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Abstract Soluble cytokine receptors appear to modify ligand
concentrations by stabilizing ligands or by specifically inhibiting
interactions of ligands with their membrane-bound receptors.
Here we describe a new function of the soluble interleukin-1
receptor type I (IL-1sR I). This receptor induced a transient rise
of intracellular free calcium concentration in human dermal
fibroblasts in a dose-dependent fashion. Mobilization of calcium
by IL-1sR I was abolished in the presence of an equimolar
concentration of IL-1 receptor antagonist (IL-1ra). Neutralizing
antibodies against IL-1P also abolished calcium mobilization
stimulated with TL-1sR T indicating that TL-1p is involved. TL-
1sR I bound with high affinity (K4 1-2 nM) to the fibroblasts. In
addition, IL-1sR I enhanced expression of IL-6 and IL-8 mRNA.
The observation that IL-1sR I can act as a ligand and agonist for
membrane IL-1 extends the concept of the ligand-receptor
functions of both IL-1 and IL-1sR I and adds a new dimension to
the cytokine network.
© 1998 Federation of European Biochemical Societies.
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1. Introduction

Interleukin-1 and its receptors control immunological and
inflammatory processes [1]. Three members of the IL-1 family
are known today: IL-1a, IL-1B, and IL-1 receptor antagonist
(IL-1ra). These ligands bind to two distinct receptors that
belong to the IgG superfamily: the type I and type II IL-1
receptors (IL-1R I/II). Both type I and type II receptors have
been cloned from human and murine cell lines [2]. They pos-
sess a single membrane-spanning segment and an extracellular
part displaying three immunoglobulin-like domains [3]. The
type I IL-1 receptor mediates the biological effects of IL-1
while the type II receptor does not transduce signals and
apparently serves as a decoy receptor for IL-1 [4]. IL-1 signal-
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ing is believed to result from the formation of a ternary com-
plex consisting of an IL-1 agonist, IL-1R T and IL-1R acces-
sory protein (IL-1R-AcP) [5]. Although much is known about
IL-1 receptor heterogeneity and binding, there is little agree-
ment as to how the signal transduction pathways are utilized
and restricted. IL-1-induced receptor-mediated increase in the
intracellular free Ca?t concentration ([Ca®*];) has been re-
ported in human fibroblasts and chondrocytes [6,7].

Soluble forms of both types of IL-1R are generated by
proteolytic cleavage of the membrane anchored receptors
[8]. Naturally occurring soluble forms of IL-1 receptor type
I (IL-1sR I) and type II (IL-1sR II) exist physiologically in
body fluids [9-11]. They are produced by mononuclear cells
[12] and are considered natural ‘buffers’ capable of binding
IL-1a, TL-1B, and IL-Ira in healthy and inflamed tissues [1].

IL-1o, IL-1B, and IL-lra are synthesized by activated
monocytes/macrophages as 31-35 kDa propeptides and are
secreted after cleavage as 15-17 kDa mature bioactive pepti-
des [1]. Blood mononuclear cells transiently express pro-IL-1a
on their surface, through which they are capable of signaling
to endothelial cells expressing IL-1R type I [13]. In fibroblasts
and endothelial cells, pro-IL-1o. and B remain cell-associated
and usually are not secreted [14-16]. Membrane-associated
IL-1 on fibroblasts may be used in a juxtacrine mechanism
to activate T cells via their IL-1R [17].

We now show that signaling in the other direction may also
occur. Soluble IL-1 type I receptor induced a rise in cytosolic
free calcium in fibroblasts and this response was greatly en-
hanced when cells were pretreated with tumor necrosis factor
o (TNF-a), which is well known to increase IL-1 expression in
fibroblasts. Mobilization of cytosolic free calcium by IL-1sR I
was abolished in the presence of an equimolar concentration
of IL-1ra or by pretreatment of the cells with anti-IL-1p anti-
bodies. IL-1sR I bound with high affinity to the fibroblasts
(K4 1-2 nM). In addition, fibroblasts responded to this inter-
action with an enhanced expression of IL-6 and 1L-8 mRNA.
These results suggest that soluble IL-1R I not only inhibits the
activity of IL-1 in inflamed tissue by binding free IL-1, but
also may act as an agonist by interacting with cell-associated
IL-1.

2. Materials and methods

2.1. Materials
Recombinant human IL-1sR and recombinant human IL-1ra I were
purchased from R&D Systems, Minneapolis, MN. Different batches
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of IL-1sR 1 were used that gave comparable results. Recombinant
human IL-1B was from Boehringer Mannheim Biochemica, Germany.
Monoclonal antibodies (mAb) against IL-1B were from R&D Sys-
tems, and from Serotec Ltd Oxford, UK. Polyclonal antibodies
against IL-1p and recombinant human TNF-o were from PeproTech,
Rocky Hill, NJ. Lipopolysaccharides from Escherichia coli and bra-
dykinin were from Sigma, St. Louis, MO.

2.2. Cell cultures

Human dermal foreskin fibroblasts from two different donors
(Children’s Hospital, University of Bern) at passage 5-12 were cul-
tured and grown to confluence in MEM supplemented with 10% FBS
(Seromed, Basel, Switzerland), 200 U/ml penicillin (Hoechst, Frank-
furt, Germany) and 10 mg/ml chlortetracycline-HCI (Hoechst). Where
indicated, fibroblasts were treated with TNF-o (10 ng/ml) for 24 h.
Mono-Mac-6 cells (kindly provided by Dr. Beda Stadler, Department
of Immunology, University of Bern, Switzerland) were cultured in
RPMI 1640 containing 10% FBS, 200 U/ml penicillin and 10 mg/ml
chlortetracycline-HCI.

2.3. [Ca®"]; measurements

Cytosolic free Ca®>* was determined in fura-2 loaded single cells
with a calibrated video imaging system as described in detail by Reber
and Reuter [18]. In short, fibroblasts grown on glass coverslides were
incubated with 3 uM fura-2 acetoxymethylester (Molecular Probes)
for 45 min at 37°C and were then washed three times with a buffer
consisting of 140 mM NaCl, 5 mM KCI, 1.5 mM MgCl,, 2 mM
CaCl, and 10 mM HEPES-NaOH (pH 7.4). Coverslides were glued
to a Petri dish with four recording chambers by means of vaseline.
Changes in the intensity of fura-2 fluorescence were obtained by dual
wavelength excitation (340 nm/380 nm) with emission at 510 nm.
Calibration of fluorescence in terms of [Ca?*]; was calculated from
the ratio 340/380 excitation fluorescent values.

2.4. Binding studies

IL-1sR I (0.5 nmol) was iodinated to a specific activity of 1838 Ci/
mmol with Enzymobead reagent (Bio-Rad Laboratories, Richmond,
CA) and 2 mCi Na I (Amersham). Iodinated IL-1sR I was sepa-
rated from free %I by gel filtration chromatography (Bio-Gel P-6

a untreated

BK (100 nM)

IL-1sRI

L ﬁ\s
ZW\\\

60 s

[Ca2+]; 100 nM

B. Sporri et al.IFEBS Letters 434 (1998) 283-288

DG, Bio-Rad). 0.5x 109 fibroblasts in binding buffer were incubated
on ice with increasing concentrations of '*I-IL-1sR I in the presence
or absence of 500 nM unlabeled IL-1sR I. After centrifugation
through 6% BSA in PBS, supernatants were removed and radioactiv-
ity of the cell pellets counted in a gamma counter.

2.5. Immunoprecipitation of IL-1[3

Fibroblasts and Mono-Mac-6 cells were starved for 2 h in methio-
nine free complete MEM or RPMI 1640, respectively. After 2 h, 50
uCi [*Smethionine/cysteine (DuPont) was added and fibroblasts or
Mono-Mac-6 cells were labeled for 24 h in the presence of TNF-o (10
ng/ml) or LPS (10 pg/ml), respectively. Cell culture supernatants were
removed, sterile filtered and analyzed for secreted IL-1f by immuno-
precipitation. Labeled cells were washed with cold PBS, and solubi-
lized in 1 ml lysis buffer containing 25 mM Tris-HCI (pH 8), 50 mM
NacCl, 1% DOC, 1% NP40 and protease inhibitors (1 pg/ml pepstatin,
1 pg/ml aprotinin, 5 pug/ml leupeptin, 17.4 ug/ml benzamide, 1.7 mM
PMSF) for 30 min on ice. Cell debris and nuclei were separated from
the cellular extracts by centrifugation at 10000 X g. For immunopre-
cipitation, cellular extracts and cell culture supernatants were pre-
cleared twice with 50 pl protein A beads (Pharmacia) for 1 h and
IL-1B immunoprecipitated by incubation with polyclonal anti-IL-1f
antibodies coupled to protein A beads for 2 h. Precipitated proteins
were separated by 10% SDS-PAGE and 3°S-labeled IL-1B was visual-
ized by fluorography. Cell-associated IL-1B was also determined by
ELISA (R&D Systems) in cellular extracts prepared from fibroblasts
lysed by three cycles of freeze-thawing in 0.15 ml of 10 mM Tris-HCI
(pH 7.5).

2.6. RT-PCR

Total cellular RNA was extracted and purified using a single step
acid guanidinium thiocyanate-phenol-chloroform extraction method
(Trizol, Life Technologies, Paisley, UK) from 0.5x 10 cells that
were incubated with or without IL-1sR (20 nM) for 5 h. RNA was
resuspended in H,O and quantitated by measuring absorbance at 260
nm. Semi-quantitative RT-PCR was carried out with mixtures of 1 ng
total cellular RNA and 2.5 fg in vitro synthesized standard RNA as
described [19]. PolyA tailed RNA was primed with oligo d(T);s (2.5
uM) and reverse transcribed with 50 U of M-MLV reverse transcrip-
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Fig. 1. IL-1sR I mobilizes cytosolic free calcium in fibroblasts. Ratio fluorometry of fura-2 loaded fibroblasts was used to measure [Ca?*];. a:
Increasing concentrations of IL-1sR I were added to fibroblasts grown on glass coverslides and changes in [Ca?*]; were measured. Bradykinin
(BK, 100 nM) was used as a positive control, added after signals returned to baseline values. b: The same experiment was performed with cells
that had been pretreated with TNF-o (10 ng/ml) for 24 h. Traces represent mean values of an experiment with 10 cells measured in real time.
The experiments were repeated at least three times with different batches of IL-1sR I and with fibroblasts from two different donors.



B. Sporri et al. IFEBS Letters 434 (1998) 283-288

tase (Perkin-Elmer Cetus) at 42°C for 15 min. IL-8, IL-6 and B-actin
cDNAs were generated in a standard PCR reaction. Thirty amplifica-
tion cycles of 94°C for 60 s and 60°C for 30 s each were performed
with appropriate primers [19]. Amplicons obtained from standard
RNA are 370 bp in length and were separated from smaller cellular
RNA-derived amplicons by 2% agarose gel electrophoresis and made
visible by staining with ethidium bromide.

3. Results

3.1. IL-1sR type I causes mobilization of intracellular Ca®” in
fibroblasts

Addition of increasing amounts of IL-1sR I to fibroblasts
resulted in a dose-dependent transient rise in [Ca®*]; (Fig. la).
This [Ca?*]; rise was related to the IL-1 content of the fibro-
blasts. In cells in which IL-1 expression has been upregulated
by pretreatment with TNF-o, for 24 h, [Ca®"]; flux was ob-
served already at 0.02 nM of IL-1sR I (Fig. 1b). In native
cells, a 100-fold higher concentration of IL-1sR I than in
TNF-a pretreated cells was required to induce a similar
Ca®* response. All subsequent [Ca’']; measurements were
therefore performed with TNF-o pretreated fibroblasts.
When activated with bradykinin fibroblasts are known to re-
spond with a transient increase in [Ca?*]; [20]. Bradykinin
stimulation was therefore used as a positive control. Cells
which had been stimulated with IL-1sR I were still responsive
to a second stimulation with bradykinin. The profile of the
bradykinin-induced [Ca*"]; changes by itself was similar to
that elicited by IL-1sR I at the highest doses, i.e. a rapid
initial rise was followed by a slower decrease in [Ca?*];. Fi-
broblasts in Ca?*-free buffer supplemented with 0.1 mM
EGTA also responded to 20 nM IL-1sR I with a rapid, but
short lasting increase in [Ca®*];, (Fig. 2). Subsequent addition
of extracellular Ca?>* (2 mM) caused a small transient rise in
[Ca?*]i. However, depletion of intracellular calcium stores
with thapsigargin, an inhibitor of endoplasmic reticular
Ca?*-ATPase [21], completely suppressed the Ca’* signal
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Fig. 2. IL-1sR I releases calcium from intracellular stores. Top
trace: typical Ca** response to IL-1sR I of TNF-o pretreated fibro-
blasts. Middle trace: response to IL-1sR I in Ca’*-free buffer con-
taining 0.1 mM EGTA and effect of Ca** (2 mM) addition after
the signal returned to baseline values. Bottom trace: lack of a signal
in fibroblasts treated with thapsigargin (400 nM) to deplete internal
Ca®* stores. Experiments were repeated three times.
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Fig. 3. IL-1ra and antibodies against IL-1p block mobilization of
cytosolic free calcium. Top trace: typical Ca®* response to IL-1sR 1
(20 nM) and bradykinin (100 nM). Middle trace: IL-1ra and IL-
IsR I (20 nM each) were mixed and added to TNF-o pretreated fi-
broblasts. Excess IL-1sR I (20 nM) was added 90 s later. Bottom
trace: fibroblasts were treated with neutralizing mAb against IL-1B
(100 pug/ml) and subsequently stimulated with IL-1sR I (20 nM). Ex-
periments were repeated at least three times. mAb against IL-1B
from two different sources were used.

after addition of either IL-1sR I or bradykinin. This result
shows that the rapid rise in [Ca*"]; was due to Ca’" release
from intracellular pools.

Receptor antagonist (IL-1ra) added in equimolar concen-
tration together with IL-1sR I completely inhibited Ca?* mo-
bilization, but the cells still responded to 20 nM IL-1sR I
added subsequently (Fig. 3). On the other hand, fibroblasts
exposed to anti-IL-1B antibodies could no longer be stimu-
lated with IL-1sR I indicating that IL-1 is involved in IL-1sR
I induced signal transduction (Fig. 3). The response to brady-
kinin was unaffected under these conditions. In a separate
experiment it was shown that IL-1B (0.1 nM) also induced a
Ca®* response in fibroblasts similar to that observed with IL-
1sR I (data not shown), an observation that is consistent with
recently published reports [6,7].

Collectively, the results obtained so far support the concept
of a signaling function of IL-1sR I when interacting with
membrane-associated pro-I1L-1p.

3.2. IL-1sR type I binds to IL-1 on fibroblasts

Equilibrium binding assays with IL-1sR I showed that IL-
IsR I indeed behaved like a ligand to membrane-bound IL-1.
Specific binding of >’I-IL-1sR I reached a saturation plateau
at 7 nM (Fig. 4a) and Scatchard analysis yielded a Ky of 1-2
nM and approximately 3000 sites/cells (Fig. 4a, inset). In na-
tive fibroblasts, specific binding was significantly lower than in
TNF-o pretreated cells (Fig. 4b). The increase of binding to
TNF-a stimulated fibroblasts correlated with the higher intra-
cellular Ca>* mobilization (Fig. 1).
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Fig. 4. IL-1sR 1 binds specifically to IL-1 on fibroblasts. a: Binding of '»I-IL-1sR I to TNF-o pretreated fibroblasts (0.5X 10° cells/measure-
ment) was analyzed by an equilibrium binding assay. Total binding of labeled IL-1sR I (0), unspecific binding in the presence of an excess of
unlabeled IL-1sR I (500 nM) (O), and specific binding (a) is presented. The inset shows a Scatchard plot of the binding data, the number of
binding sites, and the calculated K4. b: Specific IL-1sR I binding to native and TNF-o pretreated fibroblasts at increasing concentrations of
I1-IL-1sR 1. Binding assays were repeated four times with two different batches of unlabeled IL-1sR I used for determination of unspecific

binding.

3.3. IL-1sR type I upregulates IL-8 and IL-6 mRNA
expression

Interleukin-8 and IL-6 mRNA are constitutively expressed
at low levels in fibroblasts (Fig. 5). Stimulation with IL-1sR I
(20 nM) for 5 h resulted in a significant increase of IL-8 and
IL-6 mRNA. Expression of B actin mRNA was unchanged
under the same conditions. The increase in IL-6 and IL-8
mRNA correlated with a 2-4-fold increase in cytokine secre-
tion (data not shown).

3.4. IL-1B is expressed, but not secreted by fibroblasts

The apparent molecular mass of cell-associated IL-1f in
fibroblasts was estimated by immunoprecipitation using anti-
IL-1B antibody and SDS-PAGE. Cellular extracts of metabol-
ically labeled and TNF-a stimulated fibroblasts were immu-
noprecipitated in the absence and presence of competing IL-
1B (Fig. 6). Only one molecular species was observed at 33
kDa and as expected, the intensity of fluorescence decreased
with increasing concentration of added unlabeled IL-1B. Nei-
ther secreted IL-1B nor pro-IL-1p was detected in the culture
medium of TNF-o stimulated fibroblasts, although large
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Fig. 5. Increased expression of IL-8 and IL-6 mRNA after stimula-
tion with IL-IsR I. Fibroblasts were treated for 5 h with IL-1sR I
(20 nM) before RNA was extracted. PCR reactions were performed
with a mixture of cDNA reverse transcribed from cellular RNA and
in vitro transcribed polycompetitive RNA. Amplicons were resolved
on 2% agarose gels and stained with ethidium bromide. As a nega-
tive control reverse transcriptase was omitted in the RT reaction.
Experiments were repetead at least three times.

amounts of pro-IL-1B were present in the cellular extracts.
In contrast, pro-IL-1 was abundant in the supernatant as
well as in the cellular extracts of LPS stimulated Mono-
Mac-6 cells. Extracts from TNF-a stimulated fibroblasts con-
tained significantly more IL-1P than extracts from untreated
cells. This was shown by immunoprecipitation of metabol-
ically labeled IL-1B (Fig. 7a) and by direct quantitation of
IL-1B in the cellular extracts by ELISA (Fig. 7b).
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Fig. 6. Fibroblasts produce but do not secrete IL-1B. a: Fibroblasts
were metabolically labeled with 50 pCi [**S]methionine/cysteine for
24 h in the presence of 10 ng/ml TNF-o. Cellular extracts were pre-
pared as described in Section 2. Increasing concentrations (0-200 U/
ml) of unlabeled IL-1B added to aliquots to compete with 3°S-la-
beled IL-1B. IL-1B was immunoprecipitated with a polyclonal anti-
IL-1B antibody and analyzed by SDS-PAGE and fluorography. Sim-
ilarly IL-1B was immunoprecipitated from cell culture supernatants
of stimulated fibroblasts. b: For comparison Mono-Mac-6 cells
were labeled in the presence of LPS (10 pg/ml) and cell associated
and secreted IL-1B was immunoprecipitated from cellular extracts
and cell culture supernatants.
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Fig. 7. TNF-o upregulates IL-1B expression in fibroblasts. a: Fibro-
blasts were metabolically labeled with 50 uCi [**S]methionine/cys-
teine for 24 h in the presence or absence of 10 ng/ml TNF-a. Cell-
associated IL-1B was then immunoprecipitated and analyzed by
SDS-PAGE and fluorography. b: IL-1p was measured in the cellu-
lar extracts by ELISA. Fibroblasts were either left untreated or
stimulated with 1 or 10 ng/ml TNF-o for 24 h.

4. Discussion

Our data demonstrate that soluble IL-1R type I binds to
human dermal fibroblasts, induces in an agonistic way a tran-
sient increase of intracellular calcium concentration, and en-
hances 1L-6 and IL-8 mRNA steady state levels. These results
suggest that IL-1sR T interacts with IL-1 on fibroblasts and
imply an inverted ligand-receptor relation. This is provocative
and could add a new dimension to our understanding of li-
gand-receptor cross-talk and cell-to-cell communication.

The IL-1sR I induced increase in [Ca’*]; could be blocked
either by preincubation of IL-1sR I with IL-1ra or with anti-
bodies against IL-1P. IL-1f thus appears to serve as a binding
site for the soluble IL-1 receptor. Interestingly, the receptor
binding characteristics of IL-1sR I were very similar to those
of soluble IL-1B to membrane-integrated IL-1R T for which a
K4 of 0.5-3.2 nM was reported [22]. The manner in which IL-
1B could act as a receptor, however, remains unclear and
needs further investigation. It is still controversial how it is
anchored in the membrane. Both, pro-IL-1a and -f lack com-
mon signal sequences. Pro-IL-1a may be anchored by myris-
toylic acid [23] or by lectin-like interactions [24]. It is believed
that it is transported to the cell surface where it is called
membrane IL-1. Pro-IL-1f is also myristoylated, but no mem-
brane form has been described so far [1]. In our experiments,
we could identify a cell-associated form of IL-1p. Its apparent
molecular mass was 33 kDa corresponding to that of the pro-
form of IL-1B. In TNF-o stimulated fibroblasts the produc-
tion of TL-1PB was greatly upregulated, but neither the mature
nor the proform of IL-1B was detectable in cell culture super-
natants. Based on the specific binding of soluble IL-1R 1, it
can be assumed that at least its binding site is exposed on the
cell surface.

IL-1 lacks a common signal sequence and does not reveal
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any domains that might explain a signal transducing capabil-
ity. Such a function could, however, be acquired with help
from accessory molecules. The IL-1 family member, IL-1 re-
ceptor accessory protein (IL-1R-AcP) [5], could provide assis-
tance. IL-1 signaling in the traditional way is believed to result
from formation of a ternary complex consisting of IL-1 ago-
nist, IL-1R I and IL-1R-AcP. Association of IL-1R-AcP with
the receptor/ligand (IL-1R I/IL-1a or -f) complex is thought
to trigger the cellular response [25]. It is conceivable that IL-
1sR I might also form a complex with membrane-bound pro-
IL-1B which could associate with IL-1R-AcP and induce sig-
nal transduction via IL-1R-AcP. A similar hypothesis has
been formulated for IL-6 and the IL-6 receptor family [26].
The soluble IL-6 receptor o chain (IL-6sRa) binds IL-6 with
low affinity [27]. This IL-6sRo/IL-6 complex interacts with the
signal transducing subunit gp 130 (also termed IL-6 receptor B
chain) and renders cells sensitive to IL-6 even in the absence
of membrane-bound IL-6Ra [28].

Soluble cytokine receptors have so far been considered as
non-signaling receptors, serving as scavengers for excess cyto-
kines [9,26]. We now show that type I soluble IL-1 receptor
can also act as a ligand and transduce signals to fibroblasts.
As a product of mononuclear cells, IL-1sRs are found in
urine, plasma, serum and synovial exudate [12,29]. In patients
with septicaemia [30] or with rheumatoid arthritis, elevated
levels of receptor have been measured [10], pointing to a
role of IL-1sRs in inflammatory reactions. Such new roles
of IL-1 family members may enlarge and challenge our think-
ing about mechanisms governing inflammatory reactions and
may even open new therapeutic approaches.
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