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Abstract CD38, a type II transmembrane glycoprotein, be- 
haves as a catalytically active transporter responsible for 
ectocellular generation of cyclic ADP-ribose (cADPR) from 
NAD + and for subsequent influx of cADPR across membranes 
[Franco, L., Guida, L., Bruzzone, S., Zocchi, E., Usai, C. and 
De Flora, A. (1998) FASEB J. in pressJ, cADPR regulates 
intracellular calcium homeostasis by releasing calcium from 
responsive stores. The cADPR-transporting function of CD38 
requires channel-generating oligomeric forms of the protein 
rather than the 46 kDa monomers that have been described so far 
in CD38 + cells. Here we demonstrate that CD38, both in 
reconstituted proteoliposomes and in CD38-transfected HeLa 
cells, is a mixture of catalytically active monomers, homodimers 
and homotetramers. A soluble recombinant form of CD38 
corresponding to its ectocellular region proved to be monomeric. 
Thus, association of native CD38 with either artificial or natural 
membranes seems to result in a reversible juxtaposition of 
monomers suitable to cADPR-transporting activity. 
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1. Introduction 

two topological problems [7]: (1) availability of  N A D  + to the 
catalytic domain of CD38, and (2) accessibility of  ectocellu- 
larly produced c A D P R  to its intracellular receptors. Two re- 
cent findings from our laboratory seem to provide potential 
solutions to both problems. Presence of  N A D  + in plasma and 
interstitial fluids has been detected at nanomolar  concentra- 
tions [8], thus enabling, in principle, the ectocellular produc- 
tion of  c A D P R  by CD38. In addition, we demonstrated that 
CD38 is a catalytically active transporter of  its product 
c A D P R :  CD38-reconstituted proteoliposomes and CD38 + re- 
sealed erythrocyte membranes are active in concentrating 
NAD+-der ived cADPR,  but not ADPR.  inside the vesicle 
compartment  [9]. 

The aim of this study was to provide a structural basis to 
the novel cADPR-transpor t ing function of  CD38 in intact 
cells [9]. This activity requires a channel-forming structure, 
rather then the monomeric form of CD38 described until 
now. Here we demonstrate the presence of  dimeric and tetra- 
meric forms of  CD38, as enzymatically active bands on mildly 
denaturing SDS-PAGE gels, in CD38-transfected HeLa cells 
(CD38 + HeLa cells) [10] and in CD38-reconstituted proteoli- 
posomes as well. CD38 dimers and tetramers were also de- 
tected as radiolabeled bands on SDS-PAGE gels from lysates 
of  [:~SS]methionine/cysteine-labeled CD38 + HeLa cells. 

CD38, a 46 kDa  type II t ransmembrane glycoprotein 
widely expressed in mammalian cells, is a bifunctional ectoen- 
zyme. Its two activities are ADP-ribosyl  cyclase, responsible 
for the generation of  nicotinamide and cyclic ADP-ribose 
(cADPR) from N A D  ~, and cADPR-hydrolase ,  converting 
c A D P R  to ADP-ribose (ADPR)  [14].  c A D P R  is a powerful 
calcium mobilizer from intracellular stores, active in plants, 
invertebrate and mammal ian  cells [5], where it is implicated as 
a second messenger for many agonists including NO, chole- 
cystokinin and acetylcholine. 

While CD38 is a membrane-bound ectoenzyme, the inver- 
tebrate ADP-ribosyl  cyclase is a cytoplasmic, soluble enzyme 
[6]. The ectocellular localization of  CD38 in vertebrates raises 
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Abbreviations." cADPR, cyclic ADP-ribose; NAD +, nicotinamide 
adenine dinucleotide; ADPR, ADP-ribose; BS ~, bis(sulfosuccinimi- 
dyl)suberate; rCD38, recombinant soluble CD38; [3-OG, I]-octylglu- 
copyranoside; PMSF, phenylmethylsulfonyl fluoride; PBS, phosphate- 
buffered saline; NHD +, nicotinamide hypoxanthine dinucleotide; e- 
NAD ~ , l-N~i-etheno NAD+; E-ADPR, 1-N~-etheno ADP-ribose; 
cIDPR, cyclic inosine diphosphoribose; IDPR, inosine diphosphori- 
bose; Mr, molecular weight; mAb, monoclonal antibody; GSH, 
glutathione (reduced form) 

2. Materials and methods 

2.1. Materials 
BS ~ was purchased from Pierce, Rockford, IL. ADP-ribosyl cyclase 

l¥om Aplysia ealiJbrnica and recombinant human CD38 [11] were 
kindly provided by Prof. H.C. Lee, Minneapolis, MN. This rCD38 
is a soluble species corresponding to the ectocellular, C-terminal re- 
gion of native CD38 and is completely deglycosylated [11]. All chem- 
icals were of the highest purity grade available from Sigma (Milan, 
Italy). CD38 sense- and antisense-transfected HeLa cells were ob- 
tained and cultured as described in [10]. Anti-CD38 mAb IB4 [12] 
was a generous gift of Prof. F. Malavasi, Ancona, Italy. [3'~'S]Met/ 
Cys (specific activity 1175 Ci/mmol) was purchased from ICN Phar- 
maceuticals, Inc., Irvine, CA. 

2.2. Purification of CD38 from CD38+-transjected HeLa cells 
CD38*-transfected HeLa cells (90×106) [10] were extensively 

washed in PBS and lysed in 4 m| of 300 mM sucrose containing 10 
mM Tris-HC1, pH 6.5, 2 mM PMSF and 40 lag/ml each of leupeptin, 
aprotinin and trypsin inhibitor. Cells were sonicated in ice for 30 s 
(Heat System-Ultrasonics, W-380) and centrifuged for 10 min at 
1000×g at 4°C; the supernatant was again centrifuged for 15 min 
at 100000×g at 4°C. The pellet was resuspended in 2 ml of lysis 
buffer and solubilized in 2% !~-octylglucopyranoside (~-OG). Native 
CD38 was purified as described [3], except that [3-OG replaced Triton 
X-100 throughout all purification steps (hydroxylapatite, immobilized- 
Cu ~+ and immunoaffinity chromatography). Purified CD38 in resus- 
pension buffer (5 mM Tris-HCl, pH 6.5, with 1% I3-OG) displayed a 
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specific NADase activity of 120 nmol ADPR/min/ml, assayed as in 
[10]. Protein content was determined according to Bradford [13]. 

2.3. Chemical cross-linking with BS '~ 
The cross-linking activity of BS :~ was preliminarily tested in our 

experimental conditions (PBS, pH 7.4, at 25°C) on rabbit muscle 
aldolase [14]. Both purified Aplysia cyclase (0.3 lag) and recombinant 
human CD38 (5 lag) were incubated in the presence or absence of 1 5 
mM BS :~ in 50 lal of PBS for 2 h at 25°C. Intact CD38 sense- and 
antisense-transfected HeLa cells (the latter cells were treated to pro- 
vide a CD38- control for possible unrelated BS :~ effects) [101 were 
resuspended in PBS containing 10 mM glucose at 10 ~ cells/ml. Ali- 
quots of 0.5 ml were incubated with 1 or 5 mMBS :~ (dissolved in the 
PBS-glucose solution) under gentle stirring at 25°C for 2.5 h. In order 
to quench excess BS :~, 0.15 vol of 50 mM Tris-HCl, pH 7.5, were 
added to reaction mixtures and incubated at 25°C for 15 additional 
rain. BS :~ solutions were prepared immediately prior to use. 

2.4. Cell radiolabeling 
CD38 sense- and antisense-transfected HeLa cells were incubated in 

cysteine/methionine-free RPMI 1640 medium, supplemented with 
2 mM glutamine for 30 rain and pulsed with [:~'~S]Met/Cys (30 /aCi/ 
ml) for 15 h. The metabolically labeled cells (2× 107) were washed 
with PBS, lysed in 0.5 ml of a buffer containing 10 mM Tris-HCl, pH 
6.5, 0.3 M sucrose, 2 mM PMSF and 2% Triton X-100, and sonicated 
for 30 s in ice. Native ["~SS]Met/Cys-labeled CD38 was purified from 
cell lysates as described in [3] and analyzed by SDS-PAGE as de- 
scribed in Section 2.5. The gels were fixed in isopropyl alcohol:acetic 
acid:water (25:10:65), dried and radiolabeled protein bands were 
visualized by phosphorimager (Packard, Canberra, Australia). 

2.5. SDS-PAGE and identOqcation of en.zvmatic activities hi gels 
All samples subjected to SOS-PAGE analysis were diluted in a 

modified Laemmli sample buffer [15] lacking ~-mercaptoethanol and 
EDTA and containing 1.5% SOS (instead of 8%). Samples were 
heated at 50°C for 3 min and electrophoresed on a refrigerated 7 
10% acrylamide gradient SOS-PAGE gel. 34, standards were prepared 
as the samples and run in parallel. 

After SOS-PAGE of both Aplysia ADP-ribosyl cyclase and re- 
combinant human CD38, gels were washed tbr 60 min in 500 ml of 
20 mM Tris-HCl, pH 7.5. To identify ApO,sia cyclase, the gels were 
incubated for 20 rain at 37°C in 20 mM Tris-HCl, pH 7.5, containing 
0.2 mM NHD" [16]. To visualize the NADase activity of recombinant 
human CD38, the gels were incubated for 20 min at 37°C in a buffer 
containing 20 mM Tris-HC1, pH 7.5, and 0.2 mM e-NAD + [17]. After 
incubation, gels were placed on an UV-transilluminator to detect for- 
mation of cIDPR and of e-ADPR, respectively. Photographs were 
taken using a 550 nm interference filter. 

Alter SOS-PAGE of cell lysates (50 tag protein), each longitudinal 
lane was cut into transversal slices of 1 cm. Each gel slice was put into 
a separate dialysis tubing containing 0.75 ml of 10 mM Tris-HC1, pH 
6.5, and 0.1% Triton X-100. Slices were dialyzed against 4 l of the 
same buffer for 16 h at 4°C. Thereafter, the content of each tubing 
was incubated with 0.04 mM e-NAD- at 37°C for 4 h. The produc- 
tion of e-ADPR was detected using a LS50B Fluorimeter (Perkin 
Elmer) set at 300 nm excitation and 410 nm emission. Recovery of 
NADase activity was about 7% of the loaded activity. Control sam- 
ples were obtained from gel slices cut from a lane loaded with anti- 
sense-transfected HeLa cells [10]. 

2.6. Reconstitution oJ'purO~'ed CD38 in proteoliposomes 
Preparation and characterization of the CD38-reconstituted unila- 

mellar proteoliposomes are reported in [9]. A typical proteoliposome 
preparation displayed an extravesicular NADase activity of 3.3_+ 0.3 
nmol ADPR/min/ml and a lipid concentration of 2.5+0.1 mg/ml. 
CD38 proteofiposomes (2 ml) were incubated in the presence or ab- 
sence of 2.5 mM BS :~ at 25°C under gentle stirring. After 2 h incuba- 
tion, 350 lal of 50 mM Tris-HCl, pH 7.5, were added to quench excess 
BS :~. Samples were then centrifuged for 15 rain at 100000×g and 
pellets were resuspended in 300 lul of 0.15 M NaC1. Samples were 
solubilized with 0.5% Triton X-100, diluted in modified Laemmli 
buffer and analyzed by SOS-PAGE (see Section 2.5). The gel lanes 
were cut and NADase activity on the gel slices was analyzed as 
described in Section 2.5. 

3.  R e s u l t s  

Usually, s t ructural  studies on t r ansmembrane  proteins re- 
quire detergent  solubil izat ion;  however, this t rea tment  can 
result in loss of  native oligomeric structures. Thus, BS :~, a 
homobi func t iona l  reagent widely used to cross-link protein 
subunits  [14], was used in order  to stabilize t r ansmembrane  
CD38 molecules before detergent solubilization. Moreover ,  
S O S - P A G E  samples were prepared according to a more  con- 
servative procedure:  SOS concent ra t ion  in the sample buffer 
was reduced f rom 8% to 1.5%, 13-mercaptoethanol and E D T A  
were omit ted and  samples were heated at 50°C only (see Sec- 
t ion 2.5). 

These experimental  condi t ions  were first checked on the 
monofunc t iona l  ADP-r ibosyl  cyclase f rom Aplysia calijbrnica, 
which has been recently demonst ra ted  by X-ray crystallogra- 
phy to be a homodimer  [6]. Cyclase activity was visualized 
directly on the gel, following incubat ion  with N H D  +, by de- 
tecting the fluorescent product  c I D P R  on a t rans i l luminator  
[16]. As shown in Fig. 1A, the control  sample displayed a 
single active band  at 30 kDa  (lane a), while in the BS~-pre - 
incubated sample a 60 kDa band  was visible wi thout  any 
monomer  left (lane b). Thus,  bo th  the monomer ic  and  the 
dimeric forms proved to retain cyclase activity. Accordingly,  
the homodimer ic  structure of native Aplysia cyclase [6] was 
confirmed with this experimental  procedure  and BS :~, strictly 
required to prevent  its dissociat ion tha t  occurs even in our  
mildly denatur ing  condi t ions  (lane a), proved not  to inactivate 
the cyclase activity. 

The same method  was ~bllowed with a recombinant ,  soluble 
form of  human  CD38 (rCD38), which lacks bo th  the trans- 
membrane  and intracellular domains  and also the glycosidic 
moieties, present in the native protein [11]. Since the most  
a b u n d a n t  product  of  the CD38 enzyme activities is A D P R  
and not  the cyclic nucleotide (cADPR),  N H D  + was not  suit- 
able as substrate  because c IDPR is formed in too low 
amounts  to allow detection of  ADP-r ibosyl  cyclase on the 
gels and the NADase  product  IDPR is not fluorescent [16]. 
Thus,  e -NAD + was used as substrate  of  NADase  activity, 
instead of  N H D  +, to detect fluorescent e - A D P R  directly on 
the gel following S O S - P A G E  (Fig. 1B). A single 30 kDa band  
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Fig. 1. Detection of catalytically active forms of Aplysia ADP-ribo- 
syl cyclase and recombinant human CD38. Aplysia cyclase (A) and 
recombinant human CD38 (B) were incubated without (lane a) and 
with (lane b) BS :~, as described in Section 2.3. The samples were 
subjectted to SOS-PAGE and enzymatic activities were identified 
under UV light, as described in Section 2.5. 
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was observed with (b) or without (a) prior incubation of  
rCD38 with BS a. Therefore, unlike the Aplysia cyclase, human 
rCD38 is a monomer  and BS 3 does not induce any formation 
of  oligomeric forms per se. 

In order to investigate the putative oligomeric structure of  
transmembrane, native CD38 in situ, similar cross-linking ex- 
periments with BS :~ were performed on CD38 sense-trans- 
fected (CD38 +) HeLa cells [10]. However,  the low activity 
levels present in these samples prompted us to use a more 
sensitive procedure in order to monitor  production of  e- 
A D P R  from E-NAD ~, as described in Section 2.5. As shown 
in Fig. 2A, the NADase  activity profile of  the gel slices ob- 
tained after SDS-PAGE of solubilized lysates from CD38 + 
HeLa cells showed three peaks corresponding to 46, 90 and 
190 kDa, respectively. In the samples from cells incubated 
without BS :~ the two latter forms, apparently corresponding 
to dimers and tetramers, were quantitatively less represented 
than the monomers.  Conversely, pre-treatment of  HeLa cells 
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Fig. 2. Active oligomeric forms of CD38 in CD38 + HeLa cells and 
in CD38-reconstituted liposomes. CD38 + HeLa cell lysates (A) and 
CD38-reconstituted liposomes (B) were incubated either in the pres- 
ence (e) or in the absence (O) of BS 3 and run on a 7 10% SDS- 
PAGE as described in Sections 2.3 and 2.5. Each gel lane was then 
cut into slices and NADase activity of each sample was determined 
by recording e-ADPR fluorescence (Section 2.5). The abscissa indi- 
cates the distance in centimeters and arrows indicate the M, 
markers. The ordinate indicates the percentage of the total NADase 
activity recovered from all samples. Data shown are the mean _+ S.D. 
of five experiments. 
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Fig. 3. NADase activity profile and autoradiogram of metabolically 
labeled CD38. CD38 +/ HeLa cells were cultured with [:~'~'S]Met/Cys 
and the procedure for the purification of CD38 (see Section 2.2) 
was applied to both cell lysates. The eluates from the immunoaffin- 
ity chromatography step were subjected to SDS-PAGE under mildly 
denaturing conditions (see Section 2.5). Lanes loaded with the ra- 
diolabeted samples, in duplicate, were either cut into slices and the 
NADase activity was analyzed fluorometrically with E-NAD + as 
substrate (A), or visualized by a phosphorimager (B). Samples from 
CD38 cells did not reveal any NADase activity (not shown) nor 
any labeled bands (B). 

with BS :~ resulted in a remarkable increase of  dimers and 
especially of  tetramers at the expense of  monomers (Fig. 2A). 

In an attempt to demonstrate that these high Mr bands 
correspond to CD38 homooligomers and not to CD38 com- 
plexes with other membrane proteins, similar experiments 
were carried out on proteoliposomes reconstituted with hu- 
man CD38 purified to homogeneity [3] from either CD38 + 
HeLa cells or erythrocyte membranes. The distribution of  
monomeric,  dimeric and tetrameric forms of  catalytically ac- 
tive CD38 in the proteoliposomes was similar to that observed 
on the CD38 + Heka  cells (Fig. 2B). BS :~ proved to enhance 
the peak of  dimers and, to a lower extent, of  tetramers over 
that of  monomers.  The source of  purified CD38 proved to be 
irrelevant. Thus, Fig. 2B shows results obtained on proteolip- 
osomes prepared with CD38 purified from HeLa cells, but a 
closely comparable activity profile was observed with proteo- 
liposomes reconstituted with CD38 purified from erythrocyte 
membranes. 

Finally, in order to unequivocally correlate oligomeric 
forms of  membrane-bound CD38 with NADase  activity, 
CD38 +/ HeLa cells were metabolically labeled with 
[:~'~S]Met/Cys and CD38 protein was purified to homogeneity 
as described earlier [3]. Radiolabeled samples were loaded in 
duplicate on SDS-PAGE:  one lane was cut into slices and the 
NADase  activity was determined, while the other lane was 
fixed, dried and exposed to phosphorimager for detection of  
radiolabeled protein bands. Fig. 3A shows three major activ- 
ity peaks, as recorded by e -ADPR fluorescence, in the sample 
purified from CD38 + HeLa cells. Phosphorimager record of  
the same sample (Fig. 3B) shows three radiolabeled bands 
corresponding to the peaks of  enzymatic activity at 46, 90, 
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190 kDa respectively. These Mr values are consistent for 
monomeric, dimeric and tetrameric CD38 structures. No 
NADase activity was detectable in samples purified from 
CD38-  cells (not shown) nor could any labeled bands be 
immunopurified with the anti-CD38 mAb IB4 from these 
CD38 cells (Fig. 3B). 

4. Discussion 

The present findings provide the first evidence for a discrete 
and apparently reversible oligomeric structure of native, cata- 
lytically active, t ransmembrane CD38 in cells. The only avail- 
able report on high molecular weight forms of CD38 concerns 
a transglutaminase-cross-linked 190 kDa species of CD38 that 
has been immunopurified from retinoic acid-stimulated HL60 
cells [18]. The dimeric and tetrameric forms of CD38 demon- 
strated in this study are not covalently cross-linked and can 
dissociate following SDS-PAGE: this was clearly indicated by 
the partially stabilizing effect of BS 3 on both CD38 + HeLa 
cells and on CD38-reconstituted proteoliposomes (Fig. 2). 
Moreover, the trend to form both dimers and tetramers ap- 
pears to be an intrinsic property of the CD38 protein, as 
indicated by the demonstration of the same oligomeric forms, 
in the same relative abundance, in both CD38 + HeLa mem- 
branes and in proteoliposomes reconstituted with CD38 puri- 
fied to homogeneity (Fig. 2). 

The dimeric structure of the monofunctional  Apl.vsia cy- 
clase, which has been recently solved by X-ray crystallography 
[6], was confirmed, thus validating the experimental setting 
used in this study (Fig. 1A). Quite unexpectedly, we consis- 
tently failed to observe any oligomeric forms of soluble, trun- 
cated, rCD38 (Fig. 1B). Therefore, a discrepancy exists be- 
tween soluble CD38 and the native protein, that may reflect 
a critical role of the t ransmembrane domain of native CD38 
in promoting or stabilizing monomer  association. Such rever- 
sible juxtaposition of interacting monomers is expected to 
create a solvent-filled channel allowing the in situ generated 
cADPR to cross CD38 dimers and/or tetramers. This model 
provides the structural counterpart  to the recently demon- 
strated cADPR-transport ing activity of native CD38 [9]. 
Monomers per se, while competent to display catalytic activ- 
ity, as demonstrated in this study (Figs. 2 and 3A), are not 
structurally suitable to mediate any vectorial transport of 
cADPR, 

We could not detect tile two oligomeric forms of CD38 by 
immunoblot  analysis after SDS-PAGE under mildly denatur- 
ing conditions, although the procedure was modified to en- 
hance transfer of high molecular weight proteins (presence of 
SDS in the blotting buffer, high voltage transfer and low 
acrylamide concentration in the gel, see [19]). These negative 
results could be due either to inefficient transfer of the oligo- 
meric forms of CD38 to the nitrocellulose or to failure of the 
anti-CD38 mAbs (IB4, IB6, OKT10) to recognize the dena- 
tured, immobilized oligomers. 

The relative proportion of the oligomeric and the mono- 
meric forms of native CD38 in the cell membranes remains 
to be determined. The low final recovery of enzymatic activity 

after dialysis of the SDS-PAGE protein bands (approximately 
7%) and the fact that monomers and oligomers might rena- 
ture differently do not allow to extrapolate the activity profiles 
shown in Figs. 2 and 3A to the in vivo situation. Specifically, 
CD38 monomers might represent an artefact or at least be 
overestimated (with dimers and tetramers being underesti- 
mated accordingly), due to the unavoidable membrane solu- 
bilization and subsequent electrophoretic separation under 
dissociating conditions. Therefore, these results prove un- 
equivocally that t ransmembrane CD38 in cells has a structure 
suitable to catalyze cADPR formation and also its selective 
and unidirectional transport, as recently demonstrated [9]. 
Reversibility of monomer  association might suggest modula- 
tion of this functional activity, which can elicit increased 
[Ca2+]i levels in CD38 +, but not in CD38 HeLa cells [9]. 
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