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Abstract R-Ras and insulin-like growth factor-1 (IGF-1)
synergistically inhibit apoptosis of BaF3 cells upon interleukin-
3 deprivation. To characterize the mechanism of this synergistic
inhibition, we examined the effect of R-Ras and IGF-1 on several
apoptosis-related proteins. Extracellular signal-regulated kinase
(ERK) was activated by IGF-1, but not by R-Ras. In contrast,
Akt was activated strongly by R-Ras, but weakly by IGF-1. It
was also found that R-Ras and IGF-1 cooperatively induced Bcl-
xL expression and inhibited caspase-3 activation.
z 1998 Federation of European Biochemical Societies.
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1. Introduction

R-Ras is a low-molecular-weight GTP-binding protein
which shares about 55% homology with H-Ras oncoprotein
[1]. Several possible target molecules of R-Ras have been re-
ported, such as Raf [2,3], phosphatidylinositol 3-kinase
(PI3K) [4] and RalGDS [5]. Since these molecules are also
known to be direct targets of H-Ras, R-Ras would appear
to share some signaling pathway with H-Ras. However, R-
Ras was initially reported to possess no oncogenic potential
on Rat1 ¢broblast [6]. Although it was later found that R-Ras
can cause malignant transformation of another ¢broblast,
NIH 3T3 cells, R-Ras does not induce morphological change
[7]. Besides transformation, R-Ras has been reported to mod-
ulate cell adhesion to extracellular matrix proteins through
integrins [8] and to be involved in regulation of apoptosis
[9,10].

Apoptosis is a physiological process that eliminates un-
necessary or injured cells. Recent studies have revealed that
Bcl-2 family proteins, caspases, the PI3K-Akt (also known as
protein kinase B or Rac kinase) pathway, and the Raf-ERK
(also known as MAPK) pathway play crucial roles in apop-
tosis. Bcl-2, which was originally identi¢ed through the study
of the chromosome translocation present in human B-cell fol-
licular lymphomas [11], is a mammalian homologue of Ced-9,
an anti-apoptotic protein in Caenorhabditis elegans [12]. A
number of proteins that are structurally related to Bcl-2
have been identi¢ed and classi¢ed into two groups: anti-apop-
totic proteins (Bcl-2, Bcl-xL, and Bcl-w) and pro-apoptotic
proteins (Bax, Bad, and Bcl-xS). Although it is not clear
how anti-apoptotic Bcl-2 family proteins induce cell survival,
it has been suggested that they somehow inhibit activation of

caspases, cysteine proteases which cleave numerous target
proteins to induce apoptosis [13,14]. PI3K is activated by
several growth factors and cytokines that promote survival,
and is required for their anti-apoptotic activities [15]. Acti-
vated PI3K converts PIP2 to PIP3 by phosphorylation. PIP3

then binds to Akt and stimulates its kinase activity, which
leads to suppression of apoptosis [15^17]. The Raf-ERK path-
way is also activated by several survival factors [18] and has
been reported to regulate cell survival. For instance, ERK
activity is required for survival of PC-12 cells on deprivation
of nerve growth factor [19].

In our previous work, we found that R-Ras and serum
synergistically inhibit apoptosis induced by interleukin (IL)-3
deprivation in BaF3, a pro-B cell line whose proliferation and
survival are strictly dependent on IL-3 [10]. Furthermore, we
identi¢ed insulin-like growth factor-1 (IGF-1) as an essential
factor in serum for R-Ras-induced suppression of cell death.
In addition, studies using inhibitors suggested that the PI3K-
Akt pathway and the Raf-ERK pathway are involved in this
suppression. However, it remained unknown how R-Ras and
IGF-1 cooperatively support survival of BaF3. In this paper,
we investigated the e¡ects of R-Ras and IGF-1 on the activ-
ities of Akt, ERK and caspase, and the expression of anti-
apoptotic Bcl-2 family protein.

2. Materials and methods

2.1. Materials
Plasmid pCMV5-R-RasQ87L was generated from pUC12-R-ras, a

generous gift from D.V. Goeddel (Genentech, South San Francisco,
CA, USA), as described previously [10]. It should be noted here that
we found that the sequence of mouse R-ras cDNA on pUC12-R-ras
di¡ers from the published sequence (Lowe et al. [1]) at Tyr193

(TAC)C His (CAC). Complementary DNA of Akt was kindly pro-
vided by U. Kikkawa (Kobe Univ., Japan) and Myc-tagged Akt was
subcloned into the HindIII and XbaI sites of pCMV5 [20] to obtain
pCMV5-Myc-Akt [21]. Mouse IL-3 was generously provided by A.
Miyajima and S. Menon (DNAX Research Institute, Palo Alto, CA,
USA). Human IGF-1 was purchased from Life Technologies (Rock-
ville, MD, USA); anti-Myc antibody (9E10) from Boehringer Mann-
heim (Indianapolis, IN, USA); anti-ERK2 antibody (sc-154) from
Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-R-Ras anti-
body (#15626E) from Pharmingen (San Diego, CA, USA); and anti-
Bcl-x antibody (B22620) from Transduction Laboratories (Lexington,
KY, USA).

2.2. Cell culture
A BaF3 transfectant, Lh9 [10], was established using the LacSwitch

inducible mammalian expression system (Stratagene, La Jolla, CA,
USA). BaF3 cells were maintained in RPMI 1640 supplemented
with 10% (v/v) fetal bovine serum and mouse IL-3. For Lh9 cells,
G418 (1 mg/ml) and hygromycin (1 mg/ml) were included in the cul-
ture medium. The serum-free medium was prepared as previously
described [22].
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2.3. Kinase assay
For ERK assay, Lh9 cells were pre-cultured for 12 h in the presence

or absence of IPTG (5 mM). After 3 h starvation in RPMI 1640
containing 1 mg/ml bovine serum albumin (BSA) with or without
IPTG, cells were stimulated with IGF-1. From cell lysates, endoge-
nous ERK was immunoprecipitated with anti-ERK2 antibody and its
kinase activity was measured using myelin basic protein (MBP) as a
substrate according to the procedure previously described [10]. For
Akt assay, 2U107 BaF3 cells were transfected with 30 Wg of pCMV5-
Myc-Akt together with 20 Wg of either pCMV5 or pCMV5-R-RasQ87L

by electroporation (300 V, 960 WF) and cultured for 1 day. Then cells
were starved for 3 h in RPMI 1640 containing BSA (1 mg/ml). After
stimulation with IGF-1, cells were lysed and Myc-Akt was immuno-
precipitated with 0.5 Wl of anti-Myc antibody from 150 Wg of lysate.
After washing, the precipitate was incubated at 30³C for 20 min with
2 Wg of histone 2B in the presence of 20 WM [Q-32P]ATP (620 TBq/
mol). The reaction was stopped by boiling in the sample bu¡er for
SDS-PAGE. The samples were resolved by SDS-PAGE, and the ra-
dioactivity incorporated into histone 2B was quantitated by image
analyzer (Fuji BAS2000).

2.4. mRNA and protein analysis of Bcl-x
For mRNA analysis, Lh9 cells (1U106) were pre-cultured for 12 h

in the presence or absence of IPTG (5 mM). After 3 h starvation with
the serum-free medium, cells were incubated for 3 h with IGF-1 or IL-
3 in the presence or absence of IPTG. Total RNA was then extracted
utilizing TRIZOL reagent (Life Technologies) and RT-PCR was per-
formed by RT-PCR kit (Takara, Japan) according to the manufac-
turers' instructions. Brie£y, total RNA (0.1 Wg) was reverse-tran-
scribed with Moloney murine leukemia virus reverse transcriptase
and random primers (9-mer). Then, bcl-x mRNA was ampli¢ed using
the following primers: 5P-primer: 5P-ATGTCTCAGAGCAACCGG-
GAG-3P ; 3P-primer: 5P-TCACTTCCGACTGAAGAGTGAGC-3P.

Ampli¢ed bcl-x mRNA was subjected to agarose gel electrophoresis
(1.2% (w/v) agarose). For protein analysis, after 12 h culture in the
presence or absence of IPTG (5 mM), Lh9 cells were transferred to
the serum-free medium, and incubated for 24 h either in the presence
or absence of IGF-1 and/or IPTG. Cells were then lysed, and a por-
tion of lysate (25 Wg of protein) was subjected to 10% SDS-PAGE,
followed by immunoblot analysis using anti-Bcl-x antibody.

2.5. Caspase assay
After 12 h culture in the presence or absence of IPTG (5 mM), Lh9

cells (1U106) were incubated for 24 h with or without IGF-1 either in
the presence or absence of IPTG. Cells were then solubilized in 100 Wl
of bu¡er (10 mM HEPES-NaOH, pH 7.4, 2 mM EDTA, 0.1%
CHAPS, 5 mM DTT) and 10 Wg of lysate was incubated with 40
WM DEVD-MCA (Ac-Asp-Glu-Val-Asp-K-(4-methyl-coumaryl-7-
amide)) (Peptide Institute, Osaka, Japan) for 1 h at 37³C in 200 Wl
of bu¡er (10 mM HEPES-NaOH, pH 7.4, 2 mM MgCl2, 5 mM
EGTA, 1 mM DTT, 50 mM NaCl). The reaction was stopped by
addition of 200 Wl of 0.2 M glycine-HCl (pH 2.8). Fluorescence of
cleaved peptides was measured by F-2000 (Hitachi, Japan).

3. Results

3.1. E¡ects of R-Ras and IGF-1 on ERK and Akt activities
in BaF3 cells

First, we examined the e¡ect of IGF-1 stimulation and ex-
pression of an activated mutant of R-Ras (R-RasQ87L) on
ERK activity in BaF3 cells. For this, we utilized a BaF3 trans-
fectant, Lh9, which inducibly expresses R-RasQ87L in the pres-
ence of isopropyl L-D-thiogalactopyranoside (IPTG) [10]. Lh9
cells were pre-cultured in the culture medium either in the
presence or absence of IPTG, and then deprived of IL-3
and serum for 3 h. After harvest, cells were lysed and the
activity of endogenous ERK was measured by in vitro kinase
assay. As shown in Fig. 1, IGF-1 activated ERK at a concen-
tration of 100 ng/ml. On the other hand, the expression of R-
RasQ87L failed to stimulate ERK activity.

We next analyzed the e¡ect of R-Ras and IGF-1 on activity

of Akt, another important kinase for survival. Myc-tagged
Akt (Myc-Akt) was transiently expressed together with or
without R-RasQ87L in BaF3 cells. Ectopically expressed
Myc-Akt was then immunoprecipitated and in vitro kinase
assay was performed using histone 2B as a substrate. Kinase
activity of Akt was dramatically increased by expression of R-
RasQ87L (Fig. 2). In contrast, stimulation by IGF-1 alone in-
duced weak activation of Akt.

3.2. Cooperative regulation of Bcl-xL expression by R-Ras
and IGF-1

Since the expression level of Bcl-xL correlates well with
survival e¤ciency of BaF3 cells [23,24], we studied whether
R-Ras and IGF-1 a¡ect the expression of Bcl-xL. After 3 h
deprivation of IL-3 and serum, Lh9 cells were cultured further
for 3 h in the presence or absence of IGF-1 and/or IPTG, and
the mRNA of bcl-xL was ampli¢ed from total RNA by RT-
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Fig. 1. E¡ect of R-Ras and IGF-1 on ERK activity. After 3 h star-
vation, Lh9 cells were incubated for 10 min at 25³C with IGF-1 (20
or 100 ng/ml). The values are expressed as the mean þ S.E. of three
separate experiments.

Fig. 2. E¡ect of R-Ras and IGF-1 on Akt activity. After 3 h starva-
tion, transfected BaF3 cells were stimulated for 10 min at 25³C with
the indicated concentration of IGF-1. Data are presented as the
mean þ S.E. of three separate studies.
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PCR with bcl-x-speci¢c primers. Although the bcl-x gene is
known to have two splicing variants, bcl-xL and bcl-xS, they
were easily distinguished from each other, since the size of the
ampli¢ed DNA derived from bcl-xL mRNA (V700 base) is
larger than that from bcl-xS (V500 base). The amount of bcl-
xL mRNA apparently increased in IPTG-treated (i.e. R-
RasQ87L-expressing) Lh9 cells stimulated with IGF-1 (Fig.
3A). Either R-RasQ87L or IGF-1 alone induced only a small
increase of bcl-xL mRNA. We could not detect the band of
bcl-xS under these conditions. We next examined whether the
same was true for the expression of Bcl-xL protein. Western
blotting analysis showed that Bcl-xL protein was highly ex-
pressed in Lh9 cells growing in the presence of IL-3 and
serum, while the amount of Bcl-xL protein was remarkably
reduced by 1-day starvation of IL-3 and serum (Fig. 3B). This
decrease of Bcl-xL protein in the starved Lh9 cells was sig-
ni¢cantly suppressed by a combination of R-RasQ87L and

IGF-1, whereas each alone could inhibit the decrease only
slightly. These results suggest that R-Ras and IGF-1 synerg-
istically increase the amount of Bcl-xL in both mRNA and
protein levels.

3.3. Inhibition of caspase-3 activation by R-Ras and IGF-1
A recent report demonstrated that apoptosis of BaF3 cells

on IL-3 deprivation exhibits a strong dependency on caspase-
3 activation [25]. Therefore, we examined the e¡ect of R-Ras
and IGF-1 on caspase-3 activity using £uorescent peptide sub-
strate (DEVD-MCA), which is relatively speci¢c for this pro-
tease. The caspase-3 activity was maintained at low level in
growing Lh9 cells (Fig. 4). However, after depletion of IL-3
and serum, caspase-3 activity gradually increased, and reached
about 5-fold activation 24 h later. On this activation, IGF-1
displayed a slight inhibitory e¡ect, while R-Ras did not show
any e¡ect. In the presence of IGF-1, however, R-Ras signi¢-
cantly suppressed caspase-3 activation. These data suggest
that R-Ras and IGF-1 inhibit activation of caspase-3 in a
cooperative manner.

4. Discussion

Our previous data suggest that both the PI3K-Akt pathway
and the Raf-ERK pathway are required for BaF3 survival
induced by R-Ras and IGF-1 [10]. However, we could not
detect any activation of ERK by R-Ras in BaF3 cells. Though
R-Ras has been reported to bind with Raf and activate ERK
[2,3,7], it has recently been shown that the binding a¤nity of
R-Ras to Raf is much lower than that of H-Ras [26], and that
R-Ras induces only a marginal increase of ERK activity in
Cos and HEK293 cells [4,10]. Therefore, it is likely that R-Ras
had little e¡ect on the activation of ERK in BaF3 cells. In
contrast, Akt was strongly activated by R-Ras, which corre-
sponds well with the recent report demonstrating Akt activa-
tion by R-Ras in Cos cells [4]. On the other hand, IGF-1
activated both Akt and ERK in BaF3 cells, although the level
of activation was not so high in both cases. From these re-
sults, it is suggested that, when R-Ras and IGF-1 inhibit
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Fig. 4. E¡ect of R-Ras and IGF-1 on caspase-3 activation. Lh9 cells
were cultured for 24 h in the serum-free medium with or without
IGF-1 (20 ng/ml) and/or IPTG (5 mM). Caspase-3 activity in cell
lysate was assessed using £uorogenic peptide (DEVD-MCA) as de-
scribed in Section 2. Results are given as the mean þ S.E. of three
separate studies.

Fig. 3. E¡ect of R-Ras and IGF-1 on Bcl-xL expression. A: RT-PCR analysis of bcl-xL mRNA. After 3 h starvation, Lh9 cells were incubated
for 3 h with IGF-1 (20 ng/ml) or IL-3 (25 ng/ml) in the presence or absence of IPTG (5 mM). RNA extraction and RT-PCR using bcl-x-specif-
ic primers were performed as described in Section 2. The same experiments with L-actin-speci¢c primers con¢rmed that approximately equal
amounts of RNA were used as a template in all samples. B: Western blotting analysis of Bcl-xL protein. Lh9 cells were cultured for 24 h in
the serum-free medium either in the presence or absence of IGF-1 (20 ng/ml) and/or IPTG (5 mM). Cell lysates were subjected to Western blot-
ting analysis with anti-Bcl-x antibody. Size markers are indicated on the left. An arrowhead on the right indicates the band due to bcl-xL
mRNA (A) or Bcl-xL protein (B). The results shown represent at least three independent experiments.
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apoptosis of BaF3 cells, the PI3K-Akt pathway is mainly
activated by R-Ras, while IGF-1 is responsible for the acti-
vation of the Raf-ERK pathway. It has been reported that H-
Ras suppresses the apoptosis of BaF3 cells even in the absence
of serum [27,28], indicating that H-Ras, unlike R-Ras, does
not require IGF-1. Considering that H-Ras activates the Raf-
ERK pathway as well as the PI3K-Akt pathway, it is likely
that one major role of IGF-1 in the R-Ras-induced suppres-
sion of cell death is to supplement R-Ras-exerted signals with
the activation of the Raf-ERK pathway.

In the previous study, we demonstrated that IGF-1 sup-
ports R-Ras-induced BaF3 survival at a concentration of 20
ng/ml [10]. However, IGF-1 at this concentration could not
induce detectable ERK activation (Fig. 1). Although these
results raise the possibility that ERK activation by IGF-1
may not be important for cell survival induced by R-Ras
and IGF-1, our previous ¢nding that PD98059, a MEK in-
hibitor, partially suppresses survival of BaF3 cells by R-Ras
and IGF-1 [10] strongly indicates that ERK activity somewhat
contributes to BaF3 survival. We assume that this discrepancy
is due to the di¡erence in the conditions of the two experi-
ments. In the case of ERK activation, cells were stimulated by
IGF-1 at 25³C for only 10 min, whereas cells were incubated
with IGF-1 at 37³C for a much longer period such as one day
in the experiments of cell survival. Thus, a prolonged treat-
ment of cells with 20 ng/ml IGF-1 at 37³C may induce ERK
activation. In fact, our preliminary data indicate that, when
stimulated with 20 ng/ml IGF-1 at 37³C for 2.5 h, Lh9 cells
show higher ERK activity than that of unstimulated cells.

IGF-1 has been reported to induce Bcl-xL expression
[23,29,30] and we also observed a slight induction of Bcl-xL
by this growth factor (Fig. 3). The promoter region of the bcl-
xL gene contains one AP-1-binding site [31], which is under
the control of the Raf-ERK pathway. Moreover, it was re-
ported that induction of Bcl-xL by IL-3 is dependent on ERK
activation in BaF3 cells [23]. Thus, IGF-1 seems to stimulate
Bcl-xL expression through ERK activation. As for R-Ras, to
our knowledge there has been no report about its e¡ect on
Bcl-xL expression. In the present study, we observed a slight
induction of Bcl-xL by R-Ras alone and the synergistic in-
crease of Bcl-xL expression by R-Ras and IGF-1, indicating
that R-Ras, as well as IGF-1, can induce the expression of
Bcl-xL. Among downstream molecules of R-Ras, Akt has
been shown to induce Bcl-2 expression in hematopoietic cells
[32]. Since bcl-xL has a similar promoter organization to bcl-2
[31], it is possible that Akt is able to induce Bcl-xL expression.
Taken together, it appears that R-Ras and IGF-1 synergisti-
cally increase Bcl-xL expression through activation of the
PI3K-Akt pathway and the Raf-ERK pathway.

Bcl-xL has been shown to inhibit release of cytochrome c,
an activator of caspase-3, from mitochondria [33]. Bcl-xL was
also reported to associate with Apaf-1 to inhibit Apaf-1-de-
pendent activation of caspase-9, another activator of caspase-
3 [34]. These observations suggest that increase of Bcl-xL can
result in the prevention of caspase-3 activation. In addition,
although Bad is reported to down-regulate Bcl-xL through
formation of heterodimer, activated Akt can induce disrup-
tion of this complex by phosphorylating Bad, which leads to
production of free Bcl-xL [16,17]. Thus, inhibition of caspase-
3 activation by R-Ras and IGF-1 seems to be a consequence
of the increase of Bcl-xL expression and the release of Bcl-xL
from the BadWBcl-xL complex.

A recent work by Thomas et al. suggests that overexpres-
sion of Bcl-xL is su¤cient to inhibit the apoptosis of BaF3
cells [24]. Therefore, based on our present observations, the
following model can be proposed for the mechanism of action
of R-Ras and IGF-1 on survival of BaF3 cells. R-Ras and
IGF-1 activate two distinct anti-apoptotic pathways: the
PI3K-Akt pathway is activated by R-Ras and the Raf-ERK
pathway by IGF-1. These pathways, combined, induce the up-
regulation of Bcl-xL. Bcl-xL then inhibits caspase-3 activa-
tion, which leads to the suppression of apoptosis. Hemato-
poietic cells are usually exposed to a variety of cytokines,
and their proliferation, di¡erentiation and apoptosis are regu-
lated by a combination of these cytokines. For example, a
combination of IGF-1 and IL-7 stimulates proliferation of
pro-B cells [35], while IGF-1 and erythropoietin induce eryth-
roid maturation [36]. Thus, our results using BaF3 cells raise
the possibility that a combination of IGF-1 and a cytokine
that activates R-Ras leads to cell survival in certain types of
hematopoietic cells. So far, it is unknown which cytokine(s)
stimulates activation of R-Ras. RasGRF has been shown to
be a possible exchange factor for R-Ras [37] and to be a
downstream molecule of G-protein-coupled receptors [38].
Thus, R-Ras may be activated by some ligands for G-pro-
tein-coupled receptors. The present data also raise the possi-
bility that R-Ras, when activated, can function as an apopto-
sis suppressor through activation of Akt in other cell types
than hematopoietic cells, since Akt has been shown to be
involved in survival of various kinds of cells [39]. We are
currently investigating this possibility.
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