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Abstract We examined whether functional heterologous com-
plexes between human IL-1RI (hIL-1RI) and murine IL-1R
accessory protein (mIL-1RAcP) can be formed, utilizing human
fibroblast HEK 293 cells and murine fibroblast C127 cells, non-
transfected or stably transfected with hIL-1RI (C127-hIL-1RI),
respectively. In non-transfected C127 cells, IL-1LL signalled
through the mIL-1RI-mIL-1RAcP complex and activated NFUUB
p50/p65 heterodimers. In C127-hIL-1RI cells, IL-1LL signalled
through the hIL-1RI and activated both p65/p65 and p50/p65
NFUUB complexes, where only the activation of NFUUB p65/p65
was dependent on mIL-1RAcP. Thus, clearly both homologous
and heterologous IL-1RI-IL-1RAcP interactions support NFUUB
translocation, but with differences in signalling pattern.
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1. Introduction

Interleukin-1 (IL-1) binds to two subtypes of IL-1 recep-
tors, the 80 kDa type I IL-1R (IL-1RI) and the 68 kDa type II
IL-1R (IL-1RII) [1,2]. IL-1RI is a signalling receptor while
IL-1RII is a decoy receptor for IL-1 [3,4]. After binding to
IL-1RI, IL-1 activates intracellular signalling cascades includ-
ing nuclear translocation of nuclear factor UB (NFUB) [5^8].

An IL-1R accessory protein (IL-1RAcP) has been de-
scribed, which does not bind IL-1 itself, but associates with
and increases the a¤nity of IL-1RI for its agonists [9]. The
role of IL-1RAcP in IL-1RI mediated signalling is inferred
from experiments in which IL-1L mediated NFUB transloca-
tion is restored upon IL-1RAcP cDNA transfer into an IL-1
non-responsive cell line containing an IL-1RI [10]. These
mouse thymoma EL-4 D6/76 cells express the murine IL-
1RI (as evidenced by RT-PCR results and binding of IL-1L)
but lack the IL-1RAcP [11,12].

In the present study we have addressed the importance of
IL-1RAcP in IL-1 mediated NFUB activation in an endoge-
nously IL-1 responsive murine ¢broblast cell line, C127.

Moreover, this cell line has also been stably transfected with
human IL-1RI (C127-hIL-1RI), to be able to compare the IL-
1L binding and signalling through homologous and heterolo-
gous complexes of mIL-1RAcP and murine or human IL-1RI,
respectively. We also examined heterologous hIL-1RI-mIL-
1RAcP complex formations in human HEK 293 cells.

2. Materials and methods

2.1. Materials
Recombinant human IL-1L was a gift from Glaxo, Geneva, Swit-

zerland. The monoclonal antibodies (mAbs) 4C5 (anti-mIL-1RAcP,
rIgG2a), 35F5 (anti-mIL-1RI, rIgG1) and 4E2 (anti-mIL-1RII, rIg-
G2a) were kindly provided by Dr. R.A. Chizzonite, Ho¡mann La
Roche, Nutley, NJ, USA [9,13]. The anti-hIL-1RI antibody (P2),
the human IL-1RI cDNA provided in the pDC303 expression vector
and the hIL-1RI stably transfected murine ¢broblast C127 (C127-hIL-
1RI) were generous gifts by Dr. J.E. Sims, Immunex. HEK 293 and
C127 cell lines were from ATCC. All reagents for cell culturing were
purchased from Life Technologies. 125I-rhIL-1L (2000 Ci/mmol) was
bought from NEN and Q-32P-ATP (5000 Ci/mmol) was from Amer-
sham. All oligonucleotides were bought from Medprobe. Restriction
enzymes and Pfu DNA polymerase were purchased from NBL and
Stratagene, respectively. Antibodies directed against p65, p50 and
c-Rel were from Santa-Cruz Biotechnology.

2.2. IL-1RAcP expression plasmids
The coding region of the murine IL-1RAcP cDNA was generated

by RT-PCR ampli¢cation, using cDNA of the murine hypothalamic
GT1-7 cell line [9]. The ¢nal PCR product was puri¢ed, cut and
ligated into the NotI/XbaI site of the pcDNA1.neo vector (Invitro-
gen). The sequence of the cloned mIL-1RAcP was veri¢ed by restric-
tion enzyme digestion and partial nucleotide sequencing.

2.3. Cell culture and transfection
C127 and 293 cells were cultured in modi¢ed Eagle medium, 10%

(v/v) fetal calf serum, 100 Wg/ml penicillin G and 100 Wg/ml strepto-
mycin. C127-hIL-1RI cells were selected with 250 Wg/ml geneticin. The
293 cells were transiently transfected with various IL-1R expression
plasmids by the calcium phosphate precipitation method [14]. Trans-
fected cells were harvested 48^72 h later.

2.4. Electrophoresis mobility shift assay (EMSA)
Nuclear extracts were prepared using a modi¢ed extraction method

[15]. Cells were lysed in 10 mM Tris pH 7.3, 10 mM KCl, 1.5 mM
MgCl2, 0.5 mM PMSF, 0.5 mM L-mercaptoethanol and 0.4% (v/v)
NP40. Nuclear pellet was then lysed in 20 mM HEPES pH 7.9, 0.4 M
NaCl, 1 mM EDTA, 1 mM DTT, 1 mM PMSF and the protein
concentration was measured by the Bradford dye binding assay [16].
A double strand oligonucleotide (5P-TGACAGAGGGGACTTTCC-
GAGAGGA-3P) was labeled with Q-32P-ATP using T4 polynucleotide
kinase and was separated from unincorporated labeled nucleotides by
spin column puri¢cation (Chromaspin-10, Clontech). 5 Wg nuclear
proteins, 105 cpm of the labeled oligonucleotide, 2 Wg poly(dIdC)
(Pharmacia) and 1Ubinding bu¡er (10 mM Tris, pH 7.4, 50 mM
NaCl, 1 mM EDTA, 6% (v/v) glycerol) were incubated for 30 min
at room temperature and subsequently electrophoresed through a 6%
(w/v) polyacrylamide gel. The gel was dried and exposed to medical
X-ray ¢lm. Competition experiments were performed by inclusion of a
50-fold molar excess of unlabeled probe. Supershift assays were per-
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formed by including 1 Wg of antisera against the individual NFUB/rel
proteins (p65, p50, c-Rel) in the incubation mixture.

2.5. Displacement binding studies with 125I-rhIL-1L
Con£uent cells were resuspended in binding bu¡er (RPMI 1640

bu¡ered with 25 mM HEPES pH 7.2, 1% (w/v) BSA, 0.1% (w/v)
sodium azide). Displacement binding studies were carried out at
room temperature for 1 h in a total volume of 100 Wl containing
1.5U106 C127 cells or 1^3U105 C127-hIL-1R1 cells or transiently
transfected 293 cells, incubated with 50 pM 125I-rhIL-1L and di¡erent
concentrations (1 pM^100 nM) either of rhIL-1L or of antibodies to
di¡erent members of the IL-1R, IL-1RAcP complexes (see ¢gures for

concentrations). The binding data were analyzed using non-linear re-
gression with the Kaleidagraph program.

3. Results

3.1. Human IL-1RI forms a complex with murine IL-1RAcP in
transiently and stably transfected cells

To examine the ability of hIL-1RI and mIL-1RAcP to form
a rhIL-1L binding heterologous complex, binding studies were
performed with transiently and stably transfected cell lines.
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Fig. 1. Displacement of 125I-rhIL-1L from transfected HEK 293,
C127 and C127/hIL-1RI cells by rhIL-1L and di¡erent species and
subtype selective anti-IL-1R and anti-IL-1RAcP antibodies. a: Dis-
placement of 125I-rhIL-1L (50 pM) by rhIL-1L (displacement curve)
or by mAb 4C5 (anti-mIL-1RAcP) (10 Wg/ml) (graph). Binding ex-
periments were carried out with human ¢broblast HEK 293 cells,
transiently transfected with human IL-1RI cDNA, murine IL-
1RAcP cDNA, human IL-1RI and murine IL-1RAcP cDNA, or
mock cDNA, respectively. 100% speci¢c binding was de¢ned as the
di¡erence of bound 125I-rhIL-1L in the absence and presence of 100
nM unlabelled rhIL-1L. Each incubation was performed in triplicate
(displacement curve) or duplicate (graph) ( þ S.D.). The ¢gure is rep-
resentative of two experiments. b: Displacement of 125I-rhIL-1L (50
pM) from murine ¢broblast C127 cells by rhIL-1L (displacement
curve), or by the mAb 4C5 (10 Wg/ml) or mAb 35F5 (anti-mIL-1RI)
(6.5 Wg/ml) (graph). 100% speci¢c binding was de¢ned as the di¡er-
ence of bound 125I-rhIL-1L in the absence and presence of 100 nM
unlabelled rhIL-1L. Each incubation was performed in triplicate
( þ S.D.). The ¢gure is representative of two experiments. c: Dis-
placement of 125I-rhIL-1L (50 pM) by P2 antiserum (anti-hIL-1RI)
or mAb 4C5 (displacement curves) and the same antibodies (1000U
dilution and 10 Wg/ml, respectively) and in addition mAb 35F5 (6.5
Wg/ml) and mAb 4E2 (anti-mIL-1RII) (1.1 Wg/ml) (graph). Binding
experiments were carried out with C127-hIL-1RI cells. 100% speci¢c
binding was de¢ned as the di¡erence of bound 125I-rhIL-1L in the
absence and presence of 100 nM unlabelled rhIL-1L. Each incuba-
tion was performed at least in duplicate and performed twice or
more (displacement curves), and in triplicate with the experiment
performed twice (graph) ( þ S.D.). The arrowhead indicates the con-
centration of the mAb 4C5 which was used in the IL-1 signalling
experiments.
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HEK 293 cotransfected with the cDNAs encoding human IL-
1RI and murine IL-1RAcP; 293-hIL-1RI/mIL-1RAcP bound
125I-rhIL-1L with higher a¤nity (IC50 = 0.6 nM) compared to
293 cells transfected with only the cDNA encoding human IL-
1RI, 293-hIL-1RI (IC50 = 5 nM) (Fig. 1A). On the other hand,
HEK 293 cells transfected with the cDNA encoding murine
IL-1RAcP, 293-mIL-1RAcP, did not show any detectable spe-
ci¢c binding of 125I-rhIL-1L. The mAb 4C5 (anti-mIL-1RAcP)
displaced approximately 60% of the speci¢cally bound 125I-
rhIL-1L to 293-hIL-1RI/mIL-1RAcP cells, whereas it did
not displace any of the speci¢cally bound 125I-rhIL-1L to
293-hIL-1RI cells (Fig. 1A).

In C127 cells, 80 þ 10% of the speci¢c binding of 125I-rhIL-
1L was displaced by mAb 4C5 and 100% of the speci¢c bind-
ing of 125I-rhIL-1L by the mAb 35F5 (anti-mIL-1RI) (Fig.
1B). From C127-hIL-1RI cells, which express the human IL-
1RI in addition to the endogenously occurring murine IL-1RI,
both antiserum P2 (anti-hIL-1RI) and mAb 4C5 displaced the
speci¢c binding of 125I-rhIL-1L in a dose dependent manner,
with 80% of maximal displacement (Fig. 1C). When com-
bined, these antibodies displaced all speci¢cally bound 125I-
rhIL-1L (Fig. 1C). In contrast, neither an excess of mAb
35F5 nor mAb 4E2 (anti-mIL-1RII) displaced more than
10% of the speci¢c binding of 125I-rhIL-1L (Fig. 1C).

3.2. IL-1L induced nuclear translocation of NFUB in
C127-hIL-1RI cells

To test the functionality of the heterologous hIL-1R1 and
mIL-1RAcP receptor complex formed in stably transfected
murine C127 ¢broblasts upon expression of the hIL-1RI,
the IL-1L induced nuclear translocation of NFUB was as-
sessed by EMSA. Incubation of C127 cells with rhIL-1L (10
ng/ml) for 15 min induced the DNA binding activity of a
NFUB complex, which contained both p65 and p50 immuno-
reactive proteins (Fig. 2A). In C127-hIL-1RI cells rhIL-1L (10

ng/ml, 15 min) induced an additional p65 homodimeric (p65/
p65) NFUB complex besides the heterodimeric p50/p65 NFUB
complex whose activation was observed in C127 cells (Fig.
2A).

To further dissect the involvement of mIL-1RAcP in the
rhIL-1L induced NFUB activation in C127 and in C127-hIL-
1RI cells, we used species and subtype selective IL-1RAcP and
IL-1R antibodies in an immunoneutralizing approach. In
C127 cells, the rhIL-1L induced nuclear translocation of
NFUB was blocked by treating the cells with either mAb
35F5 or mAb 4C5 (Fig. 2B). In C127-hIL-1RI cells, mAb
35F5 no longer a¡ected the IL-1L induced NFUB transloca-
tion. The mAb 4C5, however, blocked the translocation of the
slower migrating NFUB dimer (p65/p65) while leaving the
faster migrating NFUB dimer (p50/p65) una¡ected (Fig. 2B).
Upon preincubation of C127-hIL-1RI cells with either rhIL-1
receptor antagonist (rhIL-1ra) or a combination of mAb 4C5,
mAb 35F5 and P2 antiserum, all the rhIL-1L induced NFUB
activation was inhibited (Fig. 2B and data not shown).

4. Discussion

The objective of the present study was to investigate
whether heterologous complexes between hIL-1RI and mIL-
1RAcP could form, and to compare the role of IL-1RAcP in
IL-1L-induced NFUB activation in homologous and heterolo-
gous IL-1RI complexes, respectively.

Transfection of HEK 293 cells with the hIL-1RI cDNA
gave rise to high speci¢c binding of 125I-rhIL-1L. Transfection
with the mIL-1RAcP cDNA did not give rise to any addi-
tional 125I-rhIL-1L binding sites while the cotransfection with
hIL-1RI and mIL-RAcP cDNAs enhanced the a¤nity of
rhIL-1L binding eightfold compared to HEK 293 cells trans-
fected with the hIL-1RI cDNA alone. This is consistent with
another study which found that cotransfection of mIL-1RI
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Fig. 2. IL-1L induced NFUB nuclear translocation in murine C127 and C127-hIL-1RI cells as assayed by EMSA. a: C127 and C127-hIL-1RI
were treated with rhIL-1L (10 ng/ml, 15 min) and nuclear extracts were prepared. The identity of the NFUB proteins was determined by includ-
ing monoclonal antibodies directed to the p65, p50 and c-Rel subunits of the NFUB/Rel family in the binding reaction. The resulting NFUB
complexes which bound to the 32P-labeled NFUB DNA probe were subsequently examined by gel electrophoresis and subsequent autoradiogra-
phy. The arrows indicate NFUB complexes. b: C127 and C127-hIL-1RI were treated with either rhIL-1ra (2.5 Wg/ml), mAb 4E2 (anti-mIL-
1RII) (1.1 Wg/ml), mAb 35F5 (anti-mIL-1RI) (6.5 Wg/ml), mAb 4C5 (anti-mIL-1RAcP) (10 Wg/ml) or a combination of mAbs 35F5 and 4C5,
for 15 min prior to the addition of rhIL-1L (10 ng/ml, 15 min). Nuclear extracts were prepared and the presence of NFUB complexes was ex-
amined by gel electrophoresis and subsequent autoradiography. The arrows indicate the two rhIL-1L induced NFUB complexes.
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and mIL-1RAcP increased the a¤nity of IL-1 binding ¢vefold
as compared to free mIL-1R1 bound IL-1 [9]. Moreover, the
binding of 125I-rhIL-1L to the heterologous interacting mIL-
1RAcP and hIL-1RI was partially blocked by the mAb 4C5
(anti-mIL-1RAcP) while the same mAb had no e¡ect on 125I-
rhIL-1L binding to HEK 293 cells that are only transfected
with hIL-1RI. These data clearly indicate a functional heter-
ologous interaction between hIL-1RI and mIL-1RAcP at the
level of ligand binding.

Functional consequences of heterologous complex forma-
tions between mIL-1RAcP and hIL-1RI were further exam-
ined using murine C127 ¢broblasts, stably transfected with the
hIL-1RI cDNA. In non-transfected C127 cells, the total num-
ber of 125I-rhIL-1L binding sites is very low so that upon
transfection with the hIL-1RI cDNA, whose expression is
driven by the very strong CMV promoter, the predominant
IL-1RI receptor is hIL-1RI in C127-hIL-1RI cells. This is
clearly demonstrated by the ability of antisera P2 (anti-hIL-
1RI) to displace 75 þ 10% of the speci¢c binding of 125I-rhIL-
1L (due to lack of availability we could not use higher con-
centration of the P2 antisera, but it is possible that an even
higher degree of inhibition could be reached). In C127-hIL-
1RI cells, the hIL-1RI forms heterologous complex with the
endogenous mIL-1RAcP since an excess of the mAb 4C5 can
block 80 þ 10% of the speci¢c 125I-rhIL-1L binding. Combina-
tion of antiserum P2 and mAb 4C5 blocked all detectable
speci¢c binding. Thus we have shown using either transfection
of a human cell line (HEK 293) with cDNAs encoding hIL-
1RI and mIL-1RAcP, or in a murine cell line stably trans-
fected with hIL-1RI cDNA, that heterologous complex be-
tween human IL-1RI and murine IL-1RAcP can be formed
and that binding of ligand to these complexes could be inhib-
ited by the mAb 4C5, and by the P2 antiserum, respectively.

In the non-transfected C127 cells, despite the low abun-
dance of mIL-1RI, there are signalling complexes formed be-
tween mIL-1RI and mIL-1RAcP as evidenced by rhIL-1L
stimulated NFUB nuclear translocation. Under these condi-
tions, when mIL-1RI and mIL-1RAcP mediate the signal,
the NFUB complex that is translocated to the nucleus is a
p50/p65 heterodimer. This is in agreement with a recent study
which found that IL-1 induced p50/p65 activation in EL-4
cells stably transfected with mIL-1RAcP cDNA [17]. When
the same rhIL-1L concentration and incubation time are
used with the C127-hIL-1RI cells, where now the majority
of the rhIL-1L binding sites is the hIL-1RI-mIL-1RAcP het-
erologous complex, the type of NFUB activation is di¡erent,
namely both p50/p65 and p65/p65 dimers are translocated to
the nucleus. Hence, human IL-1RI is obviously a signalling
receptor in the C127-hIL-1RI cells, since a new dimer of
NFUB, a p65/p65 homodimer, is also translocated. The im-
munoneutralization experiments further support this view. In
the C127 cells, the IL-1L induced nuclear translocation of p50/
p65 dimers can be blocked either by the mAb 35F5 (anti-mIL-
1RI) or by the mAb 4C5 (anti-mIL-1RAcP), suggesting that
mIL-1RI cannot signal alone but must be in complex with
mIL-1RAcP to elicit IL-1L induced NFUB nuclear transloca-
tion. This result is consistent with the studies of Wesche and
colleagues [10,11] ; they found that in an IL-1 non-responsive
cell line expressing IL-1RI but not IL-1RAcP, IL-1 respon-
siveness was restored upon transfecting the cells with mIL-
1RAcP cDNA [10].

In C127-hIL-1RI cells the signalling must occur predomi-

nantly via the hIL-1RI, which is in large excess, since the mAb
35F5 does not inhibit the translocation of either the p50/p65
or the p65/p65 NFUB complex. There is probably such an
excess of hIL-1RI that it outweighs the mIL-1RAcP so that
not all hIL-1RI is in complex with the mIL-1RAcP. This
uncomplexed hIL-1RI alone may be responsible for the IL-
1L induced translocation of the NFUB p50/p65 dimer, since
mAb 4C5 did not block this translocation, while the same
antibody blocked the hIL-1RI mediated nuclear translocation
of NFUB p65/p65 dimers. It is possible that the hIL-1RI medi-
ated NFUB p50/p65 activation is mediated via the lipid ceram-
ide, as IL-1RI alone has been shown to mediate IL-1L acti-
vation of the neutral sphingomyelinase in an IL-1RAcP
de¢cient cell line [17]. However, whether the rhIL-1L induced
activation of the p50/p65 NFUB dimer, mediated through the
hIL-1RI alone, arose as an artifact of the hIL-1RI over-ex-
pression system is impossible to tell from these experiments.
Our experiments suggest, though, that hIL-1RI can signal
either alone (p50/p65) or in complex with mIL-RAcP (p65/
p65) in the hIL-1RI cDNA transfected murine C127 cells.
Thus, in addition to enhanced rhIL-1L binding a¤nity for
the human IL-1RI, the heterologous complexing with the
murine IL-1RAcP also yields signalling complexes.

In summary, we have presented data supporting a necessary
role of IL-1RAcP in mediating IL-1L induced NFUB activa-
tion through homologous IL-1RI complexes in murine ¢bro-
blast C127 cells. Moreover, human IL-1RI and murine IL-
1RAcP could form functional rhIL-1L binding complexes
which transduce an altered rhIL-1L-signalled NFUB activation
compared to that mediated by homologous mIL-1RI/mIL-
1RAcP complexes.
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