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Abstract The exact physiological function of Ap3A
(A5PPppp5QQA, 5PP5QQ diadenosine triphosphate) remains unclear.
Previously we have demonstrated that the human p46 2-5A
synthetase (OAS1) efficiently utilises Ap3A as an acceptor
substrate for oligoadenylate synthesis. Here we show that
Ap3A(2PPp5PPA)n oligonucleotides can activate the 2-5A-dependent
RNase (RNase L), when the number of 2PP,5PP-linked adenyl
residues is two or more. Under the experimental conditions
applied the half-maximal activation (AC50) of RNase L for 2PP-
adenylated Ap3A derivatives was determined to be in nanomolar
range while the AC50 for 2-5A3 was 0.4 nM. The Ap3A(2PPp5PPA)n
oligonucleotides are thus less effective in activating RNase L
than 2-5A. We also investigated the occurrence of 2PP-adenylated
Ap3A in interferon and poly(I)WWpoly(C)-treated HeLa cells. In
purified trichloroacetic acid-soluble extracts about 40% of
RNase L-activating material is resistant to phosphatase treat-
ment, whereas the removal of 5PP-terminal phosphates greatly
reduces the activating properties of 2-5A. We assume that this
activity at least partly may be associated with the presence of
2PP-adenylated ApnA derivatives with blocked 5PP-terminal phos-
phates.
z 1999 Federation of European Biochemical Societies.

Key words: RNase L; 2-5A synthetase; Ap3A;
(2P-5P)oligoadenylate; Interferon; Oligoadenylate synthesis ;
Poly(I)Wpoly(C)

1. Introduction

Activation of 2-5A system is one of the principal cellular
e¡ects of interferons (IFN) (reviewed in [1]). The IFN-in-
ducible 2-5A synthetase is converted to catalytically active
state by double-stranded RNA and polymerises ATP into
2P,5P-linked oligoadenylates (2-5A). The 2-5A oligomers bind
to and activate RNase L that cleaves RNA at the 3P-side of
UpNp sequences [2^4]. Activation of RNase L was shown to
be important for cellular antiviral defence, in particular
against picornaviruses [5]. Together with antiviral action the
RNase L and the 2-5A systems in general were demonstrated
to be involved in the regulation of cell growth and apoptosis
[6].

It remains unclear whether 2-5A oligomers are the only

physiological activators of RNase L and whether ATP polym-
erisation is the only function of 2-5A synthetases [7]. The level
of 2-5A in cells of di¡erent types signi¢cantly increases after
virus infection or treatment with cytokines and double-
stranded RNA (poly(I)Wpoly(C)) [8^11]. Besides 2-5A, the oc-
currence of 2-5A-related compounds of unknown structure
that di¡er from authentic oligoadenylates was observed in a
number of IFN-treated and virus-infected cell lines [12^14].
These compounds were suggested to be alternative products
of 2-5A synthetase that has relatively broad substrate specif-
icity, being able to utilise as a primer any adenosine moiety
with available 2POH ribose group [14].

Previously we have shown that human 2-5A synthetase (p46
OAS) e¤ciently utilises Ap3A, a dinucleotide with two sym-
metrical adenylate moieties, as an acceptor substrate for
(2P-5P)oligoadenylate synthesis [15]. Ap3A is a product of a
reaction catalysed by aminoacyl-tRNA synthetases, in partic-
ular tryptophanyl-tRNA synthetase (WRS) [16]. A peculiar
feature of the human WRS is its inducibility by IFN [17,18].
In parallel with WRS induction, the increase of Ap3A level
was demonstrated in cell lines of lymphocytic and monocytic
origin after IFN treatment [19]. We suggested that IFN-de-
pendent accumulation of Ap3A, which is an e¡ective primer
for 2-5A synthetase, could promote cellular response towards
viral invasion [15]. This study was aimed at ¢nding experimen-
tal evidence for the ability of the Ap3A(2Pp5PA)n compounds
to activate RNase L, which has not been investigated before,
as well as the natural existence of 2P-adenylated Ap3A deriv-
atives.

2. Materials and methods

2.1. Baculovirus expression and puri¢cation of RNase L
Expression of RNase L in the baculovirus/insect system was done

as described [3].

2.2. Sources of (2P-5P)oligonucleotides
2-5A and 2P-adenylated Ap3A oligonucleotides were produced and

puri¢ed as described [17].

2.3. Assay for RNase L
Oligoribonucleotide substrate C11UUC7 (synthesised by DNA

technology, Aarhus, Denmark) was radiolabeled at 3P position with
5P-[32P]-3P,5P cytidine bisphosphate (Amersham, 3000 Ci/mmol) ac-
cording to supplier's protocol in the presence of 10% dimethyl sulf-
oxide, followed by ethanol precipitation. Incubation mixture con-
tained 15 mM HEPES, pH 7.6; 90 mM KCl; 4 mM MgCl2 ; 2 mM
DTT; 1 mM ATP; 2 WM C11UUC7-[32P]Cp and 100 ng of crude
RNase L preparation. Reaction was performed in a total volume of
20 Wl at 25³C in the presence or absence of various (2P-5P)oligonucleo-
tides, or 2 Wl of HeLa cell extracts for 10^30 min as indicated. Re-
actions were quenched by adding 20 Wl of gel loading bu¡er contain-
ing formamide and 10 mM EDTA. To avoid the loss of material due
to oligonucleotide absorption to the polypropylene surfaces, reaction
tubes and pipette tips were siliconised in 2% dimethyldichlorosilane
solution in trichloroethane. For product analysis, a 10-Wl aliquot of
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the quenched solution was electrophoresed on 12% acrylamide, 7 M
urea sequencing gel. The bands corresponding to substrate and prod-
uct were quanti¢ed using a PhosphorImager (Molecular Dynamics).

2.4. Cell culture and extract
HeLa cells were grown in DMEM supplemented with 10% calf

newborn serum (Life Technologies) to approximately 50% con£uence
before induction with 500 U of IFNK and with 50 U of IFNQ for 24 h.
poly(I)Wpoly(C) (Pharmacia) after sonication was added to a ¢nal con-
centration of 0.2 mg/ml. Cells were incubated in the presence of
poly(I)Wpoly(C) for 90 min and washed with phosphate bu¡ered saline
(PBS), then 2 ml of 7% TCA was added immediately after washing,
and cells were harvested. Insoluble material was removed by centrifu-
gation (6000Ug for 10 min), and TCA was extracted by 1,1,2-tri-
chloro£uoroethane/trioctylamine (3:1 v/v) (Merck). After extraction
the solution was loaded on a 6-ml Resource Q column (Pharmacia),
equilibrated with 0.1 M NH4HCO3. The column was washed with
20 ml of 0.22 M NH4HCO3, and oligonucleotide-containing fraction
was eluted with 0.7 M NH4HCO3. Glacial acetic acid (0.1 volume)
was added to eluate and CO2 was completely evaporated, and then
the solution was applied to a C18 Sep-Pak column (Water Associates)
equilibrated with water. Oligonucleotide-containing fraction was
eluted with 1 ml methanol/water (1:1). The eluate was lyophilised
and dissolved in water in a volume equivalent to 1:5 of initial packed
cell volume, and pH was adjusted to 7.6 by 0.5 M KOH. Solution was
cleaned from possible RNase contaminations by ¢ltration through
Biomax-10K column (Millipore) at 3000Ug for 40 min. In an aliquot,
bovine alkaline phosphatase (BAP, Boehringer Mannheim) was added
at 0.15 U/ml ¢nal concentration and incubated at 37³C for 1 h fol-
lowed by heat denaturation at 85³C for 10 min. In parallel probe, the
reaction was monitored by addition of [32P]Cp-labeled 2-5A3 up to
0.1 WM and followed by PEI thin-layer chromatography as described
[15].

3. Results

To determine if 2P-adenylated Ap3A derivatives could acti-
vate RNase L, the crude extract of recombinant human
RNase L from baculovirus-infected insect cells was used.
The amount of RNase L in cell extract was 5% of the total
soluble protein as estimated from polyacrylamide gel electro-
phoresis (not shown). RNase L activity was monitored by
measuring the cleavage rate of [32P]Cp-labeled synthetic oli-

goribonucleotide C11UUC7 after separation of the substrate
and product on denaturing polyacrylamide gel. The RNase
L-dependent cleavage of this substrate leads to the accumu-
lation of C11UU(3Pp) and C7-[32P]Cp oligonucleotides [20].

Under the applied experimental conditions no basal RNase
L activity was observed in the absence of speci¢c oligonucleo-
tide activators (Fig. 1, lane 1). In the presence of 5 nM 2-5A
trimer [pppA(2Pp5PA)2] RNase L completely cleaves the sub-
strate and a single radiolabeled product that is apparently
C7[32P]Cp is formed (Fig. 1, lane 2). Oligonucleotides of
Ap3A(2Pp5PA)n family are also able to activate RNase L
with the exception of once 2P-adenylated Ap3A (Fig. 1, lanes
3^6).

To determine RNase L-activating potential of Ap3A deriv-
atives, the rate of C11UUC7 cleavage was measured as a func-
tion of oligonucleotide concentration (Fig. 2). The rate of
RNase L activity reached a plateau with increasing concen-
trations of oligonucleotides. At saturating concentrations the
maximal activation of RNase L for Ap3A(2Pp5PA)4 was about
0.6 from equipotent maximal activation for other tested oli-
goadenylates: 2-5A3, Ap3A(2Pp5PA)2 and Ap3A(2Pp5PA)3. The
Ap3A(2Pp5PA)2 concentration at which half-maximal activa-
tion (AC50) was obtained under the given reaction conditions
was 2.8 nM. For 3 and 4 times 2P-adenylated Ap3A deriva-
tives the AC50 were 3.5 and 3.7 nM respectively. For the well-
known RNase L activator 2-5A3, the AC50 is 0.4 nM in agree-

Fig. 1. E¡ects of 2P-adenylated Ap3A derivatives on RNase L activ-
ity. Radiolabeled substrate (C11UUC7-[32P]Cp) was incubated with
RNase L at 25³C for 30 min, subjected to denaturing polyacryl-
amide gel electrophoresis and autoradiographed. Lane 1, 20 nM
Ap3A(2Pp5PA); lane 2, 20 nM Ap3A(2Pp5PA)2 ; lane 3, 20 nM
Ap3A(2Pp5PA)3 ; lanes 4 and 5, 20 nM Ap3A(2Pp5PA)4 ; lane 6, incu-
bation in the presence of 5 nM 2-5A3 ; lane 7, incubation without
oligonucleotide activators.

Fig. 2. Activation of RNase L as a function of oligonucleotide con-
centration. Assays were performed with 2 WM C11UUC7-[32P]Cp as
substrate at 25³C for 10 min. The rate of each reaction was deter-
mined relative to the maximal rate, which was obtained with the re-
actions incubated with 20 nM 2-5A3 or 0.1 WM of each of the
Ap3A(2Pp5PA)n respectively. The maximal activity obtained with
Ap3A(2Pp5PA)4 was 60% of that obtained with 2-5A.

Table 1
Activation of RNase L by various concentrations of Ap3A(2Pp5PA)2
and oligonucleotides extracted from IFNK, IFNQ and poly(I)W
poly(C)-treated HeLa cells (the autoradiogram is shown in Fig. 3)

Lanes Activator % Conversion

1, 2 and 19 No addition 0 þ 1.5
3 50 nM Ap3A-2-5A2 46.3
4 20 nM Ap3A-2-5A2 44.7
5 and 6 10 nM Ap3A-2-5A2 38.8 þ 4.0
7 and 8 5 nM Ap3A-2-5A2 31.0 þ 0.3
9 and 10 3 nM Ap3A-2-5A2 21.0 þ 2.5
11 and 12 2 nM Ap3A-2-5A2 10.5 þ 2.4
13 and 14 1 nM Ap3A-2-5A2 2.1 þ 0.4
15 and 16 Cell extract 26.1 þ 1.8
17 and 18 BAP-treated extract 11.4 þ 0.3
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ment with the published data [21,22]. Thus, Ap3A(2Pp5PA)2,
Ap3A(2Pp5PA)3 and Ap3A(2Pp5PA)4 were 8^10 times less e¤-
cient RNase L activators than (2P-5P)oligoadenylates.

Separately, we carried out experiments to detect possible
occurrence of 2P-adenylated Ap3A derivatives in IFN and
poly(I)Wpoly(C)-treated HeLa cells. Puri¢ed extracts were di-
luted in water to a volume equivalent to 1:5 of the original
packed cell volume and analysed for RNase L-activating ca-
pacity. Addition of this cell extract to the incubation mixture
caused C11UUC7 cleavage at the same rate as cleavage in-
duced by exogenous Ap3A(2Pp5PA)2 at 4 nM concentration
(Table 1, Fig. 3). Consequently, the average intracellular con-
centration of the RNase L-activating compounds could be
roughly estimated as equivalent to 8 nM Ap3A(2Pp5PA)2, or
to 1 nM of 2-5A3.

To ascertain the nature of these activators, we treated the
extracts with BAP before RNase L assay. BAP treatment
signi¢cantly reduced RNase L activation by TCA-soluble
cell extracts (Fig. 3, lane 4). The BAP-resistant activating
capacity was shown to be about 40% from the initial value
and intracellular concentration could thus be estimated as
equivalent to 3.2 nM of Ap3A(2Pp5PA)2 or to 0.4 nM of au-
thentic 2-5A3. This remaining activity could be attributed to a
cumulative action of unphosphorylated core 2-5A oligomers
that retain residual activating capacity [2,3,22], and to 2P-oli-
goadenylated derivatives of Ap3A (or Ap4A) where 5P-termi-
nal pyrophosphate group is protected from phosphatase ac-
tion. The phosphatase-resistant activity cannot be attributed
to endogenous cellular unphosphorylated 2-5A because these
compounds were eliminated by an FPLC step.

4. Discussion

Diadenosine oligophosphates were suggested to be a pecu-
liar class of both extracellular and intracellular e¡ectors reg-
ulating a number of ion channels, membrane receptors, DNA
replication and participating in various stress responses (re-
viewed in [23]). The IFN-dependent increase of the Ap3A level
in cultured cells correlates with the induction of WRS [19],
which is known to synthesise Ap3A from aminoacyl adenylate

and ADP [24]. Besides, we have shown that Ap3A serves as an
acceptor substrate for human 2-5A synthetase (p46 OAS)
which is capable of further elongating Ap3A with up to six
(2P-5P) adenylate residues [15]. This observation established a
link between WRS and 2-5A synthetase, two of IFN-inducible
enzymes.

There are two ways of 2-5A inactivation in vivo, namely
dephosphorylation by cellular phosphatases or pyrophospha-
tases, and cleavage by speci¢c 2P-phosphodiesterase [25]. The
¢rst way seems to be the major one. Analysis of oligonucleo-
tide composition of TCA-soluble cell extracts from di¡erent
tissues has shown that signi¢cant part of 2-5A oligomers are
present at the unphosphorylated state [4]. Dephosphorylation
greatly reduces the RNase L-activating capacity of 2-5A. Un-
phosphorylated 2-5A3 and 2-5A4 oligonucleotide cores are
respectively 100 and 10 times less active than the 5P-triphos-
phorylated 2-5A3 and 2-5A4 [2,3,21]. In contrast to 2-5A, the
pyrophosphate groups of 2P-adenylated Ap3A derivatives are
protected from phosphatase treatment by 5P-terminal adeno-
sine moiety. It cannot be excluded that certain intracellular
conditions, such as increase of Ap3A concentration together
with high level of phosphatase activity could lead to predom-
inance of Ap3A derivatives over authentic phosphorylated
2-5A. It is worth to note that general activity of 2-5A system
in vivo depends from intracellular compartmentalisation of
dsRNA-dependent 2-5A synthesis and RNase L targets, and
from ratio between the levels of 2-5A synthesis and 2-5A
dissipation that is a function of di¡usion, hydrolysis and de-
phosphporylation [26]. One can suggest that accumulation of
2P-adenylated Ap3A derivatives might direct RNase L towards
other than standard 2-5A targets, which are more distant
from dsRNA-containing intracellular compartments.

The following alternatives have already been discussed
[15,23] : Ap3A(2Pp5PA)n compounds could activate RNase L
directly, or this activation requires preliminary cleavage by
speci¢c Ap3A hydrolase Fhit that presumably releases
ppA(2Pp5PA)n that activates RNase L when n is 3 or more.
In this study we have demonstrated that 2P-adenylated Ap3A
derivatives themselves are able to activate RNase L in a nano-
molar range of concentrations. We have determined that the

Fig. 3. Activation of RNase L by Ap3A(2Pp5PA)2 and oligonucleotides extracted from IFN and poly(I)Wpoly(C)-treated HeLa cells. TCA-soluble
extract was puri¢ed by FPLC, desalted by passing through Sep-Pak column, lyophilised and taken up in ¢nal dilution equivalent to 0.2 ex-
pected intracellular concentration. C11UUC7-[32P]Cp as a substrate was incubated with RNase L at 25³C for 30 min and then electrophoresed
and radioautographed. The RNase L activity in each lane was determined with a PhosphorImager and the calculated values after subtraction
of background are shown in Table 1. This autoradiogram is representative of two^four independent experiments. Lanes 1, 2 and 19, incubation
without activators; lane 3, 50 nM Ap3A(2Pp5PA)2 ; lane 4, 20 nM Ap3A(2Pp5PA)2 ; lanes 5 and 6, 10 nM Ap3A(2Pp5PA)2 ; lanes 7 and 8, 5 nM
Ap3A(2Pp5PA)2 ; lanes 9 and 10, 3 nM Ap3A(2Pp5PA)2 ; lanes 12 and 13, 2 nM Ap3A(2Pp5PA)2 ; lanes 13 and 14, 1 nM Ap3A(2Pp5PA)2 ; lanes
15 and 16, incubation in the presence of cell extract; lanes 17 and 18, incubation in the presence of BAP-treated cell extract.
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apparent AC50 for Ap3A(2Pp5PA)2 is 2.8 nM whilst the ap-
parent AC50 for trimer 2-5A is 0.4 nM. Before the apparent
activation constant (Ka) for both 2-5A3 and Ap4A(2Pp5PA)2

was determined as 0.2 nM [21]. Hence, 2P-adenylated Ap3A
derivatives are less e¡ective in RNase L activation in compar-
ison with Ap4A derivatives and authentic 2-5A oligomers, but
at the same time Ap3A is a more e¤cient substrate for 2-5A
synthetase than Ap4A [15].

The occurrence of 2P-adenylated Ap3A derivatives in cells
remains unclear. We demonstrated that oligonucleotide-
containing fraction of TCA-soluble extract from IFN and
poly(I)Wpoly(C)-treated HeLa cells retains partly the ability
to activate RNase L after incubation with BAP. We suggested
that this fraction is a complex mixture of 2P-adenylated Ap3A
(or Ap4A) oligomers and unphosphorylated core 2-5A gener-
ated by BAP digestion. Our experiments demonstrate that the
part of BAP-resistant component is about 40% from the total
intracellular RNase L-activating material.

IFN-treated vaccinia virus-infected HeLa and several other
cell cultures accumulate a complex mixture of authentic 2-5A,
core 2-5A and numerous additional compounds [12^14]. In
these studies HPLC of TCA extracts was combined with ra-
diobinding assays. For a number of HPLC fractions the ca-
pacity to activate RNase L was resistant to phosphatase treat-
ment. The chromatographic properties of these fractions were
di¡erent from the dephosphorylated 2-5A [12^14]. Given that
the chemical analysis of the HPLC fractions was not provided
and the structure of other than 2-5A, the classical RNase L
activators, remained unknown, it cannot be excluded that
these compounds were 2P-adenylated Ap3A (or Ap4A) deriv-
atives. In this case it is virus infection that stimulates signi¢-
cant accumulation of Ap3A(2Pp5PA)n oligomers in host cells in
contrast to feeble accumulation after poly(I)Wpoly(C) treat-
ment used in this study. It is worth to note that vaccinia virus
is known to impair the action of 2-5A via inactivation of
RNase L by a speci¢c inhibitor and consequently with ex-
tremely high concentrations of intercellular 2-5A [27]. Further
investigations are necessary to measure the exact cellular con-
centrations of 2P-adenylated Ap3A derivatives and to unravel
the physiological functions of these compounds.
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