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Abstract Fibulin-1 is a 90 kDa calcium-binding protein present
in the extracellular matrix and in the blood. Two major variants,
C and D, differ in their C-termini as well as the ability to bind the
basement membrane protein nidogen. Here we characterized
genomic clones encoding the mouse fibulin-1 gene, which contains
18 exons spanning at least 75 kb of DNA. The two variants are
generated by alternative splicing of exons in the 3’ end. By
searching the database we identified most of the exons encoding
the human fibulin-1 gene and showed that its exon-intron
organization is similar to that of the mouse gene.
© 1999 Federation of European Biochemical Societies.
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1. Introduction

Fibulin-1 is a 90 kDa calcium-binding protein found in the
extracellular matrix and in the blood plasma [1,2]. Cloning of
cDNAs has revealed at least four variant fibulin-1 polypep-
tides in humans, designated A-D, and two major variants, C
and D, in mice and zebrafish [3-6]. These variants differ in the
C-terminal domain III but share a common core structure
consisting of three anaphylatoxin-like repeats in the N-termi-
nal domain I, and nine consecutive epidermal growth factor-
like modules (EG modules) in domain II, eight of which pos-
sess a consensus sequence for calcium binding (Fig. 1A). A
homologous protein, fibulin-2, contains domains I, II, and III
similar to fibulin-1C and an additional globular domain at the
N-terminus [7]. The extracellular protein, S1-5, recently was
suggested as the third member of the fibulin family, even
though it does not possess domain I [6].

Fibulin-1 expression is widespread in the basement mem-
brane and stroma of most organs [4,7,8]. It colocalizes with
elastic microfibrils in the skin and with fibronectin fibrils de-
posited by cultured cells [8,9]. The biochemical evidence that
fibulin-1 binds fibronectin and nidogen [10,11], the major
components of basement membranes and interstitial connec-
tive tissues, is consistent with the expression pattern. The C
and D variants differ in the ability to bind the basement
membrane protein nidogen [11]. The expression pattern of
fibulin-1 during embryonic development suggests a critical
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role in organogenesis, particularly in the development of car-
diac septa and valves [12-14]. As a blood protein, fibulin-1
binds fibrinogen and may serve a function in hemostasis and
thrombosis [15,16]. Moreover, fibulin-1 appears to be involved
in tumor formation and invasion [17-19].

The fibulin-1 gene maps to human chromosome 22q13 and
mouse chromosome 15, band E-F [20], but its genomic struc-
ture has not been reported to date. In this study, we isolated
genomic clones containing the entire coding region of the
mouse fibulin-1 gene, determined the exon-intron organization
of the gene, and showed that the C and D variants are en-
coded by alternative exons in the 3’ end of the gene. We also
identified most of the corresponding exons for the human
fibulin-1 gene and alternative exons for the A and B variants
by searching the genome database. Comparison of the mouse
and human genes showed a high degree of conservation in the
exon-intron organization.

2. Materials and methods

2.1. Isolation of genomic clones

Genomic clones were isolated from a AFIXII phage genomic library
constructed from DNA of mouse strain 129 (Stratagene, CA) and a
cosmid library constructed from D3 embryonic stem cells (a gift from
John S. Mudgett and Reinhard Fissler). The libraries were screened
with [*2P]dCTP labeled mouse fibulin-1C and D cDNAs [4] using
standard methods [21]. Positive clones were characterized by restric-
tion enzyme mapping. Exons were localized by Southern blotting us-
ing cDNA fragments encoding different regions of fibulin-1 as probes.

2.2. DNA sequencing and sequence analysis

Exon-containing fragments from the phage clones were subcloned
into pBluescript vector and subjected to DNA sequencing, while the
cosmid clone was used directly as a template for sequencing without
further subcloning. DNA sequencing was performed by the dideoxy-
chain termination method using [**P]JdATP and the Sequenase kit
(Amersham), or by the cycle sequencing method with Taq polymerase
and fluorescence labeled dideoxynucleotides on an automatic se-
quencer (Applied Biosystems). Sequencing was performed with T3
and T7 primers or with primers derived from the cDNA sequence.
DNA sequences were analyzed using GCG software (Genetics Com-
puter Group, Madison, WI). Database comparisons were performed
using BLAST computer program [22].

2.3. Polymerase chain reaction (PCR)

The intron sizes were determined by restriction enzyme mapping,
DNA sequencing, or PCR amplification of genomic clones with pri-
mer pairs from two adjacent exons. PCR was performed using Am-
pliTaq according to the protocols provided by the manufacturer (Per-
kin-Elmer). The conditions were an initial denaturation at 94°C for
2 min, followed by 30 cycles of 94°C for 45 s, annealing at 60°C for
45 s, and extension at 72°C for 1 min, and then a final extension at
72°C for 10 min. For longer PCR, amplification was carried out with
rTth DNA polymerase and AmpliWax beads (Perkin-Elmer) as sug-
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gested by the manufacturer. Amplification conditions were an initial
denaturation at 94°C for 2 min, followed by 30 cycles of 94°C for 45 s
and 72°C for 2-4 min, and then a final extension of 72°C for 10 min.
The PCR products were analyzed by agarose gel electrophoresis.

3. Results and discussion

3.1. Mouse fibulin-1 gene

A total of six phage clones were isolated by screening
3x 105 clones from the mouse AFIXII genomic library with
the full-length fibulin-1 cDNA, a 0.6 kb EcoRI fragment from
the 5" end of the cDNA, and two fragments specific for the C
and D variants in three separate experiments. Southern blot
analysis showed that these clones contained the entire coding
region of fibulin-1 except for part of the D variant-specific
sequences (Fig. 1B). The genomic cosmid library constructed
from D3 mouse embryonic stem cells was then screened with
the cDNA probe specific for the D variant. The cosmid clone
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C10 was isolated and was found to contain the coding regions
for the C-termini of both C and D variants (Fig. 1B).

A comparison between the full-length cDNA and the ge-
nomic sequence showed that the gene consists of 18 exons
(Fig. 1B, Table 1). Exon 1 corresponds with the 5" end of
the gene since its 5’-flanking sequence confers promoter activ-
ity (Castoldi and Chu, in preparation). Southern blotting and
restriction mapping showed that clones P9 and P13 did not
overlap, suggesting that intron 1 is larger than 8 kb in size.
This is supported by the finding that long-range PCR of
mouse genomic DNA using primers in exons 1 and 2 failed
to amplify a specific fragment. Thus, the gene spans more
than 75 kb of genomic DNA with an exon/intron ratio of
over 1/25. All introns begin with GT and end with AG, con-
forming to the consensus sequences of the splice donor and
the acceptor sites (Table 1). Almost all introns disrupted con-
dons.

The first exon contains the 5’-untranslated region, the
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Fig. 1. A: Schematic diagram of the fibulin-1 variants, A-D. The A and B forms are less abundant and are found only in humans. The com-
mon region is composed of domains I and II connected by a short junctional segment (J). Domain I consists of three anaphylatoxin-like motifs
(Ia-Ic), and domain II contains nine EG modules (ITa—Ili), of which IIb-IIi possess a consensus sequence for calcium binding. The A variant
contains only the common sequence, while domains III of the B, C, and D variants are 35, 117 and 137 amino acids in size. SP: signal peptide.
B: Genomic organization of the mouse fibulin-1 gene. The positions of the 18 exons (filled boxes), the BamHI restriction sites (B), the cosmid
(C10) and phage clones (P9, P13, P3, P16, P7a and P7b) covering the genomic region are shown. Exon | encodes the SP; exons 2-4 encode
the three anaphylatoxin-like motifs (Ia-Ic) in domain I; exons 6-14 encode the nine EG modules (Ila-Ili) in domain II. Exon 15 is alterna-
tively spliced and encodes domain III of the C variant plus its 3’-untranslated sequence, while exons 16-18 encode domain III of the D variant.
The positions of the translation start site (ATG) and the polyadenylation sites (poly A) are indicated. C: Genomic organization of the human
fibulin-1 gene (FBLN1) according to DNA sequences of a PAC clone (162H14) and a BAC clone (941F9) deposited in the database (accession
numbers Z98047 and 95331). Note that two additional and alternatively spliced exons encode human fibulin-1 A and B variants.
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Table 1
Intron-exon junction sequences of the mouse fibulin-1 gene
Exon Intron/Exon Exon Exon/Intron Intron Protein
No. Junctions Size (bp) Junctions size (kb) Domain
1* cccgeccccgecgeg CCTCCTCCGGG. .. (202)..GCC CGA G gtaggggagccccgg >8 5/-UT + SP
A R
2 ctcttccctacacag CG AAT GCA...(106)..GAG TGC AG gtgtgtgtgctgtta 4.5 Ia
(A) N A E C (R)
3 ctgctctgcccacag G ATG GTC....(138)..... ATA AAG gtgagtaaggccacc 3.6 Ib
M v I K
4 tctttctgttcatag AGG TGC TGC..(170)...GAC CCA G gtacctcctctccct 2.8 Ic
R C C D P
5 actctctacccctag CT AAG ATT....(57)...TGT CGA G gtgagatgttgggat 1.6 Junction
(A) K I C R
6 ggactctggttgcag GT GGC GGG...(102)...TGC GAA G gtaacatctgagagc 0.8 IIa
(G) G G Cc E
7 ccttaatctctctag AT ATC AAT...(138)...TGC AAA G gtacagctcacatcc 1.1 IIb
(D) I N C K
8 tttacgatgcaccag AT ATT GAC...(138)...TGC ATT G gtaagacacgcgccg 6.5 IIc
(D) I D C I
9 ctcttttctctgtag AT ATC AAT...(144)...TGT GTT G gttggtatctcatac 1.0 IId
(D) I N C \%
10 tttcttcttcacaag AT GTG GAT...(129)...TGC GTG G gtatgtgatatctct 0.8 IIe
(D) Vv D C v
11 cccctctgttttcag AT ATC AAC...(126}...TGT GAA G gtgaggctggggtca 1.4 IIf
(D) I N C E
12 cctcttctcttctag AT GTG AAC...(120)...TGC GAA G gtgagggcacctgtg 1.3 IIg
(D) Vv N C E
13 ctggggctgttgcag AT ATT GAT...(132)...TGC CAA G gtgagtagacagatt 2.3 IIh
(D) I D C Q
14 gccgcaactgccaag AC ATT GAT...(124)..GCA GAC AC gtaagtccctggggg 8.0 IIi
(D) I D A D (T)
15° ccacttgtctttcag C CGC TGT....(440)..TCCCAAGAGC atgcctcttgtacct ~12 III + 3'-UT
R (o} (C variant)
16 tgtgtttctctgcag C TTC CGC....(143)...CCT GAG G gtgagtggatcaagt 2.2 III
F R P E (D variant)
17 tcatccttgctgcag AG ATC ATC...(131)...ACT GTG G gtgagtgacccttga ~14 III
(E) I I T \'4 (D variant)
18®° ctgctctctccccag GT GTC GTG...(604)....AATTCTCC ccaaaccaactgcca III + 3'- UT

(D variant)

Capital letters represent exon sequences; a space is inserted between codons and the amino acids encoded are shown underneath. Lowercase let-
ters represent intron sequences. UT: untranslated sequences; SP: signal peptide.

2The 5’ end of exon 1 corresponds with the transcription start site.

PThe 3’ ends of exons 15 and 18 correspond with the polyadenylation sites.

translation start site and the coding sequence for the signal
peptide. Exons 2, 3, and 4 encode the three anaphylatoxin-like
repeats in domain I. The exon-intron junctions, however, do
not correspond with the boundaries of the anaphylatoxin-like
repeats. Exon 5 encodes a short junctional region connecting
domain I and domain II. Exon 6 encodes the first EG module
but the first of the six cysteines in this motif is encoded by the
preceding exon. Exons 7-14 encode the eight calcium-binding
EG modules in domain II, and these exons begin at the sec-
ond nucleotide of a codon. Each exon defines a single EG
module with six cysteines just as the genes for fibrillin-1 and
S1-5, which also contain tandem arrays of EG modules
[23,24]. Exon 15 encodes domain III of the C variant and
its 3’-untranslated region, while domain III of the D variant

is divided into three exons (16-18), the last of which contains
its 3’-untranslated sequence. Overall, there is a good correla-
tion between the exon organization and the three structural
domains. However, in the 5" end of the gene the splice junc-
tions appear to interrupt protein motifs that likely will prove
to be independently folded structures. For instance, the three
introns in domain I occur at different positions in the three
consecutive anaphylatoxin motifs. This could be an evolution-
ary mechanism to prevent crossing over that leads to different
numbers of the repetitive motifs.

3.2. Human fibulin-1 gene
The genomic sequence for most of the human fibulin-1 gene
recently was deposited in the database by the Sanger Center



T.-C. Pan et al.IFEBS Letters 444 (1999) 3842

41

Table 2
Intron-exon junction sequences of the human fibulin-1 gene*
Exon Intron/Exon Exon Exon/Intron Intron Protein
No. Junctions Size (bp) Junctions size (kb) Domain
2 ctcttccctacacag TG GAC GCG...(106)..GAA TGC AG gtacgtttgccagtg 6.8 Ia
(V) D A E C (R)
3 acccctcacccacag G ATG GTG....(136)..... GTG AAG gtgagagccaaagac 2.2 Ib
M v \Y% K
4 cacctgtgtttgcag AGG TGC TGC..(163)...GAA ACG G gtaactttccccctt 3.3 Ic
R C C E T
5 ctttttccceccttag AT AAG ATC....(50)...TGC CGA G gtgagactcgggcgt 1.7 Junction
(D) K I C R
6 acgctgtgcttccag GA GGC GGG...(102)...TGT GAA G gtaatgtccctatcc 0.6 Ila
(G) G G C E
7 ctcggtctctcctag AT GTC AAT...(138)...TGC AAA G gtacagcatgcgctc 1.3 IIb
(D) I N C K
8 tttatgatgtaccag AT ATT GAC...(138)...TGT ATT G gtaagaggtgtgccg 5.9 IIc
(D) I D C I
9 cttttcccgectgtag AT ATC AAT ..(144)...TGT GTT G gttggtattaagaaa 0.8 I1d
(D) VvV N C \Y
10 tttctcctttgcaag AT GTG GAC...(129)...TGT GTC G gtgcgtggggggccc 1.1 ITe
(D) Vv D C v
11 acccctcactttcag AT GTC AAC...(126}...TGT GAA G gtgaggctggggccc 3.6 IIf
(D) Vv N C E
12 cgttttgtatttcag AC ATC AAT...(120)...TGT GAA G gtgcggacgcccctg 1.4 IIg
(D) I N C E
13 gctttgccgttgcag AC ATC GAC...(132)...TGC CAA G gtgagcaggagggat 1.7 IIh
(D) I D C Q
14 tggggtctcttgcag AC ATT GAT...(124)..GCA GCC AC gtaagtcccttggac NK ITi
(D) I D A A (T)
15® ctcttcctctgtcag ATGATCGT..... (641) ....TAGGCCCA ctaggcgttgtgtct 4.8 3'-0T
(A variant)
16 ccacttttcttgcag C CGC TGT....(449)...CCACACAGT gagcctcgcgtgcct 1.5 IITI + 3'-UT
R C (C variant)
17° tgacactgtttccag G CAG AAA....(818)...GGTTGATGG atggatggacagacc 9.6 III, + 3'-UT
Q K (B variant)
18 tgtggttcccctcag G CTC CAG....(143)...CCT GAA G gtgagtgggatgggt 2.3 IIT
L Q P E (D variant)
19 tctgtgcctctgcag AG ATC ATC...(131)...ACC GTG G gtgagtggctgggaa 23.2 IIT
(E) I I T v (D variant)
20° ctgctctctccgcag GT GTC GTG...(812)....AATAAACAA ctttgtgatcctcct IIT + 3'-UT
(G) V v (D variant)

*According to DNA sequences in the database, accession numbers: Z98047 and Z95331.

2The 3’ ends of exons 15, 16, 17, and 20 correspond with the polyadenylation sites.

Capital letters represent exon sequences; a space is inserted between codons and the amino acids encoded are shown underneath. Lowercase let-
ters represent intron sequences. UT: untranslated sequences; SP: signal peptide, NK: not known.

Chromosome 22 Mapping Group. Analysis of the sequence
shows that a 36 kb region in a PAC clone (accession number
798047) contains exons 2—14 of the human gene, and a non-
overlapping 127 kb BAC clone (accession number Z95331)
contains exons encoding the A, C, B, and D variants in the
3’ end of the gene (Fig. 1C). Except for two additional exons
encoding the human fibulin-1 A and B variants, the exon
organizations of the human and mouse genes are identical
(Table 2). The intron sizes also appear to be conserved. For
instance, the last intron and the intron between the C and D
variants are over 10 kb in size in both the human and mouse

genes. Since introns in the 3’ end of the mouse gene have not
been sequenced completely, it is possible that there are addi-
tional exons encoding the mouse counterparts of the A and B
variants.

The exon-intron structure of the fibulin-1 gene is remark-
ably similar to that of the fibulin-2 gene, which is homologous
to the fibulin-1C variant (Gréssel et al., in preparation). The
similarity in the gene structure suggests that there is a com-
mon ancestral gene encoding the C variant, and that exons
encoding the D variant are acquired after duplication of the
ancestral gene. The finding that exons specific for the D var-
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iant are located distal to the exon for the C variant is con-
sistent with this hypothesis. Previous in vitro binding studies
showed a substantial difference between the C and D variants
in nidogen binding [11], but their functional distinction in vivo
is still unclear. Characterization of the fibulin-1 gene structure
demonstrates that the two variants are generated by alterna-
tive splicing of a single gene, and represents one of the first
steps in elucidating the regulation of the expression of the two
fibulin-1 isoforms.
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