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An RNA helicase (AtSUV3) is present in Arabidopsis thaliana
mitochondria
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Abstract The proteins involved in mitochondrial mRNA
processing and degradation in higher plants have yet to be
identified. As a first step towards this aim, we report here the
characterisation of a nuclear-encoded DExH box RNA helicase
(AtSUV3) localised in Arabidopsis thaliana mitochondria. The
AtSUV3 mRNA is assembled from the 16 exons of a weakly
expressed unique gene and the predicted protein has a calculated
molecular weight of 63.6 kDa. Subcellular fractionation of
transgenic plants expressing AtSUV3/GUS fusion proteins
localises this protein in mitochondria. The N-terminal domain
of AtSUV3 containing the motifs characteristic of DExH box
RNA helicases exhibits a low endogenous ATPase activity in
vitro which can be stimulated by the presence of mitochondrial
RNA, confirming that AtSUV3 is an RNA helicase.
© 1999 Federation of European Biochemical Societies.
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1. Introduction

In plant organelles, processing of mRNA molecules and the
rate of RNA degradation are major contributors to regulating
overall as well as individual gene expression. These processing
steps include such diverse reactions as intron splicing, RNA
editing, separation of individual coding regions from multi-
cistronic RNA precursors and 5’ and 3’ trimming of mRNAs.
Particularly the processing steps at the 3’ terminus of the
RNA molecules are often only one step ahead of — and thus
intimately connected to — ultimate degradation.

In both chloroplasts and plant mitochondria, potential
hairpin structures present at the 3’ end of some transcripts
are involved in the correct processing of 3’ termini [1,2]. In
plastids such stem-loop structures interact with several pro-
teins which generate mature 3’ termini by a combination of
endonucleolytic and exonucleolytic processing reactions [3].
The secondary structures also interact with proteins that pro-
tect the RNA against ribonucleases and thus stabilise the ma-
ture RNA [3]. Exoribonucleolytic processing is probably also
involved in the formation of the 3’ termini of transcripts in
plant mitochondria [2]. Another feature shared between
chloroplasts and plant mitochondria and also with bacteria
is the surprising acceleration of RNA degradation by post-
transcriptional polyadenylation [4-7].

*Corresponding author.

In bacteria and chloroplasts, degradation of transcripts is
often initiated by endoribonucleolytic cleavages and the re-
sulting RNA fragments are then further degraded by exoribo-
nuclease(s) [4,5,8,9]. Secondary structures present in the RNA
that would otherwise impede the 3’ to 5’ progression of exo-
nucleases can be resolved by RNA helicases. Indeed, in eubac-
teria such as Escherichia coli an RNA helicase (RhIB) is an
essential part of the RNA degradosome which also contains
polynucleotide phosphorylase (PNPase) and RNase E as ma-
jor components [10]. Similarly in yeast mitochondria an RNA
helicase (SUV3) is a component of a processing and degrada-
tion complex termed mtEXO with exoribonuclease activity
[11-14]. The exoribonuclease activity is attributed to a puta-
tive RNase (DSS1) with similarity to the prokaryotic exoribo-
nuclease RNase II [12].

In this report, we characterise an RNA helicase from Ara-
bidopsis thaliana which exhibits high similarity to the yeast
SUV3 protein and hence is termed AtSUV3. We show that
the AtSUV3 protein is localised in mitochondria and exhibits
functional properties of DExH RNA helicases. this identifica-
tion of AtSUV3 is a first step towards further characterisation
of the plant mitochondrial mRNA processing/degradation
machinery.

2. Materials and methods

2.1. Identification of suv3 homologue in Arabidopsis thaliana (Atsuv3)

A suv3 homologous sequence was identified on chromosome IV of
A. thaliana [15]. Specific PCR primers were used to amplify the pre-
dicted coding region from first strand cDNA of total RNA from 4.
thaliana. PCR products were cloned and seven individual clones were
sequenced to obtain unambiguous sequence information. Sequencing
was performed with a Thermo Sequenase fluorescent label kit (Amer-
sham) and Cy5 AutoRead sequencing kits with Cy5-dATP labelling
mix (Pharmacia). Sequencing products were detected and processed
by an Alf Express sequencer (Pharmacia). The genomic reading frame
predictions were extended and corrected by 3’-RACE experiments,
which were performed as previously described [16]. Computer analy-
ses were performed using Blast algorithms at the NCBI server. Primer
extension analyses were performed with 3 pug poly(A)™ RNA follow-
ing previously described procedures [17]. Southern and Northern blot
analyses were performed by standard procedures using a double-
stranded probe representing the 5’ terminal two thirds of the Atsuv3
gene.

2.2. Subcellular localisation of the AtSUV3-GUS fusion protein
About two thirds of the Atsuv3 cDNA encoding amino acids 1-387
fused to the uidA (GUS) gene were cloned downstream of the 35S-
CaMYV promoter in the pBIN+ vector. The resulting plasmid pBIN+
Atsuv3-GUS was transformed into Agrobacterium tumefaciens
CV3101. Wild-type Columbia ecotype A. thaliana plants and Solanum
tuberosum (var. Desiree) plants were transformed as described by Bent
and Clough [18] and by Sheerman and Bevan [19], respectively. Mi-
tochondria were purified from transgenic A. thaliana and potato
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10 min and resuspended in buffer TS containing 8 M urea. Insoluble
material was removed by centrifugation at 20000X g for 15 min and
the supernatant was applied to TALONspin columns (Clontech).
After two washes with buffer TS containing 10 mM imidazole, the
trifugation at 20000 X g for 10 min. Aliquots of the supernatant con-

ATP hydrolysis activity was measured by incubating 222 GBq/

tagged AtSUV3 precipitated during dialysis and was removed by cen-
taining soluble His-tagged Atsuv3 were frozen at —20°C.

80 mM imidazole and dialysed for 3 h against 20 mM Tris-HCI pH
7.4, 50 mM NacCl, 3 mM MgCl,, 1 mM DTT at 4°C. Most of His-

HCI pH 8.0, 100 mM NaCl (buffer TS) and inclusion bodies were
pelleted by centrifugation of the bacterial lysate at 12000X g for
His-tagged AtSUV3 protein was eluted with buffer TS containing

2.4. ATP hydrolysis assay

Jefferson [21]. Aliquots of sucrose

A fragment of the Atsuv3 cDNA encoding amino acids 11-387 was
cloned into the pQE32 plasmid (Qiagen) to generate the plasmid

(H. s.) and Caenorhabditis (C. r.). The conserved amino acids highlighted by inverse shading are conserved between at least three species and
pQE32-Atsuv3. A culture of XL1-Blue cells transformed with the

Fig. 1. The amino acid sequence deduced from the Atsuv3 cDNA (A. t.) is aligned with homologous protein sequences from yeast (S. c.), man
are concentrated in the central regions of the aligned homologues.

techniques using a monoclonal antibody directed against the mito-
chondrial Ela subunit of pyruvate dehydrogenase [22]. Immunoblots

were developed with the Renaissance chemiluminescence reagent

(NEN).

to the manual. Bacteria were disrupted by sonication in 20 mM Tris-

gradient fractions were subjected to Western blot analysis by standard
pQE32-Atsuv3 plasmid was grown, induced and harvested according

The GUS activity of sucrose gradient fractions was determined by a

plants on sucrose density gradients as described by Leaver et al. [20].
fluorogenic assay as described by

2.3. Overexpression and purification of His-tagged AtSUV3
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mmol [y-**P]ATP in the presence of soluble His-tagged AtSUV3 pro-
tein (100 ng) at 25°C for 4 h in a final volume of 20 ul of 20 mM Tris-
HCI pH7.4, 50 mM NaCl, 3 mM MgCl,, | mM DTT. Ten units of
DNase I, 10 pug of RNase A, 500 ng of yeast transfer RNA or 500 ng
of total mitochondrial RNA were added to the reaction. Aliquots of
1 ul were analysed by thin-layer chromatography on polyethylene-
imine cellulose plates (Macherey-Nagel) in 1 M formic acid, 0.5 M
LiCl and the reaction products were visualised by autoradiography.

3. Results

3.1. Structure of the Atsuv3 gene in A. thaliana

One of the genes predicted from the genomic sequence of a
large part of chromosome IV of A. thaliana [15] has significant
similarity with the yeast suv3 gene, which encodes a mito-
chondrial RNA helicase [23]. thisis potential plant protein
shares 39% and 45% of the amino acids with the respective
yeast and human homologues. To substantiate this overt se-
quence similarity we have initiated investigation of the func-
tion and subcellular localisation of the protein product of this
gene in plants.

Since no EST sequences corresponding to the predicted
Atsuv3 gene were available, the predicted coding region was
amplified by PCR from first strand cDNA of A4. thaliana total
RNA. The product of 1290 nucleotides generally confirms the
genomic predictions, but corrects the predicted ORF in two
positions at intron/exon borders. The 3’ border of the first
intron in the coding region is about 120 nucleotides further
downstream, and the fourth intron begins about 50 nucleo-
tides further downstream than predicted from the genomic
sequence. The previous prediction of the latter intron donor
sites was probably erroneous because of the presence of a GC
5" border instead of the more common GT bases (EMBL

[kbp]

BGEH

9.4 —

6.6 —
46 —

Fig. 2. The Atsuv3 gene is a unique sequence in the A. thaliana nu-
clear genome. Restriction fragments identified with the genomic At-
suv3 probe are with BamHI (B) larger than 28 kb, with Bg/II (G)
4.114 kb, with EcoRI (E) 3.556, 4.251 and 0.734 kb and with Hin-
dIIl (H) 2.566 kb respectively. Lengths of DNA marker fragments
are given in kb.
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Fig. 3. The Atsuv3 gene is transcribed at a very low level in 4.
thaliana. A: Northern blot analysis using 10 pg of total RNA (lane
T) and 5.7 ug of poly(A)" RNA (lane A"). Sizes of RNA marker
molecules are given in kb. B: Primer extension analysis of 3 ug
poly(A)"™ RNA using a primer located 40 nucleotides 3’ to the ini-
tiation codon detects a major 5’ terminus about 540 nucleotides 5’
to the ATG. The origin of a minor signal of 200 nucleotides from
the primer, 160 nucleotides upstream of the ATG, is as yet unclear.

accession number AJ132843). Comparison with suv3 sequen-
ces from other organisms indicated that a large part of the C-
terminus was missing in the predicted A. thaliana protein. A
3’-RACE analysis determined the precise structure of this
region and identified seven additional exons in three inde-
pendent 3’-RACE clones, which eliminate the predicted stop
codon and extend the orf to 1713 nucleotides in 16 exons (Fig.
1). The first in-frame ATG is immediately preceded by a
translational stop codon and the sequence context matches
the nucleotide patterns at other translation starts in plants
[24].

The correspondence between the cDNA sequences and the
identified genomic locus is confirmed by stringent Southern
blot analysis, which identifies only a single genomic location
in the total cellular DNA of A. thaliana (Fig. 2). The sizes of
the respective restriction fragments identified in this Southern
blot of digested nuclear DNA match the predictions of the
genomic sequence of this region (accession number Z97337) in
all instances (Fig. 2). The probe used did not detect a second
suv3-like sequence (accession number AB010077) which is
very divergent at the nucleotide level and is most likely a
pseudogene as detailed below.

3.2. Characteristics of the deduced AtSUV3 protein
Comparison of the amino acid sequence of AtSUV3 with
other SUV3 sequences from yeast, human and nematode
shows that the predicted plant protein is between 76 and
215 amino acids shorter. Several stretches of amino acids
are absent in both N- and C-terminal regions, while the cen-
tral portion containing all of the domains typical of DExH
RNA helicases is well conserved between the A. thaliana poly-
peptide and the respective proteins in various organisms, sug-
gesting that the A. thaliana sequence encodes a functional
polypeptide homologue (Fig. 1). Two conserved features in-
clude the signature of an ATP/GTP binding site motif
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Fig. 4. The Atsuv3 gene product is a mitochondrial protein. The intracellular localisation of the Atsuv3-encoded protein was analysed in vivo
in transgenic A. thaliana (A) and potato (B) plants, which had been transformed with the first 387 codons of the Atsuv3 open reading frame
fused upstream of the uidA (GUS) reporter gene. The sedimentation of mitochondria in sucrose gradient fractions (1 ml) was monitored with
antibodies against a mitochondrial marker protein, the E;, subunit of the pyruvate dehydrogenase. Fraction 1 is at the bottom of the sucrose
gradient. The distribution of GUS activity (given as per cent of the highest value) mirrors the distribution of the mitochondrial protein marker.

GPTNSGKT (amino acids 96-103 in Fig. 1) characteristic of
proteins with ATPase activity and a GRAGR RNA-binding
motif (amino acids 350-354 in Fig. 1). The entire protein is
predicted to contain 571 amino acids starting from the first

in-frame ATG with an calculated molecular weight of 63.6
kDa.

3.3. Expression of Atsuv3 is low in A. thaliana

The Atsuv3d mRNA was expected to be weakly expressed
considering that no homologous sequences have been found in
any of the various cDNA libraries established for A. thaliana,
maize or rice and only a single clone in poplar (accession
number AI166413). Indeed, when probing total cellular
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RNA from A. thaliana with the Atsuv3 coding region no
specific transcript signal is detected (Fig. 3A). Only upon en-
richment of poly(A)" RNA and long exposure times can a
single mRNA species of 2.3-2.5 kb in length be identified.

Primer extension experiments originating 40 nucleotides 3’
to the initiation codon identify a major 5’ terminus of the
transcript about 540 nucleotides 5’ to the initiation codon
(Fig. 3B), which suggests a size of about 2.5 kb for the
mRNA in good agreement with the mRNA detected by
Northern blot analysis. The origin of a minor primer exten-
sion signal about 150 nucleotides 5’ to the ATG is as yet
unclear.

3.4. AtSUV3 is a mitochondrial protein

The yeast SUV3 protein has been identified as a mitochon-
drial protein [23]. The signal prediction program PSORT lo-
cates the plant protein deduced from the A. thaliana cDNA
with an 85% probability to the mitochondrial matrix versus a
60% probability for a location in the nucleus (data not

Control AtSUV3
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< o o <
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Fig. 5. ATP hydrolysis activity of the overexpressed and purified
AtSUV3 protein (amino acids 11-387) is stimulated by mitochon-
drial RNA. Hydrolysis of [y-*>P]JATP was monitored by thin-layer
chromatography, which separates phosphate (lane 32P) from the
slower migrating ATP (lane [y’P]JATP). Addition of DNase I,
RNase A, yeast tRNA or mtRNA respectively to the reaction is in-
dicated in the figure.
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shown). The submitochondrial sorting to inner mitochondrial
membrane and intermembrane space is predicted with 54 and
50% probabilities, respectively. The N-terminal region of the
63.6 kDa precursor protein is predicted to be cleaved after 22
amino acids resulting in a mature polypeptide of 61.2 kDa.

The prediction of an N-terminal import signal is, although
clearly positive, beyond the significant probability no reliable
proof for the intracellular localisation. To investigate the in-
tracellular localisation of the AtSUV3 protein and the specif-
icity of the predicted N-terminal import signal experimentally,
transgenic A. thaliana and potato plants expressing a fusion
protein corresponding to the first N-terminal 387 amino acids
of AtSUV3 fused to the GUS reporter protein were generated.
Subcellular fractions from these transgenic plants were sepa-
rated on sucrose gradients (Fig. 4). Distribution of the GUS
activity was compared with the distribution of the mitochon-
drial marker enzyme pyruvate dehydrogenase. These analyses
show that GUS activity and mitochondria cofractionate in all
instances in A. thaliana as well as in potato, confirming the
mitochondrial location of the AtSUV3 protein (Fig. 4). No
GUS activity was detected in purified nuclei and chloroplasts
by histochemical staining or fluorogenic assay indicating that
AtSUV3-GUS is not imported into these organelles (results
not shown).

3.5. The ATPase activity of the AtSUV3 protein is stimulated
by mitochondrial RNA

Conservation of the major sequence elements of RNA hel-
icases, including an ATP-binding domain, in the AtSUV3
protein suggests a function homologous to the SUV3 protein
of yeast, which acts as an ATP-dependent helicase [23]. To
investigate the enzymatic properties of the plant protein, a
portion of AtSUV3 (amino acids 11-387) containing all the
domains conserved with the SUV3 homologues in other or-
ganisms including the RNA helicase motifs was overexpressed
in E. coli as a histidine-tagged protein. This tagged protein
was purified and when tested for ATP hydrolysis activity
shows a low endogenous ATPase activity (Fig. 5 and data
not shown). To exclude the influence of nucleic acids poten-
tially contaminating the recombinant protein, the ATP hy-
drolysis assay was repeated in the presence of RNase A or
DNase I (Fig. 5). The low endogenous ATPase activity was
not affected by the presence of these nucleases. While the
addition of yeast tRNA had no significant effect on the reac-
tion, clear stimulation of the ATPase activity was observed in
the presence of purified mitochondrial RNA, which confirms
that AtSUV3 is indeed an RNA helicase (Fig. 5).

4. Discussion

The increasing body of nucleic acid sequence data in plants
generates an increasing number of sequences with similarity to
genes in other organisms. Similarity alone, however, can be
deceptive, functions may have changed during the course of
evolution with the associated differentiation of molecular
mechanisms and metabolic pathways. Thus a clear functional
analysis of individual homologues must include characterisa-
tion of the subcellular localisation and an analysis of the bio-
chemical-catalytic activities of the respective gene product.
Accordingly in this report we describe the complete sequence
of Atsuv3 cDNA from A. thaliana, which is a plant homo-
logue of the yeast suv3 mitochondrial RNA helicase, and
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present experimental evidence for the expression of the gene,
the subcellular localisation of the encoded protein as well as a
partial functional characterisation.

4.1. Atsuv3 is a mitochondrial protein

We conclude that the polypeptide encoded by the Atsuv3
gene is a mitochondrial protein by two independent lines of
evidence. Firstly, the increasingly sophisticated signal predic-
tion program PSORT gives the N-terminus a significant score
as a mitochondrial import sequence. Secondly, experiments
with two different transgenic plant species expressing the At-
SUV3-GUS fusion protein clearly locate the reporter activity
and thus the fusion protein in the mitochondrial compartment
(Fig. 4).

4.2. Pseudogenes with similarity to suv3 in A. thaliana and
maize

An incomplete open reading frame without any introns that
could encode a protein with significant similarity to the yeast
SUV3 protein has recently been identified in the nuclear ge-
nome of A. thaliana (accession number AB010077) [25]. This
sequence region shows only low sequence similarity with the
Atsuv3 coding region, but is more similar to two sequences
found in maize genomic DNA (accession numbers X15406
and X15407). These maize loci were originally identified as
pseudogenes for the GAPDH gene family and contain the
Atsuv3 similarities on the opposite strand. Numerous stop
codons and frame shifts mark these sequences as pseudogenes
in maize. Only one of these two maize sequences (X15406) is
an obvious homologue of the incomplete open reading frame
in A. thaliana (accession number AB010077), which thus must
be evolutionarily derived from a common ancestral gene, a
distant relative of the genuine Atsuv3. The A. thaliana se-
quence (accession number AB010077) does contain all of the
conserved central domains of SUV3 homologues, while the N-
terminal region has not yet been analysed [25]. Because of the
absence of any introns in the suv3-like sequence (accession
number AB010077), this sequence is possibly a pseudogene
derived from a reverse transcribed and integrated cDNA se-
quence. Expressed genes are generally interrupted by numer-
ous introns even in the compact genome of A. thaliana as
evidenced by the genuine Atsuv3 gene with 15 introns.

4.3. Atsuv3 shows characteristics of an RNA helicase

The presence of genuine suv3 sequences in representatives
of all groups of metazoa indicates an important function of
this gene in RNA metabolism in mitochondria. Intensive
functional analysis of the yeast homologue to the AtSUV3
protein has shown that this mitochondrial protein is probably
involved in RNA processing including 3’ maturation of
mRNAs and degradation of certain group I introns [11,26].
In the mitochondrial genome of A. thaliana none of the genes
contains a group I intron [27] and RNA 3’ processing involves
different signal sequences from those found in yeast mitochon-
dria [28], suggesting that the SUV3 protein must have other,
more general function(s) in plant mitochondrial RNA metab-
olism. The extent of the evolutionary distance between the
fungal and the plant enzymes, however, has probably not
altered the enzymatic activity of the RNA helicase as such.

D. Gagliardi et al.IFEBS Letters 458 (1999) 337-342

Indeed, the plant AtSUV3 protein when expressed in E. coli
exhibits the enzymatic hallmark of ATP-dependent RNA hel-
icases, the stimulation of ATP hydrolysis by RNA.

Further characterisation of the AtSUV3 protein, its possible
association with other proteins in a larger functional complex
as well as the identification of its endogenous substrates is
now feasible with this initial characterisation.
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