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Abstract The ob gene product, leptin, causes significant and

dose-dependent inhibition of basal and insulin-stimulated glyco-

gen synthesis in isolated soleus muscle from ob/ob mice, and a

smaller, non-significant inhibition in muscle from wild-type mice.

Leptin had no inhibitory effect on glycogen synthesis in soleus

muscle from the diabetic (db/db) mice, which lack the functional

leptin receptor. The full-length leptin receptor (Ob-Rb), is

expressed in soleus muscle of both ob/ob and wild-type mice,

however with no detectable differences in expression level. These

results suggest that hyperleptinaemia may attenuate insulin

action on glucose storage in skeletal muscle.
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1. Introduction

Leptin, encoded by the ob gene, is produced exclusively by

adipocytes. Reduction in the production of leptin or the sen-

sitivity to leptin in rodents results in a phenotype of obesity

and diabetes. Thus, leptin de¢ciency in the ob/ob mouse [1] or

the lack of a functional leptin receptor (Ob-Rb) in the diabetic

(db/db) mouse [2] or Zucker fa/fa rat [3] leads to obesity,

hyperglycaemia and insulin resistance, resembling non-insulin

dependent diabetes mellitus (NIDDM) in humans. Adminis-

tration of leptin into ob/ob mice causes a signi¢cant reduction

of food intake and body weight as well as normalization of

the metabolic status, but has no e¡ects in the db/db mice [4^6].

However, the mutations responsible for the ob/ob, db/db and

fa/fa phenotypes in rodents have not been detected in obese

humans. In fact, plasma leptin levels in obese humans are

elevated and there is a positive correlation with body mass

index, thus arguing against a simple leptin de¢ciency as the

cause of human obesity [7,8]. These ¢ndings have led to the

suggestion that leptin resistance may be part of the patho-

genesis of human obesity.

The leptin receptor (Ob-R) is expressed as alternatively

spliced variants [2]. Only the Ob-Rb isoform, predominantly

expressed in hypothalamus, contains the full-length cytoplas-

mic domain and is believed to be the functional receptor. A

point mutation within the Ob-R gene of db/db mice results in

the lack of the cytoplasmic domain that is thought to interact

with the Jak/STAT pathway and is therefore unable to medi-

ate a functional leptin signal [3,9,10]. Ob-Rb mRNA expres-

sion has also been detected in peripheral tissues such as pan-

creatic islets, liver, kidney and lung [2,11,12], indicating that

leptin may have other physiological functions in addition to

regulating feeding behaviour. In fact, we have demonstrated

that leptin can inhibit insulin secretion from pancreatic islets

[12], and Levin et al. [13] have shown that infusion of leptin

into ob/ob mice causes depletion of their liver glycogen con-

tent as well as a reduction in the plasma concentrations of

glucose, insulin and cholesterol.

Skeletal muscle is the major site of insulin mediate glucose

storage. The aim of the present study was to investigate for

the ¢rst time the e¡ects of leptin on skeletal muscle glucose

metabolism.

2. Materials and methods

2.1. Animals

Female ob/ob mice and wild-type (+/+) mice of the Aston strain

were bred in our laboratory. The db/db mice were obtained from

Harlan-Olac (Bicester, Bucks, UK). Animals were housed on a 12

h : 12 h dark cycle (08:00^20:00 h) with free access to water and

standard laboratory chow (Beekay rat and mouse toxicology diet,

Bantin and Kingman, Hull, UK).

2.2. Measurement of glycogen synthesis in isolated soleus muscle

Non-fasted mice were killed by cervical dislocation. Intact soleus

muscles weighing 4^6 mg were dissected and tendons were tied onto a

stainless steel clip under slight tension to maintain each muscle at

resting length. The muscles were immediately placed in individual

£asks containing 3 ml of Krebs-Ringer bicarbonate (KRB) bu¡er

with 5.5 mM glucose, 0.14% bovine serum albumin and 10 mM

HEPES equilibrated with 95% O2 : 5% CO2 (pH 7.4). All £asks

were immediately sealed and transferred to a shaking water bath

(36³C) and gassed continuously with 95% O2 : 5% CO2. After 30

min pre-incubation, the muscles were transferred to fresh incubation

£asks with 3 ml of identical bu¡er, but containing 0.25 WCi/ml of [U-

14
C]glucose (Amersham International, Amersham, UK) and bovine

insulin (Sigma Chemical Co, Poole, UK) at 0, 10, 50, 100, 1000 and

10 000 WU/ml with recombinate murine leptin dissolved in phosphate

bu¡ered saline (PBS) or an equivalent volume of PBS [12]. The

muscles were then incubated for another 60 min in a shaking water

bath with continuous gassing. At the end of the incubation period,

muscles were removed, trimmed of tendons, blotted and rapidly fro-

zen in liquid N2. [U-
14
C]glucose incorporation into glycogen (glyco-

gen synthesis) was measured following potassium hydroxide digestion

and ethanol precipitation [14] and results are expressed as Wmol glu-

cosyl units/h/g wet weight. The concentration of lactate in the incu-

bation medium was determined spectrophotometrically [14].

2.3. Expression of the full-length leptin receptor (Ob-Rb) mRNA in

soleus muscle

Total RNA was isolated from tissues of lean (+/+) and obese (ob/

ob) mice by the use of RNaid plus kit (BIO 101 Inc., USA). RNA

samples (V4 Wg) were treated with DNAse I for 15 min and then

reverse transcribed, using (dT)15 Superscript reverse transcriptase II

together with a biological ribonuclease inhibitor (Amersham Int.,

Amersham, UK), according to the manufacturers guidelines (Gib-

coBRL, Life Technol., Paisley, UK). Expression of the full-length

leptin receptor mRNA, Ob-Rb, and the common extracellular domain

mRNA, Ob-R, were established by RT-PCR using domain-speci¢c

primers (Ob-Rb, sense, 5P-TCTTCTGGAGCCTGAACCCATTTC-
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3P, antisense, 5P-TTCTCACCAGAGGTCCCTAAACTC-3P, 30.68

kb; and Ob-R, sense 5P-GGAATGAGCAGGTCAAAAC-3P ; anti-

sense, 5P-GTGACTTCCATATGCAAACC-3P, 30.47 kb). For quan-

titative PCR a shorter fragment of the Ob-Rb was used to relate it

better to the kinetic performances of the Ob-R and L-actin sequences

ampli¢ed. Thus, all cDNA samples were diluted serially (3^5-fold)

then split equally and used either for PCR ampli¢cation of the Ob-

Rb cDNA isoform (37 cycles, using primers; sense, 5P-ACACTGT-

TAATTTCACACCAGAG-3P ; antisense, 5P-TGGATAAACCCTTG-

CTCTTCA-3P 30.45 kb), or all leptin receptor (Ob-R) cDNA iso-

forms (37 cycles, using the primers listed above) and ¢nally the

mouse L-actin cDNA (30 cycles, using Clontech, USA, primers). Pol-

ymerase chain reaction (PCR) ampli¢cation was performed with Am-

pliTaq (Perkin Elmer, UK) in a thermocycler (Techne, Cambrdige,

UK), each cycle as: 95EC 45 s, 55EC 30 s and 72EC 1 min. After

completion (30^37 cycles) the mixture was incubated at 72EC for 10

min. PCR products were either fractionated on agarose gels or spotted

on Hybond N+ membranes (Amersham, UK) and the amount as-

sessed quantitatively by Southern blot hybridization using short di-

goxygenin (DIG-5P) labelled antisense probes. Thus, the Ob-Rb was

detected with DIG5P-GGGCTGGGAATGTGCACAGGATTCCT-

GCCTCACC-3P, and the Ob-R (all isoforms); with DIG5P-

GCGAGTCGGTGGAACGTGGCTGAT-3P, and ¢nally the L-actin

sequence was detected with a commercial probe (Clontech, USA).

Hybridization was in a Rapid-hyb bu¡er (Amersham, UK) and con-

ditions of hybridization and chemiluminescent detection performed as

described previously [12].
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Fig. 3. E¡ects of leptin (100 nM) on glycogen synthesis in soleus

muscle of 6^10-week-old db/db mice (n=8).

Fig. 4. Expression of Ob-R and Ob-Rb mRNAs in soleus muscle of

+/+ and ob/ob mice as determined by RT-PCR and ethidium bro-

mide staining, using primers as described in Section 2. PCR ampli¢-

cation of samples (DNase I-treated) in which the reverse transcrip-

tase was omitted, during cDNA synthesis, resulted in non-detectable

PCR production (data not shown). A 100-bp DNA ladder was used

as a molecular weight marker.

Fig. 1. (a) E¡ects of leptin (100 nM) on glycogen synthesis in soleus

muscle of 8^10 week old ob/ob mice (n=7^9). (b) Dose-dependent

e¡ects of leptin on basal and insulin-stimulated (100 WU/ml) glyco-

gen synthesis in soleus muscle of 8^11-week-old ob/ob mice (n=8^

10). *P6 0.05, 2P6 0.01, leptin-treated versus control (Student's un-

paired t-test).

Fig. 2. E¡ects of leptin (100 nM) on basal and insulin-stimulated

glycogen synthesis in soleus muscle of 8^10-week-old wild-type

(+/+) mice (n=7^10).
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3. Results

Recombinant murine leptin at 100 nM inhibited glycogen

synthesis in soleus muscle of ob/ob mice (Fig. 1a), with 35%

inhibition at basal (P6 0.01), and 28%, 30% and 45% at in-

sulin concentrations (10, 50 and 100 WU/ml, respectively,

P6 0.05) in the physiological range. However, the maximal

response following treatment with insulin (10 000 WU/ml) was

not signi¢cantly a¡ected by leptin (Fig. 1a). The e¡ects of

lower concentrations of leptin (1 and 10 nM) on glycogen

synthesis in the soleus muscle of ob/ob mice were examined

under basal condition and in the presence of 100 WU/ml of

insulin. Leptin at 10 nM caused signi¢cant inhibition of both

basal and insulin-stimulated glycogen synthesis (32% and

35%, respectively; P6 0.05), whereas at 1 nM the inhibition

(13% and 24%) was not signi¢cant (Fig. 1b). These results

demonstrate that the e¡ect of leptin on glycogen synthesis

in muscle from ob/ob mice is dose-dependent (i.e. 13%, 32%

and 35% inhibition respectively of the basal rate and 24%,

35% and 45% inhibition respectively of the 100 WU/ml insu-

lin-stimulated rate, at 1, 10 and 100 nM of leptin, respec-

tively). The rate of lactate formation in the muscle incubation

media of ob/ob mice was not a¡ected by leptin (data not

shown). Also, leptin (100 nM) had no e¡ect on either basal

or insulin-stimulated 2-deoxy-[
3
H]glucose uptake and phos-

phorylation in the soleus muscle of ob/ob mice (percentage

of the paired control values: 95.6þ 9.6% of basal rate;

105.1 þ 5.6% of 1000 WU/ml of insulin-stimulated rate; n=6).

In lean (+/+) mice, there was a trend towards inhibition of

glycogen synthesis by leptin (100 nM), with 20% inhibition at

basal (non-signi¢cant) and 32% inhibition at 100 WU/ml of

insulin (P=0.06; Fig. 2). Studies were also undertaken using

soleus muscles of db/db mice, which lack the functional Ob-Rb

receptor. Leptin (100 nM) did not a¡ect either the basal rate

of glycogen synthesis or the rate in the presence of 50 WU/ml

of insulin (Fig. 3).
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Fig. 5. Expression of Ob-R, Ob-Rb and L-actin mRNA species in soleus muscle of +/+ and ob/ob mice, measured (n=6) by quantitative PCR

ampli¢cation. These are the optimized linear ranges of PCR ampli¢cation of di¡erent cDNAs speci¢ed by hybridization with short DNA

probes. The top left panel shows hybridization blots of PCR products when di¡erent volumes of cDNA from +/+ mice are used, whilst the

other panels show the quantitation of gene expression between the +/+ and ob/ob mouse samples. Data are expressed as þ S.E.M. (n=3), in ar-

bitrary units (A.U.).
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The expression of the Ob-Rb transcript isoform is detected

readily in the soleus muscle by RT-PCR and ethidium bro-

mide staining (Fig. 4). We have also investigated whether

there were any di¡erences in the expression level of the lep-

tin-receptor (Ob-R and Ob-Rb) mRNA in soleus tissues of

wild-type and ob/ob mice, since any di¡erences in receptor

number might indicate variation in the potency of leptin ac-

tion. As the expression of the Ob-Rb transcript is low, quan-

titative PCR was used to determine the relative abundances of

the Ob-Rb mRNA expression in soleus muscle, in a linear

range of PCR conditions [15]. This method resolves changes

in expression that are less than 2-fold. Thus RNA samples

were diluted serially and PCR ampli¢cation performed at a

¢xed number of cycles. L-Actin was used as endogenous con-

trol in a separate reaction to assess loading. When the ratios

of PCR products from the leptin receptor cDNA and the

endogenous actin standard of the wild-type and ob/ob mice

were compared, no di¡erences in abundances were detected

(see Fig. 5).

4. Discussion

The ob gene product leptin has been shown to be a regu-

lator of food intake and energy expenditure and these e¡ects

are mediated through leptin receptors in the hypothalamus [1].

However, leptin receptors have been found also in many pe-

ripheral tissues including lung, ovary, kidney [11,16] and pan-

creatic islets [12] suggesting that leptin might induce a range

of cellular e¡ects in tissues other than brain.

In vivo studies have shown that the administration of leptin

to ob/ob mice results in a depletion in hepatic glycogen con-

tent [13]. Furthermore, leptin impairs the ¢rst steps of the

insulin signalling chain, i.e. auto-phosphorylation of the insu-

lin receptor and tyrosine phosphorylation of insulin receptor

substrate-1 in rat-1 ¢broblasts overexpressing human insulin

receptors, NIH3T3 cells [17] and hep G2 cells [18].

Skeletal muscle is the major site of insulin-mediated glucose

uptake. Furthermore, defective glycogen synthesis in muscle is

one of the earliest manifestations of insulin resistance. Since

insulin resistance is associated with obesity, which has in turn

been associated with increased secretion of leptin, we deter-

mined the direct e¡ect of leptin on basal and insulin-stimu-

lated glycogen synthesis using the isolated soleus muscle prep-

aration. Our results provide the ¢rst evidence that leptin

directly inhibits glycogen synthesis in muscle. This action of

leptin was more marked in muscles from ob/ob mice than in

muscles from lean animals. This latter ¢nding is consistent

with the ¢nding of others that ob/ob mice are more sensitive

to the e¡ects of leptin than lean littermates [4^6]. The reason

for these di¡erences in e¤cacy is not known, but as there were

no detectable di¡erences in the expression level of the Ob-Rb

in soleus muscle of lean and ob/ob mice, it is possible that the

leptin receptor or the post-receptor machinery of ob/ob mice

has increased signalling e¤ciency to exogenous leptin.

In humans, the serum leptin concentration correlates with

percentage body fat [7,8], but insulin resistance has been re-

ported to be associated with elevated plasma leptin levels in-

dependent of body fat mass [19]. Leptin concentrations in

humans are usually in the range 0.1^5 nM [20], whereas in

rodents plasma concentrations up to 20 nM [21] have been

recorded. The concentration of leptin found to be e¡ective in

reducing insulin mediated-glycogen synthesis, in the present

study (10^100 nM), is somewhat higher than that measured

in most human obese subjects. However, such an apparent

discrepancy between exogenous doses of leptin used in vivo

and in vitro in rodents studies and the plasma concentration

in man is a common ¢nding [22,23]. It is possible that re-

combinant leptin does not have the same potency as that

produced endogenously, possibly as a result of post-transla-

tional modi¢cation [22]. Thus the present ¢ndings raise the

possibility that high circulating leptin concentrations in obese

subjects might partially inhibit insulin-mediated muscle glyco-

gen synthesis. Taken together with our earlier ¢nding [12] that

leptin can inhibit glucose-induced and basal insulin secretion,

it is proposed that excessive leptin secretion might potentiate

impaired glucose tolerance in obese subjects.
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