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Abstract The relationship between arachidonic acid (AA) 
mobilization and transcription of immediate-early genes, partic-
ularly of prostaglandin G/H synthase-2 (PGHS-2), in intestinal 
crypt epithelial cells was analyzed. PGHS-2 mRNA and protein 
synthesis were stimulated by its own substrate, AA; actinomycin 
D, a transcription inhibitor, prevented the AA-induced increase 
in PGHS-2 mRNA. Eicosatetraynoic acid, an inhibitor of AA 
utilization, significantly reduced PGHS-2 mRNA synthesis 
elicited by AA. Inhibitors of cytochrome P450 monoxygenases, 
ketoconazole and miconazole, also prevented PGHS-2 mRNA 
synthesis in a dose-dependent manner. Phenyl chalcone oxide, an 
epoxide hydrolase inhibitor, potentiated AA-induced PGHS-2 
mRNA synthesis. Of the four regioisomers of arachidonic acid 
epoxides, only 14,15-epoxyeicosatrienoic acid elicited the 
expression of PGHS-2 in intestinal crypt epithelial cells. This 
is the first direct evidence of stimulation of an immediate-early 
gene product, specifically PGHS-2, by an AA epoxygenase 
metabolite, 14,15-epoxyeicosatrienoic acid, as well as of a 
heterologous regulation of PGHS-2 synthesis by these monoxy-
genase products. 
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1. Introduction 

Inflammatory mediators, growth factors and pro-oxidants, 
known to mobilize arachidonic acid (AA) from membrane 
phospholipids [1-3], have also been shown to stimulate the 
synthesis of prostaglandin G/H synthase-2 (PGHS-2), an in-
ducible enzyme of the prostaglandin pathway of AA metab-
olism [3,4]. In colonie mucosa where moderate expression of 
PGHS-2 is normally detected [5], unregulated synthesis of 
PGHS-2 has been shown to render intestinal crypt cells re-
fractory to programmed cell death [6], a predisposing event in 
colon carcinogenesis [7]. Increased phospholipase activity [8], 
higher AA content in membrane phospholipids [8,9] and over-
expression of PGHS-2 in colonie tumors [8,10] coupled with 
lowered incidence of colorectal cancer with the use of non-
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steroidal anti-inflammatory drugs [11] pointed to a clinically 
significant relationship between AA metabolism and PGHS-2 
expression. However, the role of AA per se in this process is 
not known. 

AA can directly affect ion channels [12,13] but most AA 
undergoes oxidation through the cyclooxygenase, lipoxygen-
ase and epoxygenase pathways to yield prostaglandins (PG), 
prostacyclin, thromboxane, leukotrienes, lipoxins and hy-
droxy-, hydroperoxy- and epoxy-fatty acids. Some products 
of these pathways have been shown to affect expression of 
immediate-early genes. For example, c-fos has been shown 
to be induced by PGE2 [14], leukotriene B4 [15] and epoxy-
genase metabolites [16]. However, only PGs have been re-
ported to increase the expression of PGHS-2 in osteoclasts 
[17], whereas the role of the other two AA pathways, lipox-
ygenases and monoxygenases, in eliciting PGHS-2 transcrip-
tion is not known. Here we report that A A epoxygenase prod-
ucts, specifically 14,15-epoxyeicosatrienoic acid (14,15-EET), 
induced the synthesis of PGHS-2 mRNA in intestinal epithe-
lial cells. To our knowledge, this is the first report of a het-
erologous regulation of PGHS-2 synthesis by the cytochrome 
P450 epoxygenase products of AA. 

2. Materials and methods 

2.1. Materials 
Polyclonal rabbit antibodies specific to PGHS-2 were generously 

provided by Drs. A.W. Ford-Hutchinson and G.P. O'Neill (Merck 
Frosst Center for Therapeutic Research, Pointe-Claire, Quebec). 
LY233569 was also a gift from Eli Lilly and Co. (Indianapolis, IN). 
The following reagents were purchased: peroxide-free AA, eicosate-
traynoic acid (ETYA), methyl esters of (±)5,6-EET, (±)8,9-EET, 
(±)11,12-EET, (±)14,15-EET (Cayman Chemical, Ann Arbor, 
MI); [32P]CTP (3000 Ci/mmol), enhanced chemiluminescence kit 
(Amersham Canada, Mississauga, Ont.); aprotinin, leupeptin (Boeh-
ringer Mannheim, Montreal, Que.); pGEM-4 plasmid vector, in vitro 
transcription kit (Promega, Madison, WI); protein assay and electro-
phoretic reagents (Bio-Rad, Mississauga, Ont.); guanidine isothiocya-
nate, proteinase K, RNase A, RNase Ti, restriction enzymes (BRL 
Life Technologies, Burlington, Ont.); rat ß-actin riboprobe (Ambion 
Ine, Austin, TX); soybean trypsin inhibitor (type ITS), phenylmethyl-
sulfonyl fluoride (PMSF), ketoconazole and miconazole, (Sigma, St. 
Louis, MO). All other chemicals were of analytical reagent grade and 
were purchased from either Sigma (St. Louis, MO) or ICN Biochem-
icals (Montreal, Que.). 

2.2. Cell culture and drug treatments 
Rat intestinal epithelial primary cells, IEC-18 (American Type Cul-

ture Collection, Rockville, MD) were cultured in Dulbecco's modified 
Eagle's medium with 10% fetal bovine serum and antibiotics, penicil-
lin (10 U/ml) and streptomycin (10 μg/ml) in a humidified atmosphere 
containing 5% CO2 at 37°C. Confluent primary cell cultures of IEC-
18 (passages 16-20) were rendered quiescent by maintaining them in 
DMEM containing 0.5% fetal bovine serum for 24 h. Drugs and other 
chemicals were added to the cultures as described in the figure 
legends. 
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Fig. 1. Stimulation of PGHS-2 transcription by AA and the effects of transcription and translation inhibitors, respectively actinomycin D (AD) 
and cycloheximide (CHX). Quiescent IEC-18 cells were pretreated 20 min with drugs and exposed to 10 μΜ AA for the durations indicated. 
The antisense probes for rat PGHS-2 and ß-actin comigrated at the same position (200 nt). The protected fragments for rat PGHS-2 and ß-ac-
tin were 176 nt and 127 nt respectively. The relatively weaker signal of ß-actin protected fragments was due to use of antisense probes of ap-
proximately 10-fold less specific activity. Autoradiographic exposures were for overnight. 

2.3. Total RNA isolation 
The monolayers of cells were washed once with ice-cold phosphate-

buffered saline (PBS) and the total RNA was extracted by using the 
acid phenol guanidine isothiocyanate method [18]. The RNA was 
quantified by measuring the absorbance at 260 nm. 

2.4. Preparation of rat PGHS-2 and RNase protection assays 
Reverse transcription of total RNA isolated from serum-stimulated 

IEC-18 cells, followed by amplification of the cDNA using gene-spe-
cific primers for rat PGHS-2 [19] and Taq polymerase were conducted 
as described before [20]. The following primer pairs were used: rat 
PGHS-2: 5'-TGC CAC CTC TGC GAT GCT CTT CC-3' and 5'-
TTC TTG TCA GGA AAT CTC GGC G-3'. The partial cDNA of 
rat PGHS-2 (0.2 kbp) was cloned in pGEM-4 vector by blunt-end 
ligation. Multiple plasmid clones were sequenced to verify the nucleo-
tide sequence of rat PGHS-2. The cDNA probe used for rat PGHS-2 
spans across the first two exons so that the protected fragments in 
RNase protection assays represent the correctly spliced mRNA [21]. 

32P-Labelled cRNA probes for rat PGHS-2 and rat ß-actin (used as 
control for input RNA) were prepared using an in vitro transcription 
kit. Aliquots of the total RNAs were subjected to RNase protection 
assays according to a published protocol [22] with minor modifica-
tions. Briefly, 10 μg of total RNA was incubated for 1 h at 50°C with 
5X 104 cpm of cRNA probes in 20 μΐ of hybridization buffer (80% 
deionized formamide, 40 mM PIPES, pH 6.8, 1 mM EDTA and 0.4 
M NaCl). The RNA hybrids were digested in 200 μΐ of digestion 
buffer (10 mM Tris-HCl, pH 7.5, 5 mM EDTA, and 0.3 M NaCl) 
containing ribonuclease A (10 μg/ml) and RNase T\ (250 units/ml) for 
30 min at 25°C. Proteinase К treatment followed by precipitation of 
protected fragments was conducted exactly as described [22]. The 
protected RNA fragments were resolved on urea-8% polyacrylamide 
gels and the bands were visualized by phosphorimaging (Molecular 
Dynamics, Sunnyvale, CA). 

3. Results and discussion 

Aberrant expression of PGHS-2 in intestinal epithelial cells 
is shown to protect the cells from apoptosis [7], an important 
step in colon carcinogenesis [8,10]. Alterations in fatty acid 
metabolism, a consequence of which may be increased avail-
ability of AA in colonie tumors [9], may have a direct bearing 
upon the unregulated expression of PGHS-2. Besides prosta-
glandins (PG), specifically P G E 2 [17], none of the other prod-
ucts of A A have been shown to stimulate PGHS-2 expression. 
In order to find out if AA and its metabolites caused a stim-
ulation of PGHS-2 synthesis in colonie epithelial cells, we 
treated quiescent IEC-18 cells with AA in the presence of 
inhibitors of AA metabolism and determined the levels of 
PGHS-2 m R N A by RNase protection assay. 

Direct addition of micromolar concentrations of A A to in-
testinal crypt primary cells caused a rapid increase in the 
abundance of PGHS-2 m R N A (Fig. 1), commensurate with 
an immediate-early gene response typical of PGHS-2 [23]. 
This accumulation of PGHS-2 m R N A was abolished when 
the cells were treated with transcription inhibitor, actinomycin 
D (Fig. 1). Similarly, as expected for immediate-early genes, 
inhibition of protein synthesis with cycloheximide, prevented 
the degradation of PGHS-2 m R N A and as a result, super-
induced PGHS-2 m R N A . Thus it appeared that the stimula-
tory effect of AA upon PGHS-2 m R N A abundance was at the 
level of gene transcription. In agreement with elevated P G H S -

2.5. Immunochemical detection of PGHS-2 
Following stimulation by 10 μΜ AA, confluent monolayers of cells 

were washed twice in ice-cold PBS and lysed directly in ice-cold RIPA 
buffer (20 mM Tris-HCl, pH 8.0, 1 mM EDTA, 150 mM NaCl, 0.5% 
sodium desoxycholate, 0.1% sodium dodecyl sulfate (SDS), 1% NP-
40, and 10 μg/ml each of leupeptin, aprotinin, soybean trypsin inhib-
itor, 0.2 mM PMSF). Homogenates were then centrifuged at 
12000Xg for 10 min at 4°C. Protein concentration of the supernatant 
was determined using the Bio-Rad protein assay reagent. Aliquots of 
total protein (50 μg) were denatured in sample buffer (125 mM Tris-
HCl, pH 6.8, 2% (w/v) SDS, 10% (v/v) glycerol, 10% ß-mercaptoetha-
nol and 0.1 mg/ml bromophenol blue) for 15 min at room temper-
ature and boiled for 5 min before loading on SDS-polyacrylamide 
gels. Electrophoretic transfer of the proteins to PVDF membranes, 
successive incubations with PGHS-2 specific antiserum and horserad-
ish peroxidase-conjugated anti-rabbit IgG antibodies were conducted 
as described previously [20]. The immunoreactive bands were visual-
ized by using the enhanced chemiluminescence kit as instructed by the 
manufacturer. 

Fig. 2. Immunoblot analysis of PGHS-2 protein (indicated by an ar-
row) in quiescent IEC-18 cells treated with 10 μΜ AA for 2 and 4 h 
(the doublet appearance of the 70 kDa PGHS-2 may be due to en-
dogenous proteolysis). 
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Fig. 3. Dose response of the AA utilization inhibitor, ETYA. Cells were pretreated 20 min with the indicated concentrations of the inhibitor 
and exposed for 1 h to 10 μΜ AA. The autoradiographic exposure was for overnight. 

2 mRNA levels, immunoblot analysis of detergent-lysates of 
IEC-18 cells treated with A A for 2 h revealed the appearance 
of 70 kDa PGHS-2 immunoreactive band (Fig. 2). 

AA has been shown to exert direct effects independent of its 
metabolism on such targets as ion channels [12,13] and pro-
tein tyrosine kinase activity [24]. In order to find out if me-
tabolism of AA is required for upregulation of PGHS-2 syn-
thesis, quiescent IEC-18 cells were treated with 
eicosatetraynoic acid (ETYA), an inhibitor of AA utilization, 
in the presence of AA. ETYA reduced PGHS-2 mRNA abun-
dance in a dose-dependent manner, suggesting that this re-
sponse was specific to AA and mediated by its metabolites 
(Fig. 3). However, addition of prostaglandins (PGE2, 
PGF2a, PGD2 and PGI2) or a thromboxane mimetic 
(U46619) to IEC-18 cells did not reproduce the effects of 
AA. Similarly, specific inhibitors of the cyclooxygenase (diclo-
fenac and indomethacin) and lipoxygenase (caffeic acid and 
nordihydroguaiaretic acid) pathways of AA metabolism did 
not prevent AA-induced PGHS-2 mRNA synthesis (data not 
shown). Hence, the third pathway of AA utilization, mediated 
by the cytochrome P450 (CYP 450) monoxygenases which 
produces epoxyeicosatrienoic acids (EETs) and hydroxyeico-
satrienoic acids (HETEs), seemed to mediate AA-induced 
PGHS-2 synthesis [25,26]. To test if CYP 450 monoxygenases 
are involved in the stimulation of PGHS-2 synthesis, quiescent 
IEC-18 cells were treated with ketoconazole and miconazole 
before the addition of AA. Both these monoxygenase blockers 
significantly reduced PGHS-2 mRNA synthesis (Fig. 4), thus 
revealing a role of the products of AA monoxygenase path-
way in this process. 

Of the numerous monoxygenase products of AA, EETs 
have been proposed to increase in response to various stimuli, 
promote mitogenesis and induce immediate-early genes, such 

as c-fos and Egr-1 [16]. Pretreating quiescent IEC-18 cells with 
phenyl chalcone oxide, an inhibitor of epoxide hydrolases [27], 
potentiated AA-induced PGHS-2 (another immediate-early 
gene) mRNA accumulation (Fig. 5, right), suggesting a role 
for EETs, but not their hydrolysis products, vicinal diols, in 
this process. Therefore we tested if EETs could reproduce 
AA-induced upregulation of PGHS-2 synthesis in IEC-18 
cells. Indeed, the addition of (±)14,15-EET (Fig. 5, left) at 
concentrations comparable to AA, also caused a rapid in-
crease in PGHS-2 mRNA transcription; but none of the other 
regioisomers of EETs were able to induce PGHS-2 mRNA 
synthesis (Fig. 5, left). These data support the involvement 
of EETs in AA-stimulated PGHS-2 synthesis; a role for mon-
oxygenase-derived HETEs could not, however, be excluded. 

It is worth noting that the concentration of (±)14,15-EET 
needed to elicit PGHS-2 transcription in IEC-18 cells was 
comparable to the concentrations of PGE2 in osteoclasts 
[17] and to A A in inducing c-fos and Egr-1 in mesangial cells 
and fibroblasts [14,16]. It is of interest that oxidant stress 
which causes mobilization of AA [1-3] also increases EET 
production [28] and stimulates PGHS-2 synthesis [29]. Taken 
together, our observations imply a significant involvement of 
14,15-EET as a mediator of AA-elicited PGHS-2 synthesis 
(possibly other immediate-early genes as well), in intestinal 
epithelial cells. 

In conclusion, we here report the first direct evidence of 
stimulation of PGHS-2 synthesis by an AA epoxygenase me-
tabolite, 14,15-EET. These results also suggest a novel regu-
lation of PGHS-2 synthesis which can occur not only by its 
own product [17], PGE2 (autologous regulation), but also by 
the products of enzymes of other AA metabolic pathways 
(heterologous regulation), specifically epoxygenases (this 
study). This diverse regulation of PGHS-2 by AA metabolites, 

Fig. 4. Effects CYP 450 monoxygenase inhibitors, ketoconazole and miconazole, on PGHS-2 transcription at 1 h induced by 10 μΜ AA. Phos-
phorimager-derived image of the gel. 
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Fig. 5. Left: Stimulation of PGHS-2 transcription by epoxyeicosatnenoic acids. Effects of AA (10 μΜ and (±)5,6-, (±)8,9-, (±)11,12- and 
(±)14,15-EET methyl esters at concentrations of 1 and 10 μΜ on PGHS-2 mRNA levels (phosphorimager-derived image) after 1 h of treat-
ment. Right: Potentiaton of AA-induced PGHS-2 mRNA accumulation by an epoxide hydrolase inhibitor, phenyl chalcone oxide (PCO). Qui-
escent cells were pretreated for 10 min with 1 μΜ PCO before adding 10 μΜ AA and PGHS-2 mRNA levels determined after 1 h of treat-
ment. Autoradiography was for overnight. 

particularly in view of its anti-apoptotic role, may be relevant 
in oxidant stress, inflammation and oncogenesis. 
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