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Abstract Glucose triggers transcriptional and post-transcrip-

tional mechanisms that increase the level and activity of

Saccharomyces cerevisiae plasma membrane H
�
-ATPase. We

have studied the post-transcriptional activation of the enzyme by

glucose and have found that Rsp5, a ubiquitin^protein ligase

enzyme, Ubc4, a ubiquitin-conjugating enzyme, and the 26S

proteasome complex are implicated in this activation. These

results suggest that ATPase activation by glucose requires the

ubiquitin^proteasome proteolytic pathway. This is supported by

the fact that over-expression of the ubiquitin-specific protease

Ubp2, which cleaves ubiquitin from its branched conjugates,

inhibits this activation. We propose that glucose triggers

degradation of an inhibitory protein resulting in enzyme

activation.
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1. Introduction

The plasma membrane H
�
-ATPase of yeast is a proton

pump that plays a central role in the physiology of this or-

ganism [1,2]. This proton pump is regulated by a large number

of environmental factors, among which glucose metabolism

appears to be one of the most important. Glucose regulation

takes places at two levels: at the transcriptional level, glucose

increases the PMA1 mRNA synthesis [3,4] and at the post-

transcriptional level, it induces ATPase activation. This acti-

vation results from a combined e¡ect on the kinetic parame-

ters of the enzyme, including Km decrease, Vmax increase and

optimum pH shift to neutral values [5].

In an early study, we isolated mutations on seven genes

a¡ecting the regulation of the enzyme [4]. Here we show

that one of these genes encodes Rsp5^ubiquitin ligase. The

ubiquitin^protein ligase enzymes catalyze the last step in the

formation of ubiquitin^protein conjugates, which is a signal

for degradation of the tagged protein. [6,7]. Mutations at the

RSP5 locus disturb glucose ATPase activation by abolishing

the Km
decrease that occurs during glucose activation. We

also show that the Ubc4 ubiquitin-conjugating enzyme and

an intact 26S proteasome complex are required for the glucose

activation-triggered K
m

decrease of the enzyme. The results

suggest that a yet unidenti¢ed protein, which is a substrate

for the ubiquitin^proteasome pathway, is involved in glucose

activation of the ATPase.

2. Materials and methods

2.1. Strains, plasmids and growth conditions

The S. cerevisiae strains used are listed in Table 1. Strain ANY03

was constructed by inserting a 2.0 kb HindIII^KpnI fragment contain-

ing the 5P-end of the RSP5 gene at the genomic locus. The fragment

was subcloned into the integrating plasmid YIp352 (URA3) [12] and

digested with BamHI prior to transformation of a MATKK derivative

of BWG1-7A. Integration of the plasmid at the RSP5 locus was con-

¢rmed by Southern blotting.

Strains NFL1-1A and NFL1-2C carrying the ubc4-v1: :HIS3 or the

ubc5-v1: :LEU2 mutant alleles, respectively, are segregants of the

cross MHY500UMHY508.

Plasmid YEp: :UBP1 carries the UBP1 gene under the control of

the ADH1 promoter in the pRS423 vector (2W, HIS3) [13]. Plasmid

YEp: :UBP2 carries the UBP2 gene under the control of its own

promoter in the pRS426 vector (2W, URA3) [13]. Plasmid YEp: :UBP3

carries the UBP3 gene under the control of the ADH1 promoter in the

plasmid YEplac181 (2W, LEU2) [14].

Yeast strains were grown in medium with 2% glucose, 0.7% yeast

nitrogen base without amino acids (US Biologicals, Swampscott, MA)

and the appropriate requirements [15]. When indicated, medium was

bu¡ered with 50 mM MES, adjusted to pH 6.0 with Tris (SD6.0) or

50 mM succinic acid, adjusted to pH 3.0 with Tris (SD3.0).

2.2. Cloning of the RSP5 gene

The yeast strain H19 carrying the apa2-4 mutant allele was trans-

formed [16] with 50 Wg of DNA from a YCp50-based library [17].

Approximately 10 000 transformants were selected in SD6.0 medium.

Transformed cells were pooled and plated in SD3.0 medium. After

4 days at 30³C, three colonies grew on acidic medium and exhibited

wild-type ATPase levels. Plasmids were rescued from yeast [18] and

ampli¢ed in E. coli. Restriction analysis and partial sequencing of

these clones revealed that all three plasmids contained the same insert

(Fig. 1).

To demonstrate linkage of the complementing DNA to the mutant

phenotype, strain ANY03 (rsp5 v : :YIp352:RSP5) was crossed with

the H19 strain (apa2-4) and tetrads analyzed for segregation of the

apa2-4 mutation and the URA3 marker.

2.3. Biochemical methods

Yeast plasma membrane was puri¢ed from glucose-starved and

glucose fermenting cells by di¡erential and sucrose gradient centrifu-

gation [5]. ATPase activity was assayed at pH 6.5 with ATP concen-

trations from 0.8 to 6 mM [20]. The apparent Km and Vmax were

extrapolated from double-reciprocal plots ¢tted using a standard

least-squares method. Similar values (within 10%) were obtained

with two di¡erent plasma membrane preparations isolated independ-

ently. Protein concentration was determined by the method of Brad-

ford [21] with the Bio-Rad protein assay reagent, using bovine IgG as

standard.

3. Results and discussion

3.1. Cloning of the RSP5 gene

The RSP5 gene was cloned by its ability to suppress the

phenotype of the apa2-4 mutant strain when carried on a low-

copy plasmid. This strain exhibits slow growth in SD3.0 me-

dium, as a consequence of a decreased plasma membrane H

�
-

ATPase activity level [4]. After transformation of the recipient
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strain with a YCp50-based yeast genomic library, we recov-

ered one plasmid (pAN100) carrying a 12 kb insert (Fig. 1).

This plasmid complements the slow growth phenotype of the

mutant strain and restores wild-type levels of ATPase activity.

Partial sequence analysis showed that the complementing in-

sert corresponded to a region of chromosome V (Fig. 1).

Subcloning experiments indicated that only the region con-

taining gene RSP5 is required for complementation; the

RSP5 gene is essential for growth [22,23] and encodes a ubiq-

uitin^protein ligase enzyme. The possibility that RSP5 was an

extragenic suppressor of apa2-4 was discarded by crossing

strains ANY03 (rsp5 v : :YIp352:RSP5) and H19 (apa2-4)

and analyzing segregation of the apa2-4 mutation and the

URA3 marker. In all 10 four-spore tetrads studied, the phe-

notype conferred by the apa2-4 mutation and the URA3

marker segregate independently, suggesting that the cloned

gene corresponds to the APA2 locus.

3.2. The rsp5 mutation a¡ects glucose-triggered plasma

membrane ATPase activation

Since the plasma membrane ATPase is a long-lived and

metabolically very stable protein [24] that is not ubiquitinated

under physiological conditions ([25] ; de la Fuente and Portil-

lo, unpublished results), and the rsp5 mutation does not a¡ect

PMA1 mRNA or protein levels (Garc|èa-Arranz and Portillo

unpublished results), we explored the e¡ect of the rsp5 muta-

tion on glucose activation of the enzyme (Fig. 2). In the wild-

type strain, after 15 min incubation with glucose, a 7-fold

increase in ATPase activity was observed, while under the

same conditions, glucose caused a 3.5-fold activation in the

rsp5 mutant strain.

To further characterize the e¡ect of the rsp5 mutation on

the activation of the enzyme by glucose, we determined the

kinetic properties of the enzyme in puri¢ed plasma membrane

of the wild-type and rsp5 mutant obtained from glucose-

starved and glucose-fermenting cells (Fig. 3). In the enzyme

from the rsp5 mutant, the typical Km
decrease caused by glu-

cose was not observed, while the V

max
increase was not sig-

ni¢cantly di¡erent from that of the enzyme from wild-type

cells.

These results suggest that the glucose-triggered K

m
decrease

in this enzyme is regulated directly or indirectly by the ubiq-

uitin pathway.

3.3. Activation of the plasma membrane ATPase in a

ubiquitin-conjugating de¢cient mutant

Ubiquitin-conjugating enzymes transfer activated ubiquitin

from the ubiquiting-activating enzymes to ubiquitin^protein

ligases [26]. This prompted us to test the e¡ect of ubiquitin-

conjugating enzymes on glucose activation of the ATPase. To
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Fig. 1. Chromosomal location and subcloning of the RSP5 gene. Restriction map of part of chromosome V [19]. Positions of the ORFs are in-

dicated by arrows. DNA subclones used to test the ability to complement the apa2 mutation are represented by thin horizontal lines. Restric-

tion enzyme sites: B, BamHI; E, EcoRI; H, HindIII; K, KpnI; X, XbaI.

Table 1

S. cervisiae strains used in this study

Strain Genotype Reference

BWG1-7A MATa adel-100 his4-519 leu2-3,112 ura3-52 [8]

W303-1B MATK ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 [9]

H19 BWG1-7A apa2-4 [4]

ANY03 BWG1-7A rsp5v: :YIp352:RSP5 this work

MHY500 MATa his3-200 leu2-3,112 ura3-52 lys2-801 trp1-1 [10]

MHY508 MHY500 MATK ubc4-v1: :HIS3 ubc5-v1: :LEU2 [10]

MHY552 MHY500 ubc6-v1: :HIS3 ubc7-v1: :LEU2 [10]

NLF1-1A MHY500 ubc4-v1: :HIS3 this work

NLF1-2C MHY500 ubc5-v1: :LEU2 this work

WCG4a MATa his 3-11,15 leu2-3,112 ura3-52 [11]

WCG4A-11/21a WCG4a pre1-1 pre2-1 [11]

YMTAB WCG4a pra-v1: :HIS3 prbl v [11]

FPY693 W303-1B YEp:UBP1 YEp:UBP2 YEp:UBP3 this work

FPY681 W303-1B YEp:UBP1 this work

FPY683 W303-1B YEp:UBP2 this work

FPY685 W303-1B YEp:UBP3 this work

N. de la Fuente et al./FEBS Letters 411 (1997) 308^312 309



this end, we analyzed the kinetic properties of the enzyme in

puri¢ed plasma membrane obtained from glucose-starved and

glucose-fermenting cells of the wild-type and ubiquitin-conju-

gating mutant strains (Table 2). The results showed that only

the ubc4v mutant strain is defective in the Km change induced

by glucose. This reinforces the idea that a ubiquitin-dependent

protein is involved in the Km change of the ATPase upon

glucose activation.

3.4. Activation of ATPase is altered in a proteasome-de¢cient

mutant

Biochemical and genetic evidence suggests that the enzyme

responsible for the ATP-dependent degradation of many

ubiquitinated proteins is the 26S proteasome complex [27].

It has also been suggested that many ubiquitinated proteins

are down-regulated by endocytosis and degradaded by the

vacuolar proteases [25,28^31]. To test whether ATPase acti-

vation by glucose requires the degradation of a ubiquitinated

protein via the 26S proteasome complex or the vacuolar pro-

teolytic system, we analyzed the kinetic properties of the en-

zyme in puri¢ed plasma membrane from glucose-starved and

glucose-fermenting cells of the wild-type, pre1pre2 and

pra1prb1 strains. The pre1pre2 mutant strain is impaired in

the chymotrypsin-like activity of the proteasome [11] and the

pra1prb1 mutant strain lacks vacuolar proteinases A and B

[11]. The enzyme from the proteasome-de¢cient mutant shows

no change in Km (Table 2). This suggests that degradation of

a ubiquitinated protein via the 26S proteasome complex is a

requisite for the Km change caused by glucose-induced activa-
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Fig. 2. Glucose activation of ATPase from a wild-type and an rsp5

mutant strain. At time zero, glucose was added to either wild-type

(a) or to the rsp5 mutant strain (b), samples were taken at the indi-

cated times and plasma membrane was puri¢ed. The ATPase activ-

ity of the puri¢ed membrane fraction was determined at pH 6.5

with 2 mM ATP. Similar values (within 10%) were obtained in two

independent experiments.

Table 2

Kinetic parameters of ATPase from glucose-starved and glucose fermenting wild-type and mutant cells

Strain Relevant genotype GS
a

GF
a

Km Vmax
c

Km Vmax
c

(mM) (WmolWmin
31

Wmg prot.
31
) (mM) (WmolWmin

31
Wmg prot.

31
)

MHY500 wild-type 5.0 0.5 1.6 2.0

MHY508 ubc4v ubc5v 4.5 0.4 5.0 1.8

MHY552 ubc6v ubc7v 5.0 0.6 1.5 1.7

NLF1-1A ubc4v 5.0 0.5 5.0 2.0

NLF1-2C ubc5v 4.5 0.5 1.7 1.8

WCG4a wild-type 4.0 0.4 1.2 1.3

WCG4a-11/21a pre1 pre2 4.0 0.4 4.0 2.0

YMTAB prav prb1 4.0 0.3 1.3 1.0

a
GS, glucose-starved cells; GF, glucose-fermenting cells. Cells were grown, collected and treated with glucose as described under Section 2.

Fig. 3. E¡ect of glucose on the kinetics of plasma membrane AT-

Pase from a wild-type and an rsp5 mutant strain. Strains BWG1-7A

(wild-type; a) and H19 (rsp5 ; b) were incubated with (GF) or with-

out glucose (GS) before homogenization. The ATPase activity of

puri¢ed plasma membrane was assayed at pH 6.5 with the indicated

concentration of ATP. The apparent Km (mM) and Vmax (WmolW-

min
31

Wmg of protein
31
) calculated from the ¢gure are indicated.

Similar values (within 10%) were obtained with two di¡erent plasma

membrane preparations obtained independently.
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tion of the ATPase. The vacuolar proteinases, in contrast, do

not appear to be involved in the process.

3.5. Activation of the plasma membrane ATPase in yeast

strains overexpressing ubiquitin-speci¢c proteases

Ubiquitin-speci¢c, ATP-independent proteases are capable

of cleaving ubiquitin from its linear or branched conjugates;

overexpression of ubiquitin-speci¢c proteases would thus be

expected to perturb the degradation of ubiquitinated sub-

strates and presumably to revert the physiological consequen-

ces of such degradation. In fact, overexpression of the yeast

ubiquitin-speci¢c protease Ubp2 results in a stabilization of

short-lived substrates and as a consequence cells are hyper-

sensitive to stress [32]. In the case of ATPase activation by

glucose it would be expected that overexpression of ubiquitin-

speci¢c proteases would alter the steady-state ubiquitination

of the regulatory protein, thus disturbing ATPase activation.

When activation of the ATPase was analyzed in yeast strains

expressing di¡erent ubiquitin-speci¢c proteases (Table 3) it

was found that Ubp2 overexpression hinders a modi¢cation

of ATPase which alters its glucose-triggered Km
decrease.

Since ATPase itself is not ubiquitinated [25] it must be

assumed that a protein which could be degraded via the ubiq-

uitin^proteasome proteolytic pathway is implicated in this

regulation. That overexpression of the Ubp2 ubiquitin-speci¢c

protease abolishes the Km decrease suggests that the postu-

lated protein has an inhibitory role on the Km decrease pro-

duced by glucose addition to yeast cells.

ATPase activation by glucose is mediated by Ser/Thr phos-

phorylation [33]. Genetic studies suggest that amino acids

Ser

899
and Thr

912
, located at the carboxyl-terminus, de¢ne

two independent regulatory sites involved in the Km decrease

and Vmax increase, respectively. These two residues de¢ne po-

tential phosphorylation sites for casein-kinase II and cal-

modulin-dependent protein kinase II [34].

Taking into account the above-mentioned ¢ndings, it is

tempting to propose a model based on the existence of a

protein that acts as inhibitor of the putative protein kinase

which phosphorylates Ser

899
to induce the K

m
decrease. Upon

glucose addition, this inhibitory protein becomes ubiquiti-

nated and is degraded by the 26S proteasome complex, allow-

ing phosphorylation of Ser

899
by the putative protein kinase.

Nevertheless the present results cannot dismiss an alternative

model in which the postulated inhibitory protein would inter-

act directly with the ATPase, blocking the phosphorylatable

site that would be exposed to the kinase after ubiquitination

and degradation of the protein.
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