, a mixture of the GST-mLANP-L NLS-GFP
with Qipl gave no new band (Fig. 6, lanes 7 and 8). These
results indicate that the mLANP-L NLS preferentially binds
to Rchl and NPI-1, but not to the Qipl of importin o family
molecules, suggesting that the nuclear import of mLANP-L is
mediated by Rchl and/or NPI-1, but not Qipl. Moreover, in
view of a previous report that NPI-1 is significantly expressed
in the cerebellar cortex [23], it can be predicted that the nu-
clear import of mLANP-L is primarily mediated by the NPI-1
family of importin o in Purkinje cells, although the issue of
how the LANP proteins contribute to the nuclear localization
of ataxin-1 has not yet been elucidated.

3.7. Conclusion
We reported the identification of the 34 kDa protein, which
is preferentially phosphorylated in the presence of the NLS

mLANP-L
peptide

reverse
peptide

Fig. 5. Competitive in vivo nuclear import assay. A nuclear import assay was performed using HeLa cells. The GFP-tagged NLSs analyzed in
this assay are indicated at the left, and competitor peptides, which were co-injected in excess (4 mg/ml) with GFP NLSs, are indicated at the
top of the figure. After microinjection, cells were incubated for 30 min at 37°C. The localization of GFP-tagged NLSs was examined as in Fig.
4. The nuclear import of SV40T-NLS-GFP was competitively inhibited by excess SV40 T NLS peptide (c), but not with reverse type mutant T
NLS peptides (¢). mLANP-L-NLS-GFP was competitively inhibited by excess SV40 T NLS (d) or mLANP-L NLS (g) peptides, but not with

reverse T peptides (f).
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Fig. 6. The ability of mLANP-L NLS to bind the importin o fam-
ily. Native gel electrophoresis showing Rchl, NPI-1, Qipl and
GST-mLANP NLS-GFP run separately or as a complex. A mixture
of 20 pmol of the GST-mLANP-L NLS-GFP with 20 pmol or 40
pmol Rchl and NPI-1 results in a new band with a mobility differ-
ent from each protein alone (lanes 2, 3 and 6, 7). In contrast, a
mixture of 20 pmol of the GST-mLANP-L NLS-GFP with 20 pmol
or 40 pmol Qipl gives no new bands (lanes 10 and 11). Migration
of GST-mLANP-L NLS-GFP alone (lanes 1, 5, 9), Rchl alone
(lane 4), NPI-1 alone (lane 8), Qipl alone (lane 12) are shown as a
control.

peptides and designated it mLANP-L (murine LANP-like
large protein) from the sequence homology with LANP pro-
teins. Although the role of the phosphorylation of mLANP-L
has not yet been elucidated, it was found that mLANP-L has
a basic-type NLS, KRKR, in its C-terminal region and is
actively transported into the nucleus by the Rchl and/or
NPI-1 family of importin o, probably in conjunction with
importin . Although the issue of whether the LANP proteins
are actually involved in the nuclear import of ataxin-1 in
Purkinje cells needs to be examined, further studies may elu-
cidate the biological significance of the colocalization of atax-
in-1 with LANP proteins.
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