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Abstract While extralenticular expression of proteins in the KK
crystallin (small heat shock protein) family is well documented,
that for proteins in the LL/QQ-superfamily is less well established.
Here we show, using SDS-PAGE, Western blotting and confocal
microscopy, that there is a constitutive level of LL crystallin
expression in mouse N1E-115 neural cells. Furthermore, upon
heat shock at 43³C or 55³C, or cold shock at 30³C, LL crystallin
immunoreactivity translocated predominantly from the nuclear
region into the cytoplasmic region of the cells. In conditions of
stress, it may be important for LL crystallin to be recruited into the
cytoplasm to stabilise other proteins via its high LL-sheet content,
and/or to ensure that storage levels of cytoplasmic Ca2+ are
maintained.
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1. Introduction

The eye lens contains high concentrations of soluble pro-
teins, the crystallins. They fall into two classes, the K crystallin
family and the L/Q-superfamily [1]. There is di¡erential expres-
sion of the crystallins during lens development [2] which leads
to di¡erent mixtures of crystallins along the visual axis. Prop-
erties of individual crystallins may be important in maintain-
ing short range order, and thus transparency, in the lens [3].
Many of the crystallins are expressed extralenticularly; for
example the mammalian small heat shock protein K crystallin
is emerging as a key protein in a remarkable variety of cellular
processes including: oxidative stress responses in heart and
respiratory tissue [4], development of receptivity in the secre-
tory phase endometrium [5], cellular di¡erentiation in the eye,
and in a variety of neurodegenerative disorders. We have
shown that heat shock of a N1E-115 neural cell line results
in translocation of over-expressed KB crystallin from the cy-
toplasm to the nuclear region, and that mutations in KB crys-
tallin that e¡ect its chaperone-like activity also in£uence via-
bility of N1E-115 neural cells under stress, while not
in£uencing the distribution of the protein within the cell [6,7].

By contrast, the case for extralenticular expression and
function of L crystallin is less well established. LB2 and
LA3/A1 crystallins have been found in the chick retina [8],
and LB2 crystallin in the mammalian retina [9]. In this paper
we show, using immunocytochemistry and confocal micro-
scopy, that L crystallin is expressed endogenously in N1E-
115 neural cells, and that temperature-induced stress results
in translocation of the protein predominantly into the cyto-

plasm. This has important implications for the role of the
protein in cells under stress.

2. Materials and methods

2.1. Cell culture
N1E-115 cells, from a mouse neuroblastoma cell line, were obtained

from ECACC (ECACC No. 88112303) and grown from frozen stock
by the following protocol: 5 ml of Dulbecco's modi¢ed Eagle's me-
dium (DMEM), supplemented with 10% foetal calf serum, 2 mM
glutamine, 200 U/ml penicillin and 100 Wg/ml streptomycin (referred
to later as 10% DMEM) was placed in a culture £ask and cell stock
solution was added. The £ask was mixed gently and placed horizon-
tally for 30^60 min to allow viable cells to adhere. The medium was
replaced with fresh medium and the £ask incubated at 37³C, 5% CO2.

For routine passaging, the medium was removed from a 25 ml £ask
and the cell sheet washed with 5 ml phosphate bu¡ered saline (PBS),
1 mM EDTA. The cell sheet was covered with 1 ml PBS/EDTA/
Trypsin (the latter at 0.5 g/l) and incubated for 10^15 min at 37³C.
To 1 ml of cell suspension, 4 ml of the medium described above was
added and this suspension was further diluted into a £ask containing
fresh medium for onward growth.

2.2. Gel electrophoresis
SDS polyacrylamide gel electrophoresis (SDS-PAGE) and Western

blotting using anti-LH crystallin antibody (which also reacts with LL

crystallin) was performed as described previously [6,10].

2.3. Temperature shock
Heat shock experiments were carried out in 25 ml £asks or slide

£asks (Life Technologies), as appropriate. Cells were seeded in the
£asks in 5 ml or 3 ml respectively of 10% DMEM supplemented
with selection antibiotics as required and allowed to grow to 50^
60% con£uency. Cells were shocked by incubation of the £asks at
30³C, 34³C, 43³C, or 55³C in 5% CO2 for 1 h, 3 h or 6 h as required.

2.4. Confocal microscopy
Cell sheets on the slide surface were washed with PBS and then

¢xed with freshly prepared 4% paraformaldehyde for 10 min at room
temperature. Blocking was done with 1% foetal calf serum in PBS,
0.05% azide for 1 h at room temperature. Following four washes of
the cells with PBS, cells were permeabilised by incubation with 50%
methanol, 50% acetone for 10^15 min at room temperature. Cells
were washed four times with PBS prior to use of the primary anti-
body. This rabbit anti-rat LH crystallin polyclonal antibody serum [10]
was used at a 1:1000 dilution in PBS and incubation was for 1 h at
room temperature. The £uorescence antibody (goat anti-rabbit IgG-
FITC conjugate, Vector Laboratories, UK) was added at 1:500 dilu-
tion in PBS and incubation followed for 1 h at room temperature in
the dark. After a ¢nal four washes with PBS, the cells were mounted
in Vectorlabs H-1300 mounting medium containing propidium iodide,
covered by a coverslip (0.17 þ 0.1 Wm) and stored in the dark until
examined by confocal microscopy, using a Leica DMRBE microscope
with TCSNT software.

3. Results

Western blotting of proteins from the stable N1E-115 cell
line with anti-LH crystallin antibody showed only a single
reactive band, which migrated in the position expected for
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LH crystallin (Fig. 1). No L crystallin was found in the me-
dium after extraction of the cells. Temperature-induced stress
did not appear to result in signi¢cantly increased immuno-
reactivity, therefore expression, of L crystallin.

Confocal microscopy showed that immuno£uorescence for
L crystallin in unstressed N1E-115 cells was located predom-
inantly in the nuclear region of the cells (Fig. 2B). The control
without antibody showed no immuno£uorescence (Fig. 2A).

Heat stress at 43³C for 3 h resulted in movement of the im-
munoreactivity to the cytoplasmic area of the cells (Fig. 2C);
results were identical for 6 h heat stress, and for cold shock at
30³C for 3 or 6 h. More severe heat stress at 55³C for 3 or 6 h
showed almost complete translocation of the immunoreactiv-
ity to the cytoplasm (Fig. 2D).

4. Discussion

SDS-PAGE, Western blotting and confocal microscopy
show that there is a constitutive level of L crystallin expression
in mouse N1E-115 neural cells. This is of interest, because it is
generally assumed that evolution of the L/Q-superfamily has
involved specialisation for the lens environment.

Upon temperature-induced stress, L crystallin immunoreac-
tivity translocated predominantly from the nuclear region into
the cytoplasmic region of the cells. This is in contrast to the
movement of KB crystallin in N1E-115 cells and in NIH 3T3
cells upon heat shock, which is in the opposite direction, from
the cytoplasm to the nucleus, to interact with intermediate
¢lament proteins or with DNA [7,11]; but in accord with
the movement of KB crystallin on hypertonic shock in N1E-
115 cells with high KCl ([7], Wiessman, Coop, Goode and
Crabbe, unpublished results).

Paired L-sheets such as those seen in the Greek key/Immu-
noglobulin fold are employed in a wide variety of proteins to
facilitate protein-protein interactions [12,13]. The simplest and
earliest members of immunoglobulin family functioned as
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Fig. 1. L Crystallin identi¢cation in N1E-115 mouse neuroblastoma
cells. Left panel: SDS polyacrylamide gel electrophoresis; lanes are
as follows: 1, N1E-115 cells; 2, medium after incubation and sepa-
ration of cells by centrifugation. The arrow shows the migration po-
sition of L crystallin. Right panel: Western blot; lanes are as fol-
lows: 1, N1E-115 cells; 2, medium after incubation and separation
of cells by centrifugation. The arrow shows the migration position
of L crystallin.

Fig. 2. Confocal microscopy of N1E-115 mouse neuroblastoma cells. A: Cells without anti-LH crystallin antibody; B: cells with anti-LH crystal-
lin antibody, 1 h at 34³C; C: cells with anti-LH crystallin antibody, 3 h at 43³C; D: cells with anti-LH crystallin antibody, 3 h at 55³C.
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simple cellular adhesives [14]. The thermal stability and Ca2�-
binding capacity [15] of L crystallin are both useful properties
under conditions of cellular stress. It has been suggested that
stress-related properties such as these represent a common
feature, and may indicate the mechanism by which proto-crys-
tallin proteins were selected or recruited for high-level expres-
sion in the lens [16]. In conditions of stress in neural cells, it
may be important for L crystallin to be recruited into the
cytoplasm to stabilise other proteins via its high L-sheet con-
tent, and/or to ensure that storage levels of cytoplasmic Ca2�

are maintained.
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