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Abstract Three cytohesin-like eDNA molecules were isolated 
from murine ES cell derived embryoid bodies. The genomic 
structure of one of the three, CLM2, has been determined and 
transcriptional variants of each were isolated from a mouse brain 
eDNA library. The relative expression patterns of CLM1, 2, 3 
and their transcriptional alternatives were determined by RT- 
PCR, nucleotide sequencing and RNA blotting. Their broad 
distribution and cell and tissue specific expression patterns 
suggest complex regulation during development and in the adult. 

© 1998 Federation of European Biochemical Societies. 

Key words. Cytohesin; Pleckstrin domain:  Sec7 domain;  
Specific expression; Reverse transcription polymerase chain 
reaction 

T cells was used for its isolation [11]. Additional homologues 
were isolated by affinity to the cytoplasmic tail of  integrin 132 
from a human T lymphoma cell line (cytohesin-1) by Kolanus 
et al. [9] and as nucleotide exchange factors (ARNO)  for the 
small GTP  binding protein, A R F ,  by Chardin et al. [I] and by 
Meacci et al. [13]. The quoted studies implicate cytohesin-like 
molecules as regulators of  cell to matrix adhesion, protein 
sorting and vesicular transport in various mammalian cells. 

We were interested in exploring the multiplicity and cell and 
tissue specific regulation of  murine cytohesin-like molecules. 
Here we describe three cytohesin-like murine cDNAs  with 
multiple transcriptional alternatives that are selectively ex- 
pressed from the stem cells of  early development to various 
tissues of  the adult. 

!. Introduction 

Cellular 3-phosphoinositide phosphates (Ptdlns) are gener- 
ated by 3-phosphoinositide kinases (Pl-3-kinases) activated by 
tyrosine kinase receptors and act as membrane associated sec- 
ond messengers in multiple biological systems. Signaling 
through PtdIns regulates membrane ruffling [19], membrane 
translocations [7], membrane trafficking [6] and cell adhesion 
[20]. Protein targets of  Ptdlns include isoforms of  protein 
kinase C [18], the pleckstrin homology containing protein kin- 
ases c-Akt and Btk [5] and certain SH2 domains [15]. It is 
assumed that Ptdlns are active in membrane localization of  
various signal transduction pathways. 

A new intermediate was described by Klarlund et al. [8], 
who screened mouse fibroblast, adipocyte and brain libraries 
for proteins that bind Ptdlns. A general receptor for phos- 
phoinositides, GRP1,  was isolated. GRP1 contains two con- 
served protein domains. The 5' situated Sec7 domain is a 
mammalian homologue of  the yeast Sec7 protein, a crucial 
component of  protein transport between compartments of  
the Golgi apparatus [3]. Downstream of  the Sec7 domain, 
GRPI  contains a pleckstrin homology domain that is respon- 
sible for Ptdlns trisphosphate binding [8]. A similar protein, 
characterized by the two domain structure of  G R P I ,  is B2-1. 
The B2-1 transcript was the first member of  this gene family. 
Subtractive hybridization in natural killer cells and peripheral 
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2. Materials and methods 

2.1. Ck'll culture 
RI ES cells [14] were grown in Dulbecco's medium (DMEM) sup- 

plemented with 15% heat inactivated fetal calf serum, 2 mM gluta- 
mine, 1 mM non-essential amino acids, 1 mM sodium pyruvate, 100 
U/ml penicillin, 0.1 mg/ml streptomycin, 0.1 mM 2-mercaptoethanol 
and leukemia inhibitory factor (LIF) at 37°C and 6.5% CO2. ES cell 
derived embryoid bodies were grown according to Martin et al. [12]. 
Cells of the Lewis lung carcinoma and mouse melanoma (D122, A9, 
F I0.9, and F l) lines were cultured in DMEM supplemented with 10% 
heat inactivated fetal calf serum. 

2.2. Genomic and eDNA cloning 
Total RNA was isolated with TRI-Reagent (Molecular Research 

Center). Polyadenylated mRNA (poly(A) mRNA) was purified, using 
the Poly(A)Tract mRNA isolation system (Promega). CLMI, 2 and 3 
were amplified fiom embryoid body cultures (day 3) by the Titan One 
Tube RT-PCR System (Boehringer, Mannheim). 

CLMI was amplified by the primer pair 5'-GAGCTGGTGTCTG- 
GCAGGAC-3' (bases 3 22) and 5'-GAACTGGCAGAGAAGCCC- 
TCT-3' (bases 1361 1381) from rat Sec7A (GenBank accession num- 
ber U83895, [17]). CLM2 was amplified from the same RNA source 
with the primers 5'-TGAAGGGAGAGTCTTTTCGGC-3' (bases 3l 
51) and 5'-GATTTTCCAAACAGGGAACCAG-3' (bases 1470 
1491) from rat Sec7B (GenBank accession number U83896). The 
primer pair 5'-TCCCGGCTTTCAGCCCAGTC-3' (bases 48-67) 
and 5'-ACTAGGACGGTGGCAGGAAAG-3' (bases 1470 1490) 
from rat Sec7C (GenBank accession number U83897) was used to 
amplify CLM3. The RT-PCR products were cloned into the TA clon- 
ing vector. T-khs307, which was prepared by a modification of the 
Holton and Graham method [4]. Plasmid DNA was isolated by the 
alkali lysis method using the High Pure Plasmid isolation kit 
(Boehringer, Mannheim). 

Transcriptional alternatives were isolated by PCR from a mouse 
brain cDNA library (Uni-ZAP XR cDNA library, Stratagene). The 
T3 sense primer (5'-AATTAACCCTCACTAAAGGG-3') of the 
phage was the common member of the primer pairs. Specific antisense 
primers were synthesized from the CLMI (5'-AGCAACTTCTG- 
CTATCTCTTCC-3', bases 167 188) and CLM2 (5'-CTCATA- 
GCTTCACTTAGCTCTTC-3', bases 247 269) sequences respec- 
tively. The amplified PCR products were cloned into the TA 
cloning vector. 
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DNA from R1 ES cells was used to establish the genomic map of 
CLM2. PCR primers were designed from the CLM2 cDNA. The 
primers were 5 ' -TGGCTTTCTTCCTGCGGACCT-Y (bases 1 21, 
from CLM-2B), 5 ' -GTACAGGAAGCGGGCAATTTC-3 '  (bases 
470~,90, from rat Sec7B) and 5 ' -CTTGGTGGAGCATGAACTTC- 
TA-3' (bases 433 454, from rat Sec7B), 5 ' -GATTTTCCAAACAGG- 
GAACCAG-3 '  (bases 1470 1491, from rat SecTB). The PCR products 
were cloned into the TA cloning vector• 

2•3• DNA sequencing and data analysis 
Nucleotide sequences were determined on both strands of the insert 

DNA, using an automated DNA sequencer (Applied Biosystems) and 
DyeDeoxy terminator kits. Analysis of the predicted protein sequence 
was performed using BLAST [10]. 

2•4• Gene expression analysis 
Tissues were collected from 13 week old random bred MFI male 

mice. Expression of  cytohesin genes in various mouse tissues, ES cells, 
ES cell derived embryoid bodies and tissue culture cell lines was an- 
alyzed by RT-PCR (30 cycles) with the following specific primers. 

To detect CLMI-A transcripts, 5 ' -GAGCTGGTGTCTGGCAG- 
GAC-3'  (bases 3 22, from rat Sec7A) and 5 ' -GTTGTCAGTCA- 
GAATGAACCAG-Y (bases 918 939 from rat Sec7A) were used as 
primers, 

To detect CLMI-B, 5 ' -CGAGCTGACGTGGAGAACTG-3 '  
(bases 2 21, from CLMI-B) and 5 ' -CTGGGCAATGTCCTCA- 
CAAGTG-3'  (bases 351 372, from rat Sec7A) were used. 

The CLM2-A alternative was detected by 5 ' -TGAAGGGA- 
GAGTCTTTTCGGC-3 '  (bases 31 51, from rat Sec7B) and 5'- 
TCCGTAGTGTACTCAAAGTAGT-3 '  (bases 1056 1077, from rat 

Sec7B). CLM2-B and C transcripts were detected by the same primer 
pair: 5 ' -TGGCTTTCTTCCTGCGGACCT-Y (bases 121,  from 
CLM2-B) and 5 ' -CTCATAGCTTCACTTAGCTCTTC-3'  (bases 
247 269, from rat Sec7B). 

CLM2-B and C differ by a deletion of 355 bp in the 5' UTR (see 
Fig. 1 and text), thus these primers produce a 814 bp transcript for 
CLM2-B and a 459 bp transcript for CLM2-C. 

Finally, CLM3-A was detected by 5 ' -TTCATCCTCACAGA- 
CAACTGCC-Y (bases 973 994, from rat Sec7C) and 5'- 
TGGAGTCTGGATCTTGACTTTTC-Y (bases 1319 1341, from rat 
Sec7C). 

As a standard control, rat G3PDH was amplified by the primers 
GPD-S (5 ' -ACCACAGTCCATGCCATCAC-3' ,  bases 550- 569, from 
rat G3PDH) and GPD-AS (5 ' -TCCACCACCCTGTTGCTGTA-3' ,  
bases 982 1001, from rat G3PDH). RT-PCR products were electro- 
phoresed on agarose and stained with ethidium bromide. 

2.5. Northern and Southern blot analysis 
RNA from various cell lines and tissues was electrophoresed on I% 

agarose in MOPS-formaldehyde. Genomic DNA from ES cells was 
digested with restriction enzymes Sspl, Seal, PvuII and HindIll 
(MBI). Restriction enzyme digests were electrophoresed on 0.8% agar- 
ose in I × T B E  buffer and blotted to Hybond N (Amersham). The 
transferred nucleic acids were linked to the membrane by UV cross- 
linking. DNA fragments (see text and Fig. 2A) were labeled with 5 laCi 
of [:)2P]dATP. RNA blots were hybridized with the coding region of 
the CLM2-A cDNA (see text and Figs. 1 and 2) as probe• The blot 
was prebybridized for 2 h at 65°C in 5 x SSPE, 5 × Denhardt 's  solu- 
tion, 0.5% SDS with 100 p.g/ml of denatured salmon sperm DNA and 
it was washed 2×30  rain in 0.2×SSC 0.l% SDS at 65°C. 
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Fig. 1. Cytohesin-like cDNAs isolated from embryoid bodies• A: Amino acid sequence. Functional domains (Sec7 and PH) are boxed. B: Hy- 
drophobicity plot of CLM-2. The plots of  CLMI and 3 are practically identical with CLM-2. 
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3. R e s u l t s  and  d i s c u s s i o n  

3.1. Cytohesin-like cDNAs isolated from embryoid bodies 
R I ES cells were cultured on bacteriological tissue culture 

plates tha t  do not  allow adhesion and  p romote  embryoid  
body differentiat ion [14]. R N A  was isolated on the third 
day of  culture, when visceral endoderm development  had  tak- 
en place and  cavi ta t ion was at its beginning. R T - P C R  ampli-  
fication with probes derived f rom rat  Sec7A,B and  C c D N A  
sequences (see Section 2) yielded three distinct cytohesin-like 
murine  (CLM) c D N A  species (Fig. 1A). 

The three sequences are highly homologous .  Each contains  
an approximately  400 amino acid open reading frame with 
two dist inguishable domains  of  homology.  Between amino  
acid residues 77 and  257 the sequence is homologous  to the 
mammal i an  Sec7-1ike domain,  first described by Liu and  Po- 
ha jdak  [11]. Next  between residues 267 and  380 a pleckstrin 
(PH) homology domain  [16] can be distinguished. This Sec7 
plus PH structure is characterist ic for the h u m a n  guanine 
nucleotide exchange factor  A R N O  [1,13] as well as for cyto- 
hesin-1 which was shown to interact  with c(L[32 integrin [9], 
and  for the general receptor for phosphoinosi t ides ,  GRP1,  
isolated by Klar lund  et al. f rom 3T3 fibroblast  and  mouse  
brain  expression libraries [8]. 

Homology  analysis revealed the relat ionship between the 
published amino  acid sequences and the mouse sequences iso- 
lated by us f rom embryoid  bodies. CLM1 was found to be 
similar to the h u m a n  B2-1 c D N A  [11]. C L M 2  was highly 
similar to the h u m a n  A R N O  [1], whereas CLM3 was identical 
to the murine  GRP1 gene [8]. The degree of  amino acid ho- 
mology between the t ranscripts  was 80-90%, with 99% and 
100% for the probably  or tho logous  sequences. The highest 
homology between C L M I ,  2 and  3 and  between them and 
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Fig. 2. Transcriptional alternatives of CLM-2. A: Comparative 
maps of CLM2A, B and C. B: Southern blot analysis of the tran- 
scriptional alternatives suggests that they derive from the same ge- 
nomic locus (for probes see A). 
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Fig. 3. Genomic map of CLM-2. Shaded boxes are coding exons. 

o ther  members  of  the family was observed in the Sec7 and  
PH coding domains ,  whereas the 5' and 3' coding sequences 
were considerably different, suggesting tha t  the conserved se- 
quences are the active domains  of  these proteins. C L M 2  re- 
vealed a mostly hydrophil ic  s tructure (Fig. 1B), which was 
shared by CLM1 and  3, suggesting that  cytohesins most  likely 
are soluble molecules. Our  observat ions  indicate tha t  cytohe- 
sin-like molecules may belong to a small family of  related 
genes and tha t  three distinct bu t  related transcripts  of  this 
family are expressed together  in differentiating ES cell derived 
embryoid  bodies. 

3.2. CLM2 is transcribed into multiple transcripts o f  a single 
genomic structure 

Variant  forms of  the 5' un t rans la ted  U T R  of  C L M 2  were 
isolated from a mouse brain  c D N A  library (see Section 2). 
Three t ranscr ipt ional  al ternatives were detected (Fig. 2A). 
C L M 2 - A  had  the shortest  (135 bp) 5' UTR,  whereas the 
5' U T R  of  CLM2-B encompassed 751 bp;  355 bp  of  this 
5' extension was deleted in t ranscr ipt  CLM2-C.  

Southern  blot  analysis with probes specific to the three 
t ranscr ipt ional  al ternatives tested whether  the three CLM2 
alternatives derive f rom the same genomic structure. Probes 
f rom the appropr ia te  5' UTRs  revealed the same band  pa t te rn  
for all three (Fig. 2B), indicat ing tha t  C L M 2  is a single copy 
gene as also shown for the h u m a n  B2-1 (cytohesin-1) gene [2]. 

To investigate the s tructure of  the C L M 2  locus, a PCR 
analysis was performed with 129 mouse D N A  from R1 ES 
cells as template.  Fig. 3 demonst ra tes  tha t  C L M 2  is composed 
of  six exons and  in t rons  with a 751 bp 5' UTR.  Interestingly 
the Sec7 and  PH domains  are not  encoded by separate exons. 
The Sec7 homology  is encoded by exons 2 and  3, whereas the 
PH homology  is encoded by exons 3, 4, 5 and 6. Since the two 

Table 1 
Comparative analysis of CML gene expression by RT-PCR 

Source (total RNA) CLMl CLM2 CLM3 

A B A B C A 

Tissues (adult) 
Spleen + + + + - + 
Thymus . . . . .  + 
Salivary gland + - + + + 
Brain + + + + + + 
Spinal cord + + + + - + 
Heart + + - + - + 
Muscle, skeletal . . . .  + 
Stomach + - + + - + 
Intestine + - + + - + 
Lung - - + + - + 
Kidney + + + + - + 
Testis + -- + + + + 
Liver + - + + - + 
Cell lines 
ES cells + - + + -- + 
Embryoid body + - + + - + 
NIH 3T3 + - + + - + 
A20 (B cell) + - + + - + 



H.-S. Kim et aI.IFEBS Letters 433 (1998) 312-316 315 

A B 

Kb Kb 

3- 
4 .0 - -~  2- 

1 . 8 - ~  / 
¢P "O 
¢: e -  

~ = C 
~ m 

Kb 

10- 

5- 
3- 
2- 

1- 

28S - -  

18S - -  BB 28S - -  

18S 

M 1 2 3 4 5 M 1 2 3 4 5 6 

Fig. 4. RNA blot analysis of CLM2-A expression in different tissues. Lower panels shoe ethidium bromide staining of agarose gel. Probe: 
CLM2-A cDNA. A: Embryoid body, poly(A) rich RNA. B and C: Total RNA. 

also occur separately in various genes [3,16] Sec7 and PH may 
have undergone considerable reshuffling during the evolution 
of CLM loci. 

3.3. Cell and tissue specific expression of CLM1, 2 and 3 
Poly(A)-rich RNA from differentiated embryoid bodies was 

hybridized at high stringency, with the coding region of 
CLM2-A as probe. Two transcripts were revealed,  one ap- 
proximately 1.8 kb and the other approximately 4.0 kb (Fig. 
4A). Transcripts of similar size were detected throughout em- 
bryoid body differentiation (not shown) and also in mouse 
liver, kidney, organs of the alimentary canal and in the sali- 
vary gland (Fig. 4B) as well as in metastatic and non-meta- 

static tumor cells, whereas no expression could be detected in 
Cos cells (Fig. 4C). 

Cell and tissue specific expression was studied by RT-PCR 
analysis using primers specific for CLM1-A and B, for CLM2- 
A, B and C as well as for CLM3-A, Investigation of numer- 
ous organs, cells and tissues revealed complex regulation of 
the multiple transcripts (Fig. 5). As shown in Table 1 the 
CLM1-A transcript was detected in all tissues and cell lines 
except for thymus, skeletal muscle and lung. This expression 
pattern was similar to those of CLM2-A and B, with small 
differences in their expression in heart and skeletal muscle 
Specific expression of CLMI-B was revealed in the central 
nervous system, heart and kidney, but not in other organs, 
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Fig. 5. Tissue and cell specific expression of different CLM transcripts; RT-PCR analysis. For primers, see Section 2. 
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or in the tumor cell lines. The other transcriptional alternative 
with restricted expression, CLM2-C, was expressed in brain 
and testis only. Finally, CLM3-A (GRP-1, [8]) was expressed 
in all tissues and cell lines. 

Cytohesin-like molecules were first detected in lymphoid 
cells [11] and the effect of cytohesin-1 (CLM-1) on integrins 
was demonstrated in a T cell lymphoma line [9]. GRPI  
(CLM-3) was isolated from multiple expression libraries. 
Chardin et al. also mention that ARNO,  the human exchange 
factor for ARF,  is generally expressed [1]. A similar conclu- 
sion was reached by Telemenakis et al. for the rat homologues 
of Sec7 [17], whereas our data suggest a complex, but specific 
expression pattern for these genes and their transcriptional 
alternatives. 

Here we demonstrate that cytohesins form a small, related 
and highly homologous gene family. Three such molecules 
were isolated and the genomic structure of one, CLM2, was 
characterized. The murine CLM transcripts are highly homol- 
ogous in the coding sequence of their Sec7 and PH domains. 
Each CLM has multiple transcriptional variants that are ex- 
pressed in various organs with considerable relative specificity. 
Our data demonstrate that certain CLM transcriptional var- 
iants (CLMI-B and CLM2-C) display highly restricted expres- 
sion patterns and with the exception of CLM3 (GRP1), the 
transcription of each has specific features. It follows from 
these observations that cytohesins and their transcriptional 
alternatives are under complex and multiple regulation in 
early embryonic cells and also in specific organs of the adult. 
We therefore speculate that members of this gene family and 
their transcriptional alternatives fulfill important  specific func- 
tions in a complex spatial-temporal setting. 
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