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Abstract Lysophosphatidylcholine (LPC) accumulates in in-
flammatory tissues, where neutrophils are recruited to generate
superoxide anions (Oc3

2 ). Here, we show that LPC stimulates
Oc3

2 generation in human neutrophils and that the activity is
inhibited with phosphatidylinositol 3-kinase (PI3 kinase) inhibi-
tors, but not with protein kinase C (PKC) inhibitors. Further-
more, we demonstrate that LPC activates PI3 kinase in
neutrophils. Thus, LPC might contribute to host defense by
generating Oc3

2 in neutrophils through PI3 kinase activation, but
not through PKC activation.
z 1998 Federation of European Biochemical Societies.
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1. Introduction

In response to appropriate stimuli, an NADPH oxidase-
containing system in phagocytes is activated and generates
superoxide anions (Oc3

2 ) to kill microorganisms, known as
the respiratory burst [1,2]. The importance of this system
for host defense is demonstrated by the fact that recurrent
severe infections occur in patients with chronic granulomatous
disease caused by impairment of this system [1,2]. The oxidase
activity is tightly regulated since generated Oc3

2 is harmful for
intact tissues. Among the upstream stimuli, at least two fac-
tors, protein kinase C (PKC) and phosphatidylinositol 3-kin-
ase (PI3 kinase), have been demonstrated to be involved in
Oc3

2 generation in neutrophils [3^7].
Lysophosphatidylcholine (LPC) is implicated in in£amma-

tion, since phospholipase A2 (type IIA) is secreted in in£am-
matory tissues [8] and catalyzes the conversion of phosphatid-
ylcholine (PC), the most abundant phospholipid, into LPC,
resulting in the local accumulation of LPC [8,9]. As for the
question whether LPC could generate Oc3

2 or not, Yamamoto
et al. have shown that LPC generates Oc3

2 in macrophages
[10]. However, the signaling mechanism of LPC for Oc3

2 gen-
eration remains unclear. In neutrophils, it is still controversial
at the moment. One report has shown that LPC has no ac-
tivity to generate Oc3

2 although it enhances phorbol 12-myr-

istate 13-acetate (PMA, a PKC stimulator)-induced Oc3
2 gen-

eration [11], whereas another report has shown that LPC itself
generates Oc3

2 in neutrophils [12].
Here, we show that LPC generates Oc3

2 in isolated human
neutrophils and that the signaling pathway of LPC-mediated
Oc3

2 generation is through PI3 kinase activation, but not
through PKC activation.

2. Materials and methods

2.1. Materials
Without speci¢cation, all the materials used here including LPC

(palmitoyl, C16:0), formyl-methionyl-leucyl-phenylalanine (fMLP),
phorbol 12-myristate 13-acetate (PMA), wortmannin and calphostin
C were purchased from Sigma. A PKC inhibitor, GF109203X, and a
PI3 kinase inhibitor, LY294002, were from Calbiochem. The anti-p85
(a subunit of PI3 kinase) polyclonal antibody was from Upstate Bio-
technology, [Q-32P]ATP from Amersham-Pharmacia Biotechnology,
lucigenin from Molecular Probes, and diphenyliodonium chloride
from Aldrich.

2.2. Isolation of neutrophils
Neutrophils were prepared by density gradient centrifugation from

healthy human blood using Polymorphprep (Nycomed, Oslo, Nor-
way) according to the manufacturer's instruction. The contaminating
erythrocytes were removed by hypotonic lysis. The neutrophils were
then washed and resuspended in phosphate-bu¡ered saline (PBS) at a
cell density of 5U106 cells/ml. The ¢nal preparations were composed
of more than 95% polymorphonuclear cells by nuclear staining (data
not shown) and were therefore de¢ned as neutrophils. Typically,
1U107 neutrophils were obtained from 20 ml of blood. The isolated
neutrophils were immediately used for experiments.

2.3. Measurement of superoxide anions and cell viability
The amount of Oc3

2 was measured based on the superoxide dismu-
tase (SOD)-inhibitable reduction of cytochrome c [13]. Brie£y, neu-
trophils (3U105) were incubated with 1 mg/ml cytochrome c in the
presence of an indicated stimulator with and without 20 Wg/ml SOD at
37³C followed by rapid centrifugation. The optical density (OD) of
the supernatant was determined at 550 nm using a spectrophotometer
(Beckman DU-640). The amount of Oc3

2 was expressed as the di¡er-
ence of the OD of those incubated with and without SOD. In the
experiments using inhibitors of PI3 kinase and PKC, they were added
just before the addition of stimulators without preincubation.

To measure intracellular Oc3
2 and cell viability, neutrophils were

incubated at 37³C with an indicated stimulator in the presence of
100 WM lucigenin, which produces chemiluminescence in response to
Oc3

2 [14]. Then, the cells were washed and resuspended in PBS plus 20
Wg/ml propidium iodide which stains nuclei of dead cells. Intracellular
Oc3

2 and viability of the resuspended cells (1U104) were measured
using a £uorescence-activated cell sorter (FACS) (Becton Dickinson
FACS Vantage).

2.4. Measurement of PI3 kinase activity
The PI3 kinase activity was measured as described [15] with slight

modi¢cations. Brie£y, after incubation of neutrophils (5U106) with
LPC, PC, or PBS, they were lysed for 30 min at 4³C with a lysis bu¡er
(10 mM Tris-HCl, pH 7.4, 50 mM NaCl, 5 mM EDTA, 1 mM
Na3VO4, 50 mM NaF, 1 mM phenylmethanesulfonyl £uoride, 1%
Triton X-100, 30 mM Na pyrophosphate). Then, after centrifugation
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of the lysate at 100 000Ug for 30 min, the supernatant was incubated
at 4³C for 60 min with protein A agarose beads (Boehringer Mann-
heim) coated with the anti-p85 antibody. After washing the beads
twice with the lysis bu¡er followed by three washes with a washing
bu¡er (10 mM Tris-HCl, pH 7.4, 100 mM NaCl) to remove Triton X-
100, the beads were incubated at 30³C for 10 min with 50 WM
[Q-32P]ATP (4000 cpm/pmol), 200 WM adenosine, and 0.2 mg/ml phos-
phatidylinositol (PI). The reactions were stopped by addition of 100 Wl
1 M HCl and 200 Wl chloroform/methanol (1:1, v/v). Then, after
mixing and centrifugation, the lipid in the chloroform layer was sep-
arated on an oxalate-treated silica thin layer chromatography plate
(Silica Gel 60, Merck) using a solvent system of chloroform/methanol/
water/28% ammonia (70:100:25:15, v/v). The plates were then ex-
posed to a X-ray ¢lm, and the incorporated radioactivity into the
lipid was quanti¢ed by excising the corresponding portion of the plate
followed by liquid scintillation counting.

3. Results

3.1. Superoxide anion generation by LPC
We ¢rst examined whether LPC could generate Oc3

2 in iso-
lated neutrophils by the cytochrome c reduction method. The
neutrophils weakly generated Oc3

2 without stimulation and
LPC at 10 WM enhanced the generation by 6^8 times over
control in a time-dependent manner (Fig. 1A). The produc-
tion rate of Oc3

2 induced by LPC was 0.5^1.5 nmol/min/106

neutrophils, which is comparable with that obtained with
fMLP, a chemotactic peptide (Figs. 2C and 3) [5], and 15^
20% of that obtained with PMA, a PKC stimulator (Figs. 2B
and 3). The activity of LPC was speci¢c among phospholipids
tested here, since neither PC nor lysophosphatidic acid (LPA),
which is another potent biologically-active phospholipid [16],
generated Oc3

2 (Fig. 1A). The activity of LPC was concentra-
tion-dependent and the maximal generation was obtained at
10^15 WM (Fig. 1B). With 20 WM LPC, however, the Oc3

2
generation was 40^60% of the maximal (data not shown).
This decrease might be due to the cytotoxicity of a high con-

centration of LPC [17]. PC or LPA did not stimulate Oc3
2

generation at up to 15 WM (Fig. 1B). Both LPC- and PMA-
induced Oc3

2 generation was completely inhibited with 100 WM
diphenyliodonium chloride, an NADPH oxidase inhibitor
(data not shown), suggesting that the NADPH oxidase is
responsible for the Oc3

2 generation by both stimulators.
Next, we measured intracellular Oc3

2 with lucigenin and cell
viability with propidium iodide by FACS. While only 3.0% of
the neutrophils were dead before incubation, 22% and 18% of
them were dead after incubation for 30 min with 0.2 WM
PMA and 10 WM LPC, respectively (data not shown). Thus,
the e¡ects of 0.2 WM PMA and 10 WM LPC on cell viability
were comparable. We also found that only 3.5% of the neu-
trophils before incubation were Oc3

2 -positive by lucigenin £u-
orescence, whereas 91% and 78% of them were Oc3

2 -positive
after incubation for 30 min with 0.2 WM PMA and 10 WM
LPC, respectively (data not shown). Thus, the intracellular
Oc3

2 were indeed generated by LPC.

3.2. E¡ect of PI3 kinase inhibitors on LPC-mediated Oc3
2

generation
Since it has been shown that activation of PI3 kinase and

PKC is involved in Oc3
2 generation in neutrophils [3^7], we

¢rst examined the e¡ects of PI3 kinase inhibitors on LPC-
induced Oc3

2 generation. As shown in Fig. 2A, LPC-induced
Oc3

2 generation was inhibited with wortmannin, a PI3 kinase
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Fig. 1. Time- and concentration-dependent Oc3
2 generation by LPC

in human neutrophils. A: The amount of Oc3
2 was measured by the

cytochrome c reduction method as described in Section 2 after incu-
bation of neutrophils with bu¡er alone (open circles), 10 WM LPC
(closed circles), 10 WM LPA (open squares), or 10 WM PC (closed
squares) for various periods of time at 37³C. B: Similar experiments
were performed in the same way except with various concentrations
of LPC, LPA, or PC for 60 min. The data shown are representative
of three independent experiments with similar results.

Fig. 2. A PI3 kinase inhibitor, wortmannin, inhibited LPC-induced
and fMLP-induced Oc3

2 generation, but not PMA-induced Oc3
2 gen-

eration. Oc3
2 generation was measured by the cytochrome c reduc-

tion method as described in Section 2 after incubation with 10 WM
LPC for 30 min (A), 0.2 WM PMA for 10 min (B), or 1 WM fMLP
for 10 min (C), with various concentrations of wortmannin at 37³C.
The data shown are representative of three independent experiments
with similar results and expressed as percentages of the amount of
Oc3

2 generated without wortmannin.

Table 1
The e¡ect of PI3 kinase inhibitors and PKC inhibitors on superox-
ide anion generation induced by LPC, PMA, and fMLP

Stimulation PI3 kinase inhibitors PKC inhibitors

LPC + 3
PMA 3 +
fMLP + +

+: inhibited; 3 : not inhibited.
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inhibitor, in a concentration-dependent manner. The inhibi-
tion was about 50% at 10 nM of wortmannin and almost
complete at 1 WM (Fig. 2A). The values are in good agreement
with previous data on the inhibition of PI3 kinase with wort-
mannin in neutrophils [5]. On the other hand, PMA-induced
Oc3

2 generation was not inhibited with wortmannin, but rather
enhanced (Fig. 2B). We obtained similar results with another
PI3 kinase inhibitor, LY294002, at 10 WM (data not shown).
These results suggest that the signaling mechanism of LPC in
Oc3

2 generation is through PI3 kinase activation and is di¡er-
ent from that of PMA. As shown before [4^7], fMLP-induced
Oc3

2 generation was also inhibited with wortmaninn (Fig. 2C)
and LY294002 (data not shown).

3.3. E¡ect of PKC inhibitors on LPC-mediated Oc3
2 generation

Since it has been shown that LPC stimulates PKC activity
in a cell free system [18], we examined a possibility that LPC
might activate PKC in neutrophils, leading to Oc3

2 generation.
Unexpectedly, a PKC inhibitor, GF109203X at 5 WM, did not
inhibit LPC-induced Oc3

2 generation (Fig. 3, lanes 1 and 2)
under conditions which extensively inhibited PMA- (Fig. 3,
lanes 4 and 5) and fMLP-induced Oc3

2 generation (Fig. 3,
lanes 6 and 7). We obtained similar results with another
PKC inhibitor, calphostin C, at 10 WM (data not shown).
These results suggest that the signaling mechanism of LPC
in Oc3

2 generation is not through activation of PKC and di¡er-
ent from that of fMLP.

Calcium ion in£ux induced by LPC has been suggested to
cause PKC activation and Oc3

2 generation in vascular smooth
muscle cells [19,20]. However, exogenously added divalent
cation chelator EDTA at 1 mM into the reaction mixture

did not inhibit Oc3
2 generation (Fig. 3, lane 3), suggesting

that calcium ion in£ux is not involved in the LPC-mediated
Oc3

2 generation in neutrophils.

3.4. LPC activates PI3 kinase in neutrophils
Since wortmannin inhibited LPC-mediated Oc3

2 generation,
we examined whether LPC activates PI3 kinase in isolated
neutrophils. We quanti¢ed [32P]phosphate-incorporated PI
catalyzed by the PI3 kinases immnoprecipitated with the
anti-p85 antibody in the neutrophil lysates, since it is believed
that the production of [32P]PI3 phosphate (PI3P) re£ects the
PI3 kinase activity [15]. As shown in Fig. 4, at 5 min of
incubation at 37³C LPC increased [32P]PI3P production in a
concentration dependent manner, by 1.8 times at 5 WM (lane
4) and by 2.9 times at 10 WM (lane 6) compared with the basal
(lane 1). However, LPC at 1 WM (lane 3) or PC at 10 WM
(lane 8) did not increase [32P]PI3P production. The level of
PI3 kinase activity obtained with 10 WM LPC at 10 min of
incubation was similar to that at 5 min of incubation, how-
ever, it returned to the basal level at 15 min of incubation
(data not shown).

4. Discussion

We have shown here that LPC generates Oc3
2 in isolated

human neutrophils through PI3 kinase activation, but not
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Fig. 3. A PKC inhibitor, GF109203X, inhibited PMA-induced and
fMLP-induced Oc3

2 generation, but not LPC-induced Oc3
2 genera-

tion. Oc3
2 generation was measured by the cytochrome c reduction

method as described in Section 2 after incubation with 10 WM LPC
for 30 min (lanes 1 and 2), 0.1 WM PMA for 10 min (lanes 4 and
5), or 1 WM fMLP for 10 min (lanes 6 and 7), in the absence (lanes
1, 4, and 6) or in the presence (lanes 2, 5 and 7) of 5 WM
GF109203X at 37³C. In lane 3, LPC-induced Oc3

2 generation was
measured in the same way in the absence of GF109203X and in the
presence of 1 mM EDTA. The data shown are representative of
three independent experiments with similar results and expressed as
percentages of the amount of Oc3

2 generated without GF109203X.

Fig. 4. LPC activates PI3 kinase in neutrophils. PI3 kinase was im-
munoprecipitated with the anti-p85 antibody-coated beads from the
lysates of neutrophils incubated at 37³C for 0 min (lanes 1, 5 and
7) or 5 min (lanes 2^4, 6 and 8), without stimulation (lanes 1 and
2), or with 1 (lane 3), 5 (lane 4) or 10 WM LPC (lanes 5 and 6) or
with 10 WM PC (lanes 7 and 8), and the beads were incubated with
PI and [Q-32P]ATP at 30³C for 10 min as described in Section 2.
Then, the 32P-incorporated lipid ([32P]PI3P) was separated by thin
layer chromatography. The radioactive spots of the autoradiography
were shown (lower panel) and the radioactivity in the spots was
counted and expressed as % of control (lane 1) (upper graph). The
data shown are representative of three independent experiments
with similar results.
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through PKC activation. It is well known that phospholipase
A2 is secreted in in£ammatory tissues, and catalyzes PC into
LPC, resulting in the local accumulation of LPC [8,9]. There-
fore, LPC could be utilized by neutrophils recruited into the
in£ammatory tissues for generating Oc3

2 to kill living micro-
organisms. Although LPC is not the only factor which gen-
erates Oc3

2 in neutrophils, it is conceivable that LPC contrib-
utes to host defense, at least in part, with this activity.

We demonstrate that LPC activates PI3 kinase in neutro-
phils by showing that PI3 kinase in neutrophils incubated with
LPC catalyzed more PI3P from PI than the control (Fig. 4).
In neutrophils, the fMLP-induced PI3 kinase activation oc-
curs and reaches the maximal level within 30 s after stimula-
tion and then returns to the almost basal level at 4 min of
incubation [5]. However, fMLP-induced Oc3

2 generation is
seen at 15 min [5]. Similarly, we showed here that LPC acti-
vated PI3 kinase for 5^10 min (data not shown) and generated
Oc3

2 for 30^90 min (Fig. 1A). An atherogenic lipoprotein,
oxidized low density lipoprotein (LDL), has also been shown
to stimulate PI3 kinase in macrophages for 5^15 min [21] and
generate Oc3

2 for 10^40 min [22]. Thus, transient PI3 kinase
activation is followd by Oc3

2 generation. Since it has been
shown that Oc3

2 generation is e¤ciently reconstituted in a
cell free system which is not a¡ected by a PI3 kinase inhibitor
[7,23]; PI3 kinase seems to be an upstream regulator of the
Oc3

2 -generating machinery in the cells. Furthermore, since
LPC is a markedly increased component in oxidized LDL
compared with that in LDL, the e¡ect of oxidized LDL on
the stimulation of PI3 kinase and the generation of Oc3

2 might
be due to LPC.

As for the signaling pathway of Oc3
2 generation in neutro-

phils, at least two factors, namely PI3 kinase and PKC, have
been demonstrated to be involved so far [3^7]. Oc3

2 generation
induced by direct stimulation of PKC by PMA was not in-
hibited with PI3 kinase inhibitors (Fig. 2B) [7], while Oc3

2
generation induced by fMLP was inhibited with PI3 kinase
inhibitors as well as PKC inhibitors (Fig. 2C, Fig. 3) [4^7].
Therefore, PI3 kinase has been suggested to be upstream of
PKC in the signaling pathway [7]. However, our present re-
sults, summarized in Table 1, show that the LPC's activity is
mediated through PI3 kinase activation, but not through PKC
activation. This demonstrates that PI3 kinase is not upstream
of PKC in the LPC-mediated Oc3

2 generation in neutrophils,
which is di¡erent from Oc3

2 generation mediated by fMLP, the
best characterized generator of Oc3

2 .
In the case of vascular smooth muscle cells, LPC has been

shown to generate Oc3
2 through PKC activation [19] and the

activity might be mediated by calcium ion in£ux caused by
formation of small holes in the plasma membrane [20]. How-
ever, it is unlikely in this case since no calcium ions were
added throughout the experimental procedure for Oc3

2 gener-
ation. Moreover, exogenously added divalent cation chelator
EDTA into the reaction mixture did not inhibit the generation
(Fig. 3, lane 3), suggesting that calcium ion in£ux is not in-
volved in the LPC-induced Oc3

2 generation in neutrophils.
In summary, we have shown here that LPC activates PI3

kinase in human neutrophils, resulting in Oc3
2 generation. The

signaling mechanism of LPC seems unique since LPC-medi-
ated Oc3

2 generation is through PI3 kinase activation, but not
through PKC activation, whereas those of well characterized

Oc3
2 generators, PMA and fMLP, are through PKC activa-

tion.
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