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Abstract Two energy-dissipating systems, an alternative oxi- 
dase and an uncoupling protein, are known to exist in plant 
mitochondria. In tomato fruit mitochondria linoleic acid, a 
substrate for the uncoupling protein, inhibited the alternative 
oxidase-sustained respiration and decreased the ADPIO ratio to 
the same value regardless of the level of alternative oxidase 
activity. Experiments with varying concentrations of linoleic acid 
have shown that inhibition of the alternative oxidase is more 
sensitive to the linoleic acid concentration than the uncoupling 
protein activation. It can be proposed that these dissipating 
systems work sequentially during the life of the plant cell, since a 
high level of free fatty acid-induced uncoupling protein activity 
excludes alternative oxidase activity. 
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1. Introduction 

In addition to the alternative oxidase (AOX) [1-3], some 
plant mitochondria contain another energy-dissipating system, 
namely a plant uncoupling mitochondrial protein (PUMP) 
[4,5]. The cyanide (CN)- and antimycin-resistant AOX, which 
bypasses the main cytochrome respiratory chain, catalyzes 
ubiquinol-oxygen oxido-reduction without H + release in the 
cytosol and thus dissipates redox potential energy [1 3]. AOX 
activity is inhibited by hydroxamic acids such as benzohy- 
droxamate (BHAM) and can be allosterically stimulated by 
keto acids such as pyruvate (Pyr) [6,7]. In addition, the activ- 
ity of AOX, existing in the inner mitochondrial membrane as 
an inactive covalently bound oxidized dimer or as a reduced 
active non-covalent dimer [8], may be regulated by reduction 
state of the enzyme [8,9]. 

The recently discovered plant uncoupling mitochondrial 
protein (PUMP) [4] exports anionic free fatty acids (FFA) 
across the inner mitochondrial membrane [10], in a manner 
similar to the mammalian brown adipose tissue uncoupling 
protein (UcP) [11-13]. Protonated fatty acids reenter into 
the mitochondrial matrix by diffusion [11,13]. By removing 
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the anionic FFA from the matrix back into the intermem- 
brane space, PUMP enables H + reentry into the matrix 
through a fatty acid cycling process, thus bypassing the 
ATP synthase, and as a consequence dissipates the H + trans- 
membrane electrochemical gradient [4,5]. Addition of FFA, 
such as linoleic acid (LA), to plant mitochondria results in 
mitochondrial uncoupling, while the presence of purine nu- 
cleotides, such as ATP or GTP which inhibit PUMP, and 
bovine serum album (BSA) which removes FFA, increases 
the membrane potential of these mitochondria [4,5,10]. Un- 
coupling by FFA, at least in animal mitochondria, is mediated 
not only by UcP but also by the ATP/ADP antiporter [14], 
the aspartate/glutamate antiporter [15], and the dicarboxylate 
carrier [16]. Therefore, by adding BSA together with GTP, not 
only PUMP can be inhibited but also the FFA transport 
activity of the above carriers provided that they participate 
in FFA-induced uncoupling in plant mitochondria. 

Although the two energy-dissipating systems, AOX and 
PUMP, lead to the same final effect (i.e. a decrease in oxida- 
tive phosphorylation efficiency), they may have different phys- 
iological functions in plant cells. While activities of both pro- 
teins can counteract the imbalances between the supply of 
reducing substrates and the energy and carbon demand for 
biosynthesis [1,3,5], only PUMP can totally switch off chemi- 
osmotic coupling. A puzzling question regarding the presence 
of these two energy-dissipating systems relates to a possible 
connection between their activities (shared regulation). Such a 
connection could shed light on the reasons for the existence of 
two energy-dissipating systems in plants (contrary to hetero- 
trophic organisms) and how they interact to fulfil require- 
ments of plant cell energy metabolism. 

In this work we describe the functional connection between 
the AOX and PUMP energy-dissipating systems in mitochon- 
dria isolated from green tomato fruit. We show that LA, an 
abundant free fatty acid in plants, which activates PUMP, 
drastically inhibits the CN-resistant respiration mediated by 
AOX. 

2. Materials and methods 

Tomato plants (Lycopersicon esculentum) were grown in a green- 
house at the Centro de Biologia Molecular e Engenharia Gen6tica, 
UNICAMP. Tomato fruits were harvested at a nearly developed stage 
(but still completely green) and were used the same day. 

2.1. Isolation of mitochondria 
Usually 0.5 kg of green tomatoes were sliced and homogenized in a 

domestic blender following removal of the seeds. The juice obtained 
was immediately mixed to a final volume of 400 ml with a medium 
containing 500 mM sucrose, 0.2 mM EGTA, 4 mM cysteine, and 
40 mM HEPES, pH 7.8. During homogenization, the pH value was 
kept between 7.2 and 7.8 by adding 1 N KOH. After filtration of the 
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homogenate through a layer of polyester cloth, crude mitochondria 
were subsequently isolated by conventional differential centrifugation 
(500xg for 10 rain, 12300xg for 10 min) and then washed twice in a 
medium containing 250 mM sucrose, 0.3 mM EGTA, and 10 mM 
HEPES, pH 7.2. 

The mitochondria were then purified on a 21% (v/v) self-generating 
Percoll gradient following method modified from Van den Bergen et 
al. [17]. Apart from Percoll, the gradient medium contained 250 mM 
sucrose, 0.3 mM EGTA, 10 mM HEPES, pH 7.2, and 0.5'7,, (w/v) 
BSA. The presence of BSA in the medium allowed partial chelating 
of FFA from the mitochondrial suspension. The gradient was centri- 
fuged at 40000xg for 30 min. The mitochondria layer was collected 
and washed three times in 250 mM sucrose, 0.3 mM EGTA, and 10 
mM HEPES, pH 7.2. Fully depleted of FFA mitochondria were ob- 
tained by using 1%, (w/v) BSA in the last washing before Percoll 
gradient, during the Percoll gradient purification, and in the following 
first washing. With these mitochondria, the addition of GTP+BSA 
had no effect on the respiration in the presence of BHAM and oligo- 
mycin (not shown). Mitochondrial protein concentration was deter- 
mined by the biuret method [18]. 

2.2. Measurements of respiration 
Oxygen consumption was measured using a Clark-type electrode 

(Yellow Springs Instruments Co.) in 1.3 ml of standard incubation 
medium (25°C) containing 125 mM sucrose, 65 mM KC1, 10 mM 
HEPES, pH 7.4, 0.33 mM EGTA, 1 m M  MgCI2, and 2.5 mM 
KH2PO4, with 0.4-0.5 mg of mitochondrial protein. All measure- 
ments were made in the presence of 10 mM succinate (+5 /.tM rote- 
none) as oxidizable substrate. To ensure complete activation of succi- 
nate dehydrogenase, 0.17 mM ATP was added. State 4 measurements 
were performed in the presence of 2.5 lag of oligomycin/ml of incu- 
bation medium. For state 3 measurements, 0.17 mM (pulse) or 2 mM 
(saturating amount) ADP was supplied. The alternative pathway was 
inhibited with 2 mM BHAM, and the cytochrome pathway was in- 
hibited with 1.5 mM KCN. PUMP activity was inhibited with 0.5% 
BSA and 1 mM GTP. The latter was also applied in measurements of 
CN-resistant respiration in state 3, in the presence of 2 mM ADP 
which could itself inhibit PUMP activity, to ensure total inhibition 
of PUMP and to keep the same experimental conditions for both state 
3 and state 4. To activate the alternative pathway, 0.15 mM pyruvate 
and 1 mM dithiothreitol (DTT) were supplied, and to activate PUMP 
various concentrations of LA were supplied. Detailed conditions are 
described in the figure legends. 

3. Results and discussion 

CN-resistant respiration was measured in purified tomato 
fruit mitochondria partially depleted of  F F A  with succinate 
(plus rotenone) as oxidizable substrate, displaying no signifi- 
cant difference for both state 3 and state 4 respiration (taking 
into account the absolute values of  the CN-resistant respira- 
tory rates as shown in Table 1). Four  incubation conditions 
were used: (a) in the presence of  the P U M P  inhibitors, GTP  
and BSA, of  which BSA is the most effective by chelating 
substrates of  P U M P  (FFA),  (b) in the presence of  GTP and 
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BSA plus the A O X  activators, D T T  (reductant) and Pyr, (c) 
in the presence of  D T T  and Pyr plus a substrate of  PUMP,  
3.9 ~tM LA and (d) in the presence of  D T T  and Pyr. When 
P U M P  was blocked, a significant stimulation of  CN-resistant 
respiration (taking into account both the absolute values and 
the percent of  total respiration) was observed in the presence 
of  DTT and Pyr, similar in both states 3 and 4. On the other 
hand, the addition of  3.9 ~tM LA instead of  GTP and BSA, 
dramatically decreased CN-resistant respiration. In the ab- 
sence of  P U M P  inhibitors or P U M P  substrate, CN-resistant 
respiration in the presence of  DTT and Pyr had an interme- 
diary value, which could be explained by the presence of a 
small amount  of  endogenous F F A  in the mitochondrial  sus- 
pension. These observations clearly indicated an inhibitory 
effect of  LA on the AOX activity stimulated by DTT and Pyr. 

The coupling state of  the phosphorylating mitochondria 
was determined in four conditions (Table 2): (a) in the pres- 
ence of  inhibitors of  AOX (BHAM) and P U M P  (GTP/BSA), 
(b) in the presence of  GTP/BSA plus A O X  activators (DTT/  
Pyr), (c) in the presence of  3.9 ~tM LA (PUMP substrate) and 
DTT/Pyr,  and (d) in the presence of  3.9 p.M LA and BHAM. 
State 3 respiration was lower in the presence of  B H A M  com- 
pared to when AOX was active (plus DTT/Pyr)  with P U M P  
activity either inhibited (by GTP/BSA) or slightly stimulated 
(plus LA). This was also the case for state 4 respiration with 
GTP/BSA but not in the presence of  LA. The ADP/O ratio, 
which quantifies the efficiency of  oxidative phosphorylation, 
was optimal (=1.43) in the presence of  inhibitors of  both dis- 
sipating systems, decreased when AOX was activated by 
DTT/Pyr  (=1.29) and fell significantly to 0.95 when LA was 
also present (i.e. when both AOX and P U M P  were activated). 
However, when A O X  was inhibited by BHAM, the ADP/O 
ratio in the presence of  LA remained almost the same (= 1.01). 
These results suggest that either the efficiency of  oxidative 
phosphorylation in the presence of LA is independent of the 
activity of  AOX, or that AOX is inhibited by a low concen- 
tration of  LA. 

CN-resistant respiration and LA-induced BHAM-resistant  
respiration represent part of  A O X  and P U M P  activity, respec- 
tively. These activities were measured for various LA concen- 
trations in fully depleted of  F F A  tomato mitochondria as 
described in the legend to Fig. 1. CN-resistant respiration 
(Fig. 1) in the presence of  D T T  with (I)  or without (e) Pyr 
decreased with the increasing concentration of  LA. Fifty 
percent inhibition was reached for both situations at an LA 
concentration of  3 4  ~tM. On the other hand, LA-induced 
respiration increased with the increasing concentrations of  
LA and 50% maximal stimulation was reached at 10.3 laM 

Table 1 
Effect of various incubation conditions on CN-resistant respiration in mitochondria isolated from green tomato fruit 

Conditions CN-resistant respiration 

State 3 State 4 
(nmol O min 1 mg i (% of total respiration) (nmol O min 1 mg J (% of total respiration) 
protein) protein) 

+GTP+BSA 92 + 13 21 _+3 86_+ 14 55_+8 
+GTP+BSA+DTT+Pyr 218 _+ 45 44 _+ 9 212 _+ 29 97 _+ 13 
+3.9 ~tM LA+DTT+Pyr 56 _+ 14 14 -+ 3 46 -+ 8 20 -+ 4 
+DTT+Pyr 131 _+ 16 28_+4 122_+ 15 62_+9 

Assay conditions as in Section 2. CN-resistant respiration (+1 mM KCN) was measured in the presence of 1 mM GTP, 0.5% BSA, 1 mM DTT, 
0.15 mM Pyr, and 3.9 JaM LA (as indicated). CN-resistant respiration rates are expressed in nmol O rain 1 mg 1 mitochondrial protein or as a 
percent of the total respiratory rate, before the addition of KCN. Data are mean values + S.D. of four determinations. 
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Fig. 1. CN-resistant respiration and LA-induced respiration versus LA concentration. Fully depleted FFA rnitochondria (see Section 2) were in- 
cubated with 10 mM succinate, 5 Jam rotenone, 2.5 Jag of oligomycin/mg protein, and 0.17 mM ATP (state 4 respiration). CN-resistant respira- 
tion (+1 mM KCN) was measured in the presence of 1 mM DTT (O) or in the presence of 1 mM DTT plus 0.15 mM Pyr (11). LA-induced 
respiration (©) was measured in the presence of 2 mM I~HAM. Increasing concentrations of LA (1.2 20 JaM) were obtained by successive ad- 
ditions when the steady-state respiration rate was achieved. Several oxygen traces were needed to cover the full investigated range of LA con- 
centration. LA concentrations producing 50°/,, inhibition (S05) of CN-resistant respiration are indicated by the dashed vertical lines. Values of 
respiratory rates are expressed in nmol O rain -~ mg i mitochondrial protein. Inset: Double reciprocal plot of LA-induced respiration versus 
LA concentration. The linear regression was made 0' = A+BX), where R = 0.997, A = 1.51 _+ 0.16, and B = 15.53 + 0.42. A -a gives the apparent 
V~ ..... (663 nmol O rain -1 mg 1 protein) and B/A gives S~,~ for LA-induced respiration (i.e. LA concentration that produces 50% stimulation) 
and corresponds to 10.3 JaM. 

(Fig. l,  inset). The apparen t  maximal  rate of  LA-induced 
respirat ion as calculated f rom the l inear regression equa t ion  
of  the da ta  in Fig. 2 was 663 nmol  O rain -1 mg  -~ protein.  
The difference between the two CN-res is tant  respirat ion 
curves in Fig. 1 ( I  and  o, with and  wi thout  Pyr, respectively) 
could be plot ted as a percent  of  the respirat ion wi thout  Pyr 
versus LA concent ra t ion  up to 10 g M  (Fig. 2). The stimula- 
tory effect of  Pyr (on average, abou t  59 + 8%, S.D.) on A O X  
activity (in the presence of  DTT)  was not  significantly affected 
by the LA concent ra t ion .  This suggests tha t  the inhibi tory  
effect of  LA on CN-res is tant  respirat ion is not  related to 
the b inding of  Pyr to the allosteric site of  AOX. As a result, 
there is no compet i t ion  between LA and  Pyr for the allosteric 
act ivator  b inding site. The above experiments  using increasing 
concent ra t ions  of  LA describe for the first t ime how an  in- 

crease in F F A  level affects bo th  of  the energy-dissipating sys- 
tems, bu t  in opposite directions. It  seems tha t  A O X  activity is 
more  sensitive to the inhibi tory effect of  LA than  P U M P  
activity is to act ivat ion by LA, as indicated by the respective 
S0.~ concent ra t ions  (i.e. LA concent ra t ions  tha t  lead to 50% 
inhibi t ion of  CN-res is tant  respirat ion or to 50% st imulat ion of 
LA-induced respiration,  respectively) (Fig. 1). 

These results are impor t an t  because they show how a highly 
regulated enzyme such as A O X  can be progressively switched 
off by an increase in the F F A  level in p lant  cells. They also 
shed light on the respective roles of  each energy-dissipating 
system, Indeed, A O X  and  P U M P  never seem to work simul- 
taneously at their  maximal  activity, and it may be tha t  when  
P U M P  reaches high activity, A O X  is already switched off. We 
suggest tha t  these two energy-dissipating enzymes work se- 

Table 2 
Effect of various incubation conditions on the phosphorylating respiratory rate and coupling parameters 

Conditions Coupling parameters 

State 3 State 4 RC ADP/O 
(nmol O min -1 mg i protein) (nmol O min -1 mg -I protein) 

+GTP+BSA+BHAM 435 + 33 160 + 13 2.72 +_ 0.22 1.43 + 0.03 
+GTP+BSA+DTT+Pyr 557 + 42 355 + 19 1.57 + 0.12 1.29 + 0.10 
+3.9 JaM LA+DTT+Pyr 449 -+ 45 305 +_ 14 1.47 -+ 0.14 0.95 + 0.13 
+3.9 JaM LA+BHAM 385+35 297+ 10 1.30_+0.12 1.01 +0.03 

Assay conditions as in Section 2. State 3 respiration was measured during ADP pulse (0.17 mM), and state 4 respiration was determined after the 
phosphorylation step. The concentrations used were: 1 mM GTP, 0.5% BSA, 1 mM DTT, 0.15 mM Pyr, 3.9 jaM LA and 2 mM BHAM (where 
indicated). Values of respiratory rates are expressed in nmol O minx  mg-1 mitochondrial protein. Data are mean values_+ S,D. of four determi- 
nations. 



240 F E. Sluse et al./FEBS Letters 433 (1998) 237 240 

100 

(0 "~ ~ 80 
IN o~ 

Y • 
oo 

c 
0 ~ -..~ .Q 40 I- 

~ 0 

.E N 
"g .~  20 

• 0 ~ 
0,0 

I I I 
2,5 5 , 0  7 , 5  10,0 

[LA] (~.M) 

Fig. 2. Stimulation of CN-resistant respiration by pyruvate versus 
concentration of LA (0 10 [aM). Assay conditions as in Fig, 1. Pyr- 
uvate stimulation is shown in relative values (as percent of unstimu- 
lated (-Pyr) respiration). The horizontal line indicates the average 
stimulation by pyruvate (59%). 

quentially. Thus AOX would be active mainly during high 
biosynthetic activities in the cell (e.g. during plant growth 
and development), thereby providing safety balance between 
redox potential, phosphate potential, and biosynthesis de- 
mands, whereas P U M P  would start working in the post-grow- 
ing stage when the F F A  concentration increases [19,20], there- 
by providing a mechanism for heat generation via a decrease 
in the efficiency of  oxidative phosphorylation in parallel with 
the termination of  biosynthetic processes. 
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