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Crystallization of the immunodominant outer membrane protein OmpC;
the first protein crystals from Salmonella typhi, a human pathogen
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Abstract OmpC, a surface antigen of Salmonella typhi was
crystallized after several attempts, using PEG 3350. Well shaped
hexagonal crystals were grown from vapor diffusion method
using octyl glucoside and C;E9 as detergents. Crystals are
sensitive to X-ray and diffract weakly up to 7 A. Porin isoforms,
due to the bound lipopolysaccharides, could be the cause for poor
diffraction. Crystal quality depends largely on the purification
method, and in case of LPS contamination, the genetic
background of the bacteria. Crystallization and initial data
collection suggest optimum conditions and the method of choice
for OmpC crystallization.
© 1999 Federation of European Biochemical Societies.

Key words: OmpC; Surface antigen; Crystallization;
X-ray diffraction; Salmonella typhi

1. Introduction

Porins form water filled channels on the outer membrane of
Gram-negative bacteria and allow small hydrophilic solutes to
pass through the pore [1]. They are present as homotrimers in
vivo and shown to be phage receptors and B-cell mitogens
[2,3]. In the porin superfamily, there are general and specific
porins and their expression is modulated by the living envi-
ronment of the bacteria [4]. Porins show a trimeric structural
organization with a similar B-barrel fold, irrespective of low
sequence homology between porins of Enterobacteria and oth-
er bacterial origin. Porins that are general diffusion channels,
have each B-barrel made of 16 antiparallel B-strands in the
membrane spanning regions whereas those of the specific po-
rins such as LamB and ScrY have 18 strands [5]. However,
porins differ in their pore characteristics and more impor-
tantly in their surface exposed loop regions which are the
main focus in immunological and structure-function related
studies. Expression of major outer membrane proteins,
OmpF and OmpC, of Enterobacteria is under the two-compo-
nent regulatory system in vivo and influenced by the osmo-
larity conditions. Salmonella typhi OmpC was found to be
expressed both in low and high osmolarity conditions [6] un-
like Escherichia coli OmpC which is expressed more during
high osmolarity.

Outer membrane porins are potential surface antigens and
are immunologically important in terms of diagnosis and vac-
cine design [7]. Salmonella porins induce both humoral and
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cell mediated immunity [8,9] in animal models. S. typhi OmpC
has been demonstrated to have potential to display rota viral
epitopes on the cell surface [10]. Possible expression of OmpC,
all through the infection period, has been emphasized [11]. A
high level of antiporin antibodies have been detected from the
sera of patients with typhoid fever [12,13]. Though the role of
OmpC in infection and pathogenesis is not understood yet, it
is a possible target antigen in diagnostics and a candidate
antigen for multivalent vaccine design [10]. We have earlier
predicted the possible sequential epitopes for OmpC [14]
based on the sequence alignment and the structures of E.
coli porins. The prediction was improved based on the homol-
ogy model built for OmpC (PDB code: 111V). The model
helped in analyzing the structural features of surface exposed
antigenic loops in comparison with other Enterobacterial po-
rin structures. At present, we are interested in determining the
crystal structure of OmpC to probe the unique structural fea-
tures of these antigenic regions which are surface exposed.

In spite of the improvement in the methods for membrane
protein crystallization [15,16], conditions to get stable and
well diffracting crystals are still unpredictable [17]. It is de-
pendent on many factors like choice of the major and additive
detergents, precipitant, and especially on the protein purity. In
the case of OmpC, from the galE mutant of S. typhi vaccine
strain Ty21a, removal of non-covalently attached lipopolysac-
charides (LPS) is a major hurdle in the sample preparation for
crystallization. The chemical heterogeneity of the LPS results
in isoforms of OmpC purified from S. typhi Ty2la (unpub-
lished). Here, we report on the crystallization of OmpC using
PEG/NaCl system which yielded reproducible crystals for
X-ray crystallographic study. This is the first report on the
crystals of major protein antigen from S. fyphi, an obligatory
human pathogen which causes typhoid. The crystals are well
shaped. However, they diffract only to low resolution (up to
7 A). The reasons for poor diffraction and problems in getting
stable and good quality crystals of S. zyphi OmpC are ana-
lyzed and their implications for porin crystallization are dis-
cussed.

2. Materials and methods

2.1. Purification and buffer exchange

Porin was extracted from the avirulent, vaccine strain S. typhi
Ty2la [18], using a modified salt extraction method. This method
was developed to extract only the major outer membrane protein
(OmpC) in large quantities from the crude membrane preparation.
In order to remove the free LPS, extracted porin was passed through
the gel filtration column, packed with Sephacryl S-200 HR matrix.
Extraction and column buffer had 50 mM Tris-HCI (pH 7.7), 5 mM
EDTA, 0.4 M NaCl, 3 mM NaNj and 0.05% B-mercaptoethanol.
Buffer exchange and additional LPS removal were simultaneously
achieved, prior to crystallization, using Amicon Stirred cell and ultra-
filtration devices with 10 kDa and 50 kDa cutoff membranes. Porin in
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extraction buffer was exchanged initially with a buffer containing
50 mM sodium phosphate pH 6.5, 0.1% Ci,E¢ (Sigma), 100 mM
NaCl and 3 mM NaNj and later on with crystallization buffer con-
taining 0.8% B-octyl glucoside and 0.05% C,Ey (Sigma).

2.2. Crystallization

Crystallization was carried out using microbatch, macrobatch under
oil and sitting/hanging drop vapor diffusion methods. PEG/NaCl sys-
tem [19] was used in all methods with varying molecular weights of
PEG (Mol. wt. 400, 1450, 3350, 6000, 8000) as precipitant. In case of
microbatch method, 2 pl each of protein sample (10.5 and 14.5 mg/ml)
and precipitant solution were mixed and layered down, under 10 pl of
paraffin oil, that had been filtered through 0.2 um filter, in the wells of
Terazaki plates. For macrobatch, 20 pl of protein precipitant mixture
and 50 pl of oil was used in 96 well U-bottom plate and sitting drop
stages (locally made) in 24 well plates. For vapor diffusion experi-
ments, either 5 or 10 pl each of protein (14.5, 10.5, 15 and 23.3 mg/
ml) and precipitant solutions were mixed in equal proportions, before
setting up the drops in 24 well plates with 1 ml of reservoir. Unless
mentioned otherwise, all the setups were initially maintained at
22-25°C, until the crystals started appearing, and then later shifted
to 22-30°C. It took a minimum of 4 weeks for crystals to appear in
most cases depending on the method. In the case of the microbatch
method, crystals appeared within 10 days also. Crystals were con-
firmed to be of protein using the Izit Crystal dye (Hampton research,
USA) before further analysis using X-rays.

2.3. Data collection

Crystals were mounted in thin-walled glass capillaries and checked
for X-ray diffraction. Initial data collection was done using a Rigaku
rotating anode X-ray source operated at 40 kV, 58 mA and an MAR
Image plate (MAR Research Inc). The diffraction data were processed
using the Mar XDS software [20].

3. Results

3.1. Microbatch under oil

Initial screening resulted in reproducible microcrystals of
<50 pum? size under the conditions with 8-21.5% of PEG
3350, in a period from 2 weeks to a few months. Increase in
the NaCl concentration in the drop promoted faster crystal
growth and also the phase separation occurred earlier. The
boundary between the oil and the drop disappeared before
crystals started growing. Increase in the drop size, from 2 to
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4 ul in 10 pl oil, did not produce noticeable changes in crystal
formation and size. The same conditions at room temperature
did not yield crystals and only resulted in precipitation. The
macrobatch method yielded reproducible and slightly bigger
crystals, though the crystal size did not improve much. Porin
samples used in these methods were passed through only 10
kDa cutoff membrane. The entire drops were filled with clus-
ters of microcrystals due to large number of nucleation sites.
Phase separation, typified by oil droplet appearance, occurred
after the crystal formation. The crystals got covered and in a
couple of days the entire well looked dirty. Slight temperature
fluctuations do not seem to affect the crystal formation. Using
crude porin, containing free and bound LPS, the microbatch
method did not produce crystals when SDS was used as the
only detergent. Conditions using various concentrations of
PEG 400, 6000 and 8000 did not yield crystals.

3.2. Vapor diffusion

The crystallization attempts were then made to prevent ex-
cessive nucleation and phase separation. In vapor diffusion
experiments crystals formed after a month, in 13-15% PEG
3350 and in the presence of detergents B-OG (0.8%) and
CpE9 (0.05%). Though 13% PEG induced slow crystal
growth, single, well ordered crystals were formed (Fig. 1).
Increase in PEG concentration beyond this resulted in disor-
dered crystals. Crystals with hexagonal and rod morphology
appeared in the same well. Increased amount of NaCl in the
drop and reservoir favored faster crystal growth. The change
in protein concentration from 14.5 mg/ml to 23.3 mg/ml gave
rise to long, thick hexagonal towers of 0.4X0.4X0.2 mm in
size. 15% PEG 1450 also yielded hexagonal crystals with well
defined faces which took a few months to grow. Beyond this
concentration, PEG 1450 induced faster growth of needles.
Long hexagonal towers were seen at the protein concentration
of 23 mg/ml.

3.3. X-ray diffraction
None of the crystals were stable on X-rays for a long time.

Fig. 1. Crystal grown under sitting drop method. One pl of Izit crystal dye was delivered in the drop and allowed to diffuse through for about
3-4 h. Crystal shown on the left side is before adding dye and the same crystal, after adding the dye, is shown on the right. The crystal turned
blue indicating that it is a protein crystal. This was subsequently confirmed by the X-ray diffraction.
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Soaking the crystals in stabilization buffer, containing in-
creased amount of precipitant, did not improve the stability
much. Initial data collected were only partial due to weak
diffraction of crystals and short life times upon X-ray expo-
sure. Data processing was very difficult due to too few and
weak reflections in each of the frames. Crystal to crystal var-
iation caused problem in indexing. The data can be indexed in
the trigonal system with typical cell dimensions ¢ =5=121.77
A, ¢=197.85 A, a=Pp=90° y=120°. The dimensions are
rather close to that of ScrY [21], suggesting three trimers in
the unit cell. Data completion is 33% from 30 to 7A with the
Rumerge(Z) = 14.8% (for 1858 reflections).

4. Discussion

Integral membrane protein structures contribute only 1.2%
of around 7600 protein structures available in the PDB data-
base. This is mainly due to problems in getting quality crystals
and partly due to non-availability of well defined expression
systems for many integral membrane proteins when compared
with soluble proteins of cellular localization. Though major
outer membrane proteins, which are expressed constitutively
in large amounts, may not require such expression systems for
large scale preparation, their structure-function studies are
limited due to problems in getting pure protein, LPS associa-
tion and choice of the detergent, etc.

Crystals from both micro- and macrobatch under oil could
not be stabilized in any solution. Harvesting in any other
buffer resulted in immediate disappearance of crystals. Crys-
tals from macrobatch were mounted directly from the well.
The oily layer which covered the crystal surface could not be
removed due to direct mounting. Single crystals could not be
grown under both micro- and macrobatch methods. It is likely
that in this case, as the sample was passed through only 10
kDa cutoff membrane, there were many nucleation sites in the
drops which may be due to micellar aggregation as reported
earlier [22].

The sitting drop method with PEG 3350 as a precipitant
was promising in terms of single as well as bigger crystals,
after initial trials. PEG 6000 and 8000 induced rapid precip-
itation even at lower concentrations. It is necessary to im-
prove the quality of the crystals. Our analysis indicates that
the problem could be due to bound LPS of different chemo-
types. Purified porin still had bound LPS which was released
on boiling with sample buffer. This could be visualized in
SDS-PAGE gels stained with silver nitrate which also detects
LPS. Purified S. typhi OmpC shows anomalous mobility in
the gel unlike E. coli OmpC which migrates as a single band,
whereas the recombinant S. typhi OmpC, expressed in E. coli,
migrates as a single band (unpublished). This may be due to
more amounts of aberrant LPS attached to S. typhi OmpC
extracted from the LPS mutant Ty2la. Though the bound
LPS was removed by repeated buffer exchange using ultra-
filtration devices, complete removal of LPS was not possible.
It has been shown, using monoclonal antibodies, that the E.
coli porin monomer had still bound LPS as noticed in the
Western blot after separation in SDS-PAGE [23]. Buffer ex-
change using 50 kDa Mol. wt. cutoff ultrafiltration devices,
prior to setting up for crystallization, gave rise to single and
larger crystals at 22-25°C. However similar conditions at
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room temperature (30-35°C) did not yield crystals, but in-
duced precipitation.

A recent report on the crystallization attempts with the
osmoporin E. coli OmpC [24] also discusses the problems
due to contaminating LPS. Though E. coli OmpC could be
crystallized under many conditions with different buffers, pH
and detergents, the crystal quality seems to be depending on
the purity, in terms of the bound LPS. Extensive buffer ex-
change and additional ion-exchange chromatography are
likely to help in effective removal of LPS to a large extent
thereby improving crystal quality, which is crucial for the
three-dimensional structure determination of S. typhi OmpC.
Other possibilities such as porin-antibody (Fab) complexes
and use of recombinant S. zyphi OmpC are also being ex-
plored to improve the crystal quality.
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