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Abstract The modular structure of HGF/SF offers a reduc-
tionist or ‘divide and rule’ approach to the analysis of structure
and function. Domain deletion experiments have established that
the N domain, kringle 1 and kringle 2 are essential for HGF/SF
activity and that truncated variants containing the N domain and
kringle 1 (NK1) or kringles 1 and 2 (NK2) can exhibit partial
agonistic or antagonistic activity depending on target cells.
Comparative modelling has been used to predict the 3D
structures of the six domains of HGF/SF. More recently,
NMR methods have shown that the N domain has a novel fold,
the charge distribution of which suggests a heparin binding site.
Crystals of NK1 indicate the relationship of this domain to the
kringle 1, offering further insights into the mechanism of domain
interactions and receptor activation.
© 1998 Federation of European Biochemical Societies.
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1. Introduction

HGF/SF [1-5], the first member of the plasminogen related
growth factor family, is composed of six domains whose
boundaries are clearly defined at the sequence level. The N-
terminal domain, the so-called N domain, comprising residues
Glu-30-Asn-121 is homologous to the activation peptide of
plasminogen. A short linker peptide connects the N domain
with four copies of the kringle domain: Cys-128-Cys-206
(kringle 1), Cys-211-Cys-288 (kringle 2), Cys-305-Cys-383
(kringle 3) and Cys-391-Cys-469 (kringle 4). A linker peptide
of 24 amino acids links the forth kringle to an inactive serine
proteinase domain (Val-495-Ser-728). This peptide contains a
half-cystine residue (Cys-487) predicted to form a disulphide
bond with Cys-604 and a trypsin-like cleavage site (Gln-492-
Leu-493-Arg-494 | Val-495-Val-496-Asn-497), which is
cleaved upon conversion of single-chain pro-HGF/SF into a
two-chain molecule.

An understanding of the relationship between structure and
function in HGF/SF depends on a knowledge not only of the
conformations of the individual domains but also on their
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arrangement with respect to each other, both in solution and
in complex with the HGF/SF (MET) receptor. The availabil-
ity of high-resolution structures of kringle and serine protein-
ase domains allowed us several years ago to construct three-
dimensional models of the corresponding HGF/SF domains
[6]. The models of kringles 1 to 4 of HGF/SF confirmed the
presence of the typical features of kringle domains, i.e. a hy-
drophobic core and a globular structure stabilized by the three
conserved disulphide bonds. The model of the serine protein-
ase confirmed that the usual tertiary structure could be as-
sumed, although critical substitutions affected two catalytic
residues (His534GlIn and Ser673Tyr). Substitutions were also
apparent in the region corresponding to the S1 specificity
pocket of active enzymes, notably in residues responsible for
arginine specificity. The unavailability of structures of homo-
logues prevented comparative modelling of the N domain.
Instead, a 3D model of the 27-residue hairpin loop, which
plays an important role in receptor binding and activity,
was constructed. The modelling was performed assuming con-
straints on the conformation that occur if the four half-cystine
residues (Cys-70, Cys-74, Cys-84 and Cys-96) exhibit the con-
nectivity of the corresponding residues in the homologous
plasminogen domain. The resulting structure suggested a he-
lix-extended strand-helix motif, with a cluster of positively
charged residues (Arg-73, Arg-76 and Arg-93) on the helical
side of the loop and a cluster of hydrophobic residues (Leu-
80, Phe-82, Ala-86, Phe-87, Val-88 and Phe-89) on the ex-
tended strand [6].

In this review we briefly examine the experimental data on
domain deletion and truncated variants. We describe the nov-
el fold of the N domain defined by NMR methods and com-
pare this to the predicted structure. We also report the prep-
aration and analysis of crystals of NKI1, which define the
relationship of this domain to kringle 1, offering further in-
sights into the mechanism of domain interactions and receptor
activation.

2. Domain deletion analysis and truncated variants of HGF/SF

Deletion of either the hairpin loop of the N domain, krin-
gles 1 or 2, or the serine proteinase domain (AH, AK1, AK2
and ASP) abolished biological activity, as measured by stim-
ulation of DNA synthesis or scattering of MDCK cells. In
contrast, mutants lacking kringle 3 or 4 (AK3 or AK4) showed
reduced but measurable activity [7]. These observations were
largely confirmed by subsequent studies in which both recep-
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NMR Structure

b)

Fig. 1. a: The structure of the N domain of HGF/SF defined by NMR [18]. Helices are shown in magenta, B-strands in yellow, disulfide
bridges in red and the residues that were not well defined in green. b: The hairpin loop, modelled [6] and determined by NMR [18]. The figure

was produced using SETOR [10].

tor binding and phosphorylation as well as biological activity
were investigated [8,9].

Confirmation of the critical role of the N domain, kringle 1
and kringle 2 in MET binding and activation has come from
studies on two truncated forms of HGF/SF containing the N
domain+tkringle 1 (NK1) or the N domain+kringles 1 and 2
(NK2). NK2 was discovered as the product of an alternatively
spliced form of the primary HGF/SF transcript [11], and a
subsequent study indicated that NK2 had considerable antag-
onistic activity [12]. NK1 was first expressed as an engineered
fragment and also appeared to behave as a potent HGF/SF
antagonist [13]. Only recently has it become apparent that
NKI1 also exists in vivo as a further splice variant of the
primary HGF/SF transcript [15].

Although early work suggested that both NK2 [12] and
NKI1 [13] behaved as receptor antagonists, other studies in-
dicated that both proteins could act as partial agonists [14,15].
Recent experiments suggest that cell surface heparan sulphate
proteoglycans (HSPGs) promote dimerization of NK1 and
NK2 and induce an agonistic response in target cells [16].
Furthermore Merlino and colleagues [17] have demonstrated
that mice overexpressing NK1 develop all the features of
transgenic mice overexpressing full length HGF/SF, albeit in
a less severe form.

3. The structure of the N domain

Three-dimensional structural information of HGF/SF N
domain was recently obtained by NMR techniques [18]. The
overall structure of the N domain is very well defined,
although Asn-77-Gly-79 and the first seven N-terminal resi-
dues could not be observed. The central part of the structure
is represented by a five-stranded antiparallel B-sheet (Fig. 1a).
This sheet is flanked on one side by a two-turn alpha helix
and on the other by extended loops, which transform into the
B-strands, forming a small sheet. The helix and two of the
strands of the central -sheet make a hairpin-loop structure,
which is stabilized by the disulphide bridges. The topology of
the hairpin-loop region generally resembles the fold previously

predicted by the use of disulphide restraints, although the last
strand was predicted as a loose helix (Fig. 1b).

Studies of heparin binding by proteins suggest that inter-
actions take place between basic amino acids and the sulphate
and the carboxylate groups of heparin [19]. The N-terminal
domain contains a large number of lysine and arginine resi-
dues, some of which are likely to be involved in heparin bind-
ing. The NMR structure suggests that a surface area, includ-
ing Lys-60, Lys-62, Arg-73, Arg-76 and Lys-78, may serve as
a heparin binding site. This includes Arg-73 and Arg-76,
which were predicted on the basis of the model [6]. There is
now biochemical evidence that these two residues are involved
in the binding of HGF/SF to heparin [20].

Fig. 2. The packing of NKI in the crystal cell as defined by molecu-
lar replacement. N domains are shown in white and green, kringle
domains in yellow and magenta (Chirgadze, unpublished). The fig-
ure was produced using SETOR [10].
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4. Crystallization of NK1

We have successfully expressed NK1 and NK2 fragments of
HGF/SF in the yeast Pichia pastoris and purified both pro-
teins by a combination of heparin affinity and cation exchange
chromatography (J. Hepple et al., to be published). Gel filtra-
tion analysis showed that yeast-derived NK1 is a monomer
while NK2 is a mixture of monomeric and dimeric species.
NKI1 has been crystallized. The crystals belong to the P2,
space group and diffract X-rays to a resolution of 2.5 A.

In order to place the NK1 molecule in the crystal cell we
have employed the molecular replacement method using the
crystal structure of kringle 1 of plasminogen [21] and the
solution structure of the N domain [18] as search probes.
The existence of two molecules in the asymmetric unit com-
plicated the identification of the correct molecular replace-
ment solutions. The crystal packing of the domains is shown
in Fig. 2. The structure is currently undergoing refinement and
the full description of the structure determination will be pub-
lished elsewhere.

5. Site-specific mutants of HGF/SF

The sequence features of HGF/SF together with the results
of domain deletion experiments and the availability of 3D
models of individual domains have led to several studies in
which specific residues or clusters of residues have been sub-
stituted in order to clarify their role in HGF/SF activity. The
main results of these studies can be summarized as follows:

(1) Although several studies have pointed to a critical role
of the N domain (or its hairpin loop) in receptor binding and
biological activity, a number of individual and group muta-
tions have failed so far to identify residues critical for receptor
binding within the loop itself [22]. The same study, however,
established that a cluster of residues located at the C-terminus
of the N domain (His-114, Glu-115 and Asp-117) is involved
in both receptor binding and biological activity.

(2) Substitution of at least seven amino acids in kringle 1
(Arg-197, Glu-189, Tyr-198, Glu-195, Asp-171, GIn-173 and
Ser-161) has a clear effect on receptor binding and biological
activity of HGF/SF. The greatest effect is seen with substitu-
tion of Arg-197 or Glu-159 which reduce receptor binding and
biological activity by > 50-fold [22].

(3) Several point mutations in the serine proteinase domain
of HGF/SF in which residues GlIn-534 and Tyr-673 were re-
verted to the His and Ser residues of active serine proteinase
did not affect receptor binding but markedly decreased bio-
logical activity. A similar result was obtained with the
Val692Ser mutation [9].

(4) Mutation of critical residues at the trypsin-like cleavage
site, located between the C-terminal kringle (kringle 4) and the
serine proteinase domain, abolished conversion of the single-
chain precursor form of HGF/SF (pro-HGF/SF). The result-
ing single-chain species lacked the biological activity of HGF/
SF on target cells, although it retained receptor binding
[9,23,24]. Thus, the precursor form of HGF/SF behaves like
a receptor antagonist.

6. Models for the activation of the receptor Met protein by
HGFISF

With the exception of the insulin receptor family, all known
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Fig. 3. Models for Met receptor dimerization and the role of hepa-
rin.

receptors with tyrosine kinase activity undergo a transition
from a monomeric to dimeric state upon binding of their
cognate ligand. Therefore the ligand must either possess two
binding sites or be a dimer itself. In the case of HGF/SF, the
stoichiometry of ligand-receptor interaction is still unknown.
A model for the formation of homodimers has been suggested
by Donate and colleagues [6]. This model proposed non-co-
valent interactions between kringles 2, 3 and the serine pro-
teinase domain. A lysine residue of kringle 3 in molecule 2
would interact with the lysine binding pocket of kringle 2 in
molecule 1. This model has been disproved by mutational
studies, which show that the lysine binding pocket of kringle
2 is not required for the biological activity of HGF/SF [21].

Ponting and colleagues [25] have proposed that HGF/SF
may adopt similar conformations to plasminogen. In its in-
active form, plasminogen adopts a closed, spiral structure,
maintained by interactions between the N- and C-terminal
domains while in its active form, plasminogen has an open
‘horseshoe’ conformation. Mutagenesis experiments have
shown that cleavage of the single-chain HGF/SF into a two-
chain form is required for biological activity [9]. While the
single-chain form is capable of binding Met, the cleavage to
a two-chain form probably results in a conformational change
and a rearrangement of the relative positions of the domains.
This relaxed, open conformation may allow HGF/SF to in-
teract with and directly activate Met as a monomer or alter-
natively, enable HGF/SF to dimerize before receptor activa-
tion (Fig. 3). In the case of HGF/SF, the receptor-ligand
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complex is probably stabilized by interactions between the
serine proteinase domain(s), as residues have been identified
in this domain which are necessary for biological activity but
not receptor binding [9]. Heparin and heparan sulfates appear
to be essential for the partial agonist behavior of NK1 and
NK2 and may do so by crosslinking the N-terminal and krin-
gle 2 domains [26].

7. Conclusions and perspectives

Protein engineering experiments have provided valuable
data on the role of HGF/SF domains in receptor binding
and activation. In parallel, 3D models of the kringle and
serine proteinase domains and of the hairpin loop of the N
domain [6,9,22] have given a basis for the design of site-spe-
cific mutants which enable mapping of the MET and heparin
binding sites of HGF/SF. With NMR and crystal structures
now becoming available these studies of structure and func-
tion can be placed on a firmer basis.

There is now little doubt that the N domain and kringle 1
are directly involved in receptor binding and activation as
demonstrated by domain deletion experiments, several site-
specific mutants and recent experiments with the NK1 frag-
ment in vitro [14] and in vivo [17].

The role of other domains, especially the serine proteinase
domain, is more difficult to assess. Whereas it is clear that
deletion of this domain leads to a marked decrease in bio-
logical activity, the mechanism by which this is achieved is
less clear. Available data do not rule out that the serine pro-
teinase domain may contain a secondary binding site for the
MET receptor or alternatively, that the serine proteinase do-
main may act as a dimerization domain and allow an HGF/
SF dimer to engage two receptor molecules through their
NK1 domains. A definite answer to these questions, however,
may have to wait for the structure of HGF/SF-MET com-
plexes.
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